
Secure Information Flow as a Safety
Problem

Overview

● Introduction to secure information flow
● Type-Based approach
● Self composition
● Downgrading
● Self composition with downgrading
● Type directed transformation
● Conclusion

Introduction
The termination insensitive secure information flow problem (non-interference)
can be reduced to solving a safety problem via a simple program
transformation.

The transformation is called Self-composition.

This paper generalizes this self-compositional approach with a form of
information downgrading.

The authors combine this with a type-based approach to achieve a better way
to analyse software.

Secure Information Flow

Definition

Given a program P whose variables H = {h1, . . . , hn} are
high security variables and L = {l1, . . . , ln} are low-security
variables, P is said to be secure if and only if
for any stores M1 and M2 such that M1=HcM2 ,
(<M1, P> ≠ ⊥ ∧ <M2, P> ≠ ⊥) ⇒ <M1, P> =L <M2, P>

Non-Interference (Vanilla)

Safety Problem

A safety property is a property of a program
that can be refuted by observing a finite path

Non-interference is almost a safety problem

The 2-safety property is defined similarly but
the program can be refuted by observing two
finite paths

Type-Based approach

Evaluates statically if the low security variables
is dependent of the high security variables.

if(b) then x:=1 else skip
l:=l+x; SAFE

if(h) then x:=1 else skip
l:=l+x; UNSAFE

Type-based limitation

Type-based cannot show that the example is
safe

Type Based can't verify the previous figure, that's why we
use Self-Composition because?

1. let V(P) be all variables in P
2. C(P) is a copy of P where x ∈ V(P) is replaced by C(x)
3. For any stores M1 and M2 such that domain(M1) = V(P)

and domain(M2) = V(C(P)), let M1 =L M2 before
execution

4. Run P;C(P)
5. Check if <M1,P;C(P)> =L <M2,P;C(P)>

Self-Composition

Self-Composition

Downgrading 1

Vanilla secure information flow is too strict.
For example:
if(hashfunc(input)=hash)

then
l:=secret

 else
skip;

Downgrading 2

In order to ease on the restrictions, we need a downgrading
function fhi for each high security variable hi that defines
when and how a high security variable can be leaked.

Example (same as last page):
f = λx.if(hashfunc(input)=hash) then x else c

More examples:
f = λx.length(x)
f = λx.0 (Vanilla)

Downgrading 3

A program F can be expressed as
F(f(h1) ... f(hn))= F(e1 ... en) and agree with P on low-
security variables at termination.
where ei is a security policy, that associates each high-
security variable hi to a downgrading function fh
The program F first evaluates the downgrading functions f
(h1) ... f(hn) so the (h1,...,hn) are not mentioned in the
running of the rest of the program.

At termination <M,P> =L <M,F(e)>

Downgrading and self composition

Above does not work with type based

But it works with self composition
Because type based is dependent on structure
of downgrading operations

Self-Composition Problem

Can't be verified with self-composition, but
works with type-based.

Type-directed Transformation

Both the type-based and the
self-composition approach have their
downsides.

Type-directed transformation combines the
best of two worlds.
Using the WHILE-language to illustrate how it
works.

While-language

Type-directed translation

Type-directed translation
Example 1

Before:

Rule:

After:

Type-directed translation
Example 2

Before:

Rule:

After:

Type-directed translation
Example 3

Before:

Rule:

After:

Conclusion

● Type-directed transformation is better than
the type based approach.

● But not much different to self-composed
approach for a hypothetical analysis tool

● More digestible than self-composed
● Still not perfect.

