Secure Information Flow as a Safety
Problem

Overview

Introduction to secure information flow
Type-Based approach

Self composition

Downgrading

Self composition with downgrading
Type directed transformation
Conclusion

Introduction

The termination insensitive secure information flow problem (non-interference)
can be reduced to solving a safety problem via a simple program
transformation.

The transformation is called Self-composition.

This paper generalizes this self-compositional approach with a form of
information downgrading.

The authors combine this with a type-based approach to achieve a better way
to analyse software.

Secure Information Flow

Definition
Given a program P whose variables H=+{h_, ..., h } are
high security variables and L ={l, ..., | } are low-security

variables, P is said to be secure if and only if
for any stores M, and M, such that M=, M, ,

(<M, P># L A<M, P># 1) = <M, P>= <M, P>

Non-Interference (Vanilla)

H inputs

L inputs

Py H outputs
> > >
A
/ L outputs
- > P
P

Process P

Safety Problem

A safety property is a property of a program
that can be refuted by observing a finite path

Non-interference is almost a safety problem

The 2-safety property is defined similarly but
the program can be refuted by observing two
finite paths

Type-Based approach

Evaluates statically if the low security variables
Is dependent of the high security variables.

if(b) then x:=1 else skip
:=I+x; SAFE

if(h) then x:=1 else skip
:=I+x; UNSAFE

Type-based limitation

Type-based cannot show that the example is
safe

z = 1;

if (h) then x := 1 else skip;
if (—h) then x := z else skip;
[:=x +y

Self-Composition

Type Based can't verify the previous figure, that's why we
use Self-Composition because?

1. let V(P) be all variables in P

2. C(P)is a copy of P where x € V(P) is replaced by C(x)

3. Forany stores M, and M, such that domain(M,) = V(P)
and domain(M,) = V(C(P)), let M, = M, before
execution

4. Run P;C(P)

5. Check if <M,,P;C(P)> = <M,,P;C(P)>

Self-Composition

z = 1;

if (h) then x := 1 else skip;
if (—h) then x := z else skip;
[= x + y;

2 =1

if (h') then z’ := 1 else skip;
if (=h') then z' := 2’ else skip
I .= o + y/

Downgrading 1

Vanilla secure information flow is too strict.
For example:
if(hashfunc(input)=hash)
then
[:=secret

else
SKip;

Downgrading 2

In order to ease on the restrictions, we need a downgrading
function f,. for each high security variable h. that defines

when and how a high security variable can be leaked.

Example (same as last page):
f = Ax.if(hashfunc(input)=hash) then x else c

More examples:
f = Ax.length(x)
f=Ax.0 (Vanilla)

Downgrading 3

A program F can be expressed as

F(f(h) ... f(h))= F(e, ... e) and agree with P on low-
security variables at termination.

where e is a security policy, that associates each high-
security variable h.to a downgrading function f,

The program F first evaluates the downgrading functions f
(h,) ... f(h) so the (h ,...,h) are not mentioned in the
running of the rest of the program.

At termination <M,P> = <M, F(e)>

Downgrading and self composition

if (hashfunc(input) = hash) then
t :=t+ 1; 1l :=1[+ secret
else skip

Above does not work with type based

But it works with self composition

Because type based is dependent on structure
of downgrading operations

Self-Composition Problem

while (n > 0) do

J1 = fi+ fo; fo = f1 - fa; moi=mn - 1;
if (fi > k) then [:= 1 else [:= 0;

while (n > 0) do

J1 := fi+ fo; fo = f1 - fa; noi=n - 1
if (fi > k) then [:= 1 else [:= 0;
while (n’ > 0) do

fioo=fi+ fos fo = fi - fas 0 =) - 1
if (fi > k') then I’ := 1 else ' := 0;

ailt v< VTIIITuU vwilll OoCTIlITuUUI T IpUOoILlIvIE, VUL

works with type-based.

