Secure Information Flow as a Safety Problem

Overview

- Introduction to secure information flow
- Type-Based approach
- Self composition
- Downgrading
- Self composition with downgrading
- Type directed transformation
- Conclusion

Introduction

The termination insensitive secure information flow problem (non-interference) can be reduced to solving a safety problem via a simple program transformation.

The transformation is called Self-composition.

This paper generalizes this self-compositional approach with a form of information downgrading.

The authors combine this with a type-based approach to achieve a better way to analyse software.

Secure Information Flow

Definition

Given a program P whose variables $H = \{h_1, \ldots, h_n\}$ are high security variables and $L = \{l_1, \ldots, l_n\}$ are low-security variables, P is said to be secure if and only if for any stores M_1 and M_2 such that $M_1 =_{H_c} M_2$, $(<M_1, P > \neq \bot \land <M_2, P > \neq \bot) \Rightarrow <M_1, P > =_L <M_2, P >$

Non-Interference (Vanilla)

Safety Problem

A safety property is a property of a program that can be refuted by observing a finite path

Non-interference is almost a safety problem

The 2-safety property is defined similarly but the program can be refuted by observing two finite paths

Type-Based approach

Evaluates statically if the low security variables is dependent of the high security variables.

if(b) then x:=1 else skip
I:=I+x; SAFE

if(h) then x:=1 else skip l:=l+x; **UNSAFE**

Type-based limitation

Type-based cannot show that the example is safe

$$z := 1;$$

if (h) then $x := 1$ else skip;
if ($\neg h$) then $x := z$ else skip;
 $l := x + y$

Self-Composition

Type Based can't verify the previous figure, that's why we use Self-Composition because?

- 1. let V(P) be all variables in P
- 2. C(P) is a copy of P where $x \in V(P)$ is replaced by C(x)
- 3. For any stores M_1 and M_2 such that domain $(M_1) = V(P)$ and domain $(M_2) = V(C(P))$, let $M_1 = M_2$ before execution
- 4. Run P;C(P)
- 5. Check if $\langle M_1, P; C(P) \rangle = \langle M_2, P; C(P) \rangle$

Self-Composition

$$z := 1;$$

if (h) then $x := 1$ else skip;
if ($\neg h$) then $x := z$ else skip;
 $l := x + y;$
 $z' := 1;$
if (h') then $x' := 1$ else skip;
if ($\neg h'$) then $x' := z'$ else skip
 $l' := x' + y'$

Downgrading 1

Vanilla secure information flow is too strict. For example:

if(hashfunc(input)=hash) then l:=secret else skip;

Downgrading 2

In order to ease on the restrictions, we need a downgrading function f_{hi} for each high security variable h_i that defines when and how a high security variable can be leaked.

Example (same as last page): $f = \lambda x.if(hashfunc(input)=hash)$ then x else c

More examples: $f = \lambda x.length(x)$ $f = \lambda x.0$ (Vanilla)

Downgrading 3

A program *F* can be expressed as $F(f(h_1) \dots f(h_n)) = F(e_1 \dots e_n)$ and agree with *P* on lowsecurity variables at termination. where e_i is a security policy, that associates each highsecurity variable h_i to a downgrading function f_h The program *F* first evaluates the downgrading functions *f* $(h_1) \dots f(h_n)$ so the (h_1, \dots, h_n) are not mentioned in the running of the rest of the program.

At termination $\langle M, P \rangle =_{L} \langle M, F(e) \rangle$

Downgrading and self composition

if (hashfunc(input) = hash) then t := t + 1; l := l + secret else skip

Above does not work with type based

But it works with self composition Because type based is dependent on structure of downgrading operations

Self-Composition Problem

while
$$(n > 0)$$
 do
 $f_1 := f_1 + f_2; f_2 := f_1 - f_2; n := n - 1;$
if $(f_1 > k)$ then $l := 1$ else $l := 0;$
while $(n > 0)$ do
 $f_1 := f_1 + f_2; f_2 := f_1 - f_2; n := n - 1;$
if $(f_1 > k)$ then $l := 1$ else $l := 0;$
while $(n' > 0)$ do
 $f'_1 := f'_1 + f'_2; f'_2 := f'_1 - f'_2; n' := n' - 1;$
if $(f'_1 > k')$ then $l' := 1$ else $l' := 0;$
Cantor version with sem-composition, but

works with type-based.

Type-directed Transformation

Both the type-based and the self-composition approach have their downsides.

Type-directed transformation combines the best of two worlds. Using the WHILE-language to illustrate how it

works.

