
Memoryless
Subsystems

Whoa, what does it mean?

A memoryless subsystem is a program or procedure
on a computer utility which is guaranteed to have
kept no record of data supplied when it has
completed its task.

Example: An Income Tax program which requires
confidential data such as the income and expenditure of a
customer, but must not keep a record for anyone else to
see later.

So, what is the problem?

Customer wants to run a subsystem requiring him to
provide information some confidential / private and
some non-private.

The subsystem cannot be inspected and so appears to the
user as a black box.

The system generates output on several streams,
containing either private information or non-private
information.

private

non-private

private

non-private

The usual approach

Customer encapsulates the program (which appears as a
black box), and inspects all output streams.

Fails in general. No algorithm for deciding whether information is
contained in an output stream as the program can use a large
number of means to generate its output.

What needs to be done is to provide hardware
support so that, regardless of how the execution
of a program proceeds, its output can in no way
depend on private input.

Abstract computer model

Minsky machine!

Instructions:

1. a := a + 1
2. a¯(n) if a = 0 then goto n else a := a 1
3. halt stop and display output

Data marks

M null priv

null null priv

priv priv priv

Storage location has a fixed data mark. If x is a

storage location, x is the constant data mark.

Information extracted from a register has the data mark of the
register attached.

But wait! The position in the program contains information!

New instructions to save the day

Instructions:

1. if x = M(x, p) then x := x + 1

2. x¯(n) if x = 0 then (if p = M(x,p) then goto n)

 else (if x = M(x, p) then x := x - 1)

3. x*(n) if x = 0 then (stack(p, p); p := M(x, p); goto n)

 else (if x = M(x, p) then x := x - 1)

4. Return p, p := unstack()

5. Halt if p = null then halt

Solution requirements

Theorem 1: A system is secure if and only if the
null path (the path through the program while

p = null) of the program cannot depend on any
priv information.

Suppose the null path can depend on priv info. The
implication is that the program can follow two distinct
branches depending on priv info.

That is not good at all.

Solution requirements

Theorem 2: While p = priv, there is no way of

altering register x for which x = null.

 M(x,p) = M(null, priv) = priv x. Instruction has no effect.

x¯(n) a) x = 0. Since M(x,p) = priv = p, program jumps to n.

 b) x > 0. M(x,p) = priv x. Instruction has no effect.

x*(n) a) x = 0. Jumps to n irrespective of x and p.

 b) x > 0. M(x,p) = priv x. Instruction has no effect.

Solution requirements

Theorem 3: If p = null, no change of path (jump)
can take place that depends on priv information

without setting p = priv.

Jump can only occur when the register is zero. Let y be a register with y

= 0 and y = priv.

1. y¯(n) M(y, p) = M(priv, null) = priv p. Does not jump.

2. y*(n) Jumps irrespetive of p and y. However,

 p := M(y, p) := M(priv, null) := priv

Solution requirements

Theorem 4: If p = priv, p can only be reset to null
by a Return instruction.

Only a*(n) and Return instructions alter p.

If p = priv, an a*(n) instruction with a = 0 will set p as:

 p = M(p, a) = priv

regardless of the value of a.

Solution requirements

Theorem 5: Suppose the machine started with p

= null and that it has halted. Then the system is
secure.

The null path cannot depend on any priv info.
- By theorem 2, cannot change any null register while in priv state.
- By theorem 3, cannot sense any priv info w/o moving into priv state.
- By theorem 4, must have returned, since it has halted and is in null
state.
- After a return, it must continue executing program immediately
after a*(n) instruction and continue along null path. No null registers
have been changed. Must be independent of entry into priv routine.

- By theorem 1, the model is secure.