Type-directed Transformation

Both the type-based and the

self-composition approach have their
downsides.

Type-directed transformation combines the
best of two worlds.

Using the WHILE-language to illustrate how it
works.

While-language

P :=x :=e|if e then P; else P» | whileedo P | P1; P> | skip

=[] |x:=¢|if € then P; else P, | if e then ¢ else P | if e then P else ¢ |
while £ do P |whileedoc|e; P | P;e

Type-directed translation

I' - e : 7 where 7 is a low-security type

x:=e —rux:=¢;C(z):=x

I' t/ e : 7 where 7 is a low-security type

x:=e—rx:=eC(x):=C(e)

I' - e : 7 where 7 is a low-security type Py —r P P> —r Py
if e then P, else P, — if e then P; else P5

I' i/ e : 7 where T is a low-security type

if e then P; else P> — if e then P; else P»;if C(e) then C(P1) else C(Ps)

I' - e: 7 where 7 is a low-security type P —pr P”

while e do s — while e do P*

I' t/ e : 7 where 7 is a low-security type
while e do P — while e do P;while C(e) do C(P)

P1 — Pl* P2 — P2*
P1; P, —r P Py skip — skip

Type-directed translation
Example 1

while (n > 0) do
Ji := f1+ fos|fe = f1 - fas; noi=n - 1
if (h) then z := 1 else skip;
if (—=h) then z := 1 else skip;
while (2 < f1) do
[l =1 +x; 1 :=1+ 1

Before:

RUIe: I' e : 7 where 7 is a low-security type

x:=e—rx:=eC(x):=x

while (n > 0) do
After fi = f1 + f2;,f{ = fis|fo = f1 - fa; fa = fo
. n:=n-1; n := n;
if (h) then z := 1 else skip; if (h') then z’ := 1 else skip;
if (—=h) then z := 1 else skip; if (—h’) then z’ := 1 else skip;
while (¢ < f1) do
l =1l +x; 0" ;=1 +2'; ¢ :=0+1; 7 =14

Type-directed translation
Example 2

while (n > 0) do

. Ji1 := f1+ fo; fo = f1 - fa; noi=n - 1;
Before' if (h) then z := 1 else skip;
if (—=h) then x := 1 else skip;
while (¢ < f1) do
[l =1 +x; 1 :=1+ 1
Rule: I't/ e : 1 where T is a low-security type

if e then P; else P, —r if e then P; else Py;if C(e) then C(P;) else C(Pz)

while (n > 0) do
After: fi = fi+ fz;/f{ = f1; fo = f1 = fas f3 = foi
- n:=n-1:n := n;:
if (h) then z := 1 else skip; if (h') then z’ := 1 else skip;
if (—h) then = := 1 else skip; if (—h') then z' := 1 else skip;
while (¢ < f1) do
Il =1l +x; U =1 +2'; ¢4 :=4¢+1; 1 =1

Type-directed translation
Example 3

while (n > 0) do
. Ji :=fi+ fo; fo = f1- fas5 ni=n -1
Before' if (h) then z := 1 else skip;
if (—=h) then x := 1 else skip;
while (¢ < f1) do
[l =1 +x; 1 :=1+ 1

Rule: I' - e: 7 where 7 is a low-security type P —p P~

while edo s — while e do P*

while (n > 0) do

After: fii=fu+ fas f1 o= fis fooi= fio- fos f2oi= fas
. n:=n-1;n :=n;
if (h) then z := 1 else skip; if (h') then z’ := 1 else skip;

if (=h) then z := 1 else skip; if (—h') then z’ := 1 else skip;
while (¢ < f1) do
Il =1l +x; U =1 +2'; ¢4 :=4¢+1; 1 =1

Conclusion

e Type-directed transformation is better than
the type based approach.

e But not much different to self-composed
approach for a hypothetical analysis tool

e More digestible than self-composed

e Still not perfect.