While-language

 $P ::= x := e \mid \text{if } e \text{ then } P_1 \text{ else } P_2 \mid \text{while } e \text{ do } P \mid P_1; P_2 \mid \text{skip}$

$$\begin{split} \varepsilon ::= \left[\ \right] \mid x := \varepsilon \mid \text{if } \varepsilon \text{ then } P_1 \text{ else } P_2 \mid \text{if } e \text{ then } \varepsilon \text{ else } P \mid \text{if } e \text{ then } P \text{ else } \varepsilon \mid \\ \text{while } \varepsilon \text{ do } P \mid \text{while } e \text{ do } \varepsilon \mid \varepsilon; P \mid P; \varepsilon \end{split}$$

Type-directed translation

 $\Gamma \vdash e : \tau \text{ where } \tau \text{ is a low-security type}$ $x := e \to_{\Gamma} x := e; C(x) := x$

 $\Gamma \not\vdash e : \tau \text{ where } \tau \text{ is a low-security type}$ $x := e \to_{\Gamma} x := e; C(x) := C(e)$

 $\begin{array}{c|c} \Gamma \vdash e : \tau \text{ where } \tau \text{ is a low-security type} & P_1 \to_{\Gamma} P_1^* & P_2 \to_{\Gamma} P_2^* \\ \\ \text{ if } e \text{ then } P_1 \text{ else } P_2 \to_{\Gamma} \text{ if } e \text{ then } P_1^* \text{ else } P_2^* \end{array}$

 $\Gamma \not\vdash e : \tau \text{ where } \tau \text{ is a low-security type}$ if e then P_1 else $P_2 \rightarrow_{\Gamma}$ if e then P_1 else P_2 ; if C(e) then $C(P_1)$ else $C(P_2)$

 $\frac{\Gamma \vdash e : \tau \text{ where } \tau \text{ is a low-security type}}{\texttt{while } e \texttt{ do } s \rightarrow_{\Gamma} \texttt{while } e \texttt{ do } P^*}$

 $\Gamma \not\vdash e : \tau \text{ where } \tau \text{ is a low-security type}$ while $e \text{ do } P \to_{\Gamma} \text{ while } e \text{ do } P; \text{ while } C(e) \text{ do } C(P)$

$$\begin{array}{c|c} P_1 \to_{\Gamma} P_1^* & P_2 \to_{\Gamma} P_2^* \\ \hline P_1; P_2 \to_{\Gamma} P_1^*; P_2^* & \text{skip} \to_{\Gamma} \text{skip} \end{array}$$

Type-directed translation Example 1

Before: while (n > 0) do $f_1 := f_1 + f_2; f_2 := f_1 - f_2; n := n - 1;$ if (h) then x := 1 else skip; if $(\neg h)$ then x := 1 else skip; while $(i < f_1)$ do l := l + x; i := i + 1

Rule:

 $\Gamma \vdash e : \tau \text{ where } \tau \text{ is a low-security type}$ $x := e \to_{\Gamma} x := e; C(x) := x$

After:

while (n > 0) do $f_1 := f_1 + f_2; f'_1 := f_1; f_2 := f_1 - f_2; f'_2 := f_2;$ n := n - 1; n' := n;if (h) then x := 1 else skip; if (h') then x' := 1 else skip; if $(\neg h)$ then x := 1 else skip; if $(\neg h')$ then x' := 1 else skip; while $(i < f_1)$ do l := l + x; l' := l' + x'; i := i + 1; i' := i

Type-directed translation Example 2

While (n > 0) do Before: $f_1 := f_1 + f_2; f_2 := f_1 - f_2; n := n - 1;$ if (h) then x := 1 else skip; if $(\neg h)$ then x := 1 else skip; while $(i < f_1)$ do l := l + x; i := i + 1

Rule:

 $\Gamma \not\vdash e : \tau$ where τ is a low-security type

if e then P_1 else $P_2 \rightarrow_{\Gamma}$ if e then P_1 else P_2 ; if C(e) then $C(P_1)$ else $C(P_2)$

After:

while (n > 0) do $f_1 := f_1 + f_2; f'_1 := f_1; f_2 := f_1 - f_2; f'_2 := f_2;$ n := n - 1; n' := n;if (h) then x := 1 else skip; if (h') then x' := 1 else skip; if $(\neg h)$ then x := 1 else skip; if $(\neg h')$ then x' := 1 else skip; while $(i < f_1)$ do l := l + x; l' := l' + x'; i := i + 1; i' := i

Type-directed translation Example 3

While (n > 0) do **Before:** $f_1 := f_1 + f_2; f_2 := f_1 - f_2; n := n - 1;$ if (h) then x := 1 else skip; if $(\neg h)$ then x := 1 else skip; while $(i < f_1)$ do l := l + x; i := i + 1

Rule: $\Gamma \vdash e : \tau$ where τ is a low-security type $P \rightarrow_{\Gamma} P^*$ while $e \text{ do } s \rightarrow_{\Gamma}$ while $e \text{ do } P^*$

After:

while (n > 0) do $f_1 := f_1 + f_2; f'_1 := f_1; f_2 := f_1 - f_2; f'_2 := f_2;$ n := n - 1; n' := n;if (h) then x := 1 else skip; if (h') then x' := 1 else skip; if $(\neg h)$ then x := 1 else skip; if $(\neg h')$ then x' := 1 else skip; while $(i < f_1)$ do l := l + x; l' := l' + x'; i := i + 1; i' := i

Conclusion

- Type-directed transformation is better than the type based approach.
- But not much different to self-composed approach for a hypothetical analysis tool
- More digestible than self-composed
- Still not perfect.