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Information flow: some reasons

● Trusting programs is difficult (and unfair)
○ No guarantees on data usage

● Who should decide how the data shall be accessed?
○ The user or the analyst/programmer?

● An example...
○ Windows XP activation: submit signature or uninstall

● Therefore...
Why not granting access to data but preventing its 
leakage?

○ This is what IFS aims for



Information flow: some solutions

● What if we label the information for these flow policies?
○ Label everything!

● Getting back to the previous example...
○ By labeling Alice can know if Windows XP access more 

than needed...
● These flows can be detected, and prevented!

○ Statically (compile time) or...
○ Dynamically (run time)



Static analysis

● Main focus for research in the area
○ Information leaks are verified at compilation time

● Provide security to programmer but not to the user
○ Programmer decides policies (legal/illegal flows)
○ Too conservative or too lax approach

●  Requires specific languages
○ Only strong type languages can be extended
○ For instance, C/C++ could not be checked



Dynamic analysis

● Very few run-time options have been studied as they are 
believed to be less secure

● Tracking mechanisms at program run time
○ Labels are read from input and propagated during 

execution up to storage location
○ Enforcing security depends on checking whether it is 

allowed to write data on an output channel
● However, the user is in control of the information flows

○ In the end, it is the user who decides not the 
programmer (user-centric approach)



Who is more secure?

You loose against
 termination channels!

D

So what?
 You loose against
unchecked exceptions!



Termination channels

secret = ...;
a = 0;
 
for(i=min; i<max; i++){
  if(i == secret)
    low = high;
  printf("x");
} 



Implicit flows

a = 
b = false;
c = false;
if(!a)
  c = true;
if(!c)
  b = true;
print b; 

a
b
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|
|
|
|
|
 
| 

b == a



Implicit flows

a = 
b = false;
c = false;
if(!a)
  c = true;
if(!c)
  b = true;
print b; 

a
b
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b == a



●  translates ordinary binary code to a binary for 
processors that support IFS

 
●  translates all implicit flows to explicit

●  OS is augmented (registry, memory, IFS instruction 
set) to use labels 

 
●  OS does enforcement 

    RIFLE



   RIFLE: binary translation

R[i] -general register, S[j] - security register (stores a label), Mem[a] - memory 
location at address a, X - label of data element x.

●  augmented state contains a label(ex. label R[a]) 
●  one additional instruction = join of two labels 
●  semantics will be identical after translation
●  each branch instruction is replaced:

(R[a])branch T   join S[c] = labelof (R[a]),
(R[a]) branch T



Handling implicit flows

● add appropriate label regardless of path taken
● append security register to list of security operands on 

instructions that potentially use control dependent 
values

 



Handling loops

● security registers may potentially be used after back 
edge is crossed

● values computed under earlier conditions might 
become accessible under the new label

● information leak!
● easily avoided by defining the security operand before 

each branch as the join of the branch predicate and 
the previous value of the security operand

     join S[c] = R[a], S[c]



Evaluation
● wc (unix word count tool)

Input: different files with different labels
Output: according file labels, join of labels for summary output

● PGP (encryption tool)
Created pair of key rings, unique label per key and input file.
Problem: Scan over all keys before the matching one. Fixed by labeling 
all keys equally.
Expected behavior: output labeled with join of labels from input file, 
public key (encryption) and private key (signature)

● thttpd (tiny webserver)
Two files, each protected by a password
Unauthorized request: output labeled with request+document+usernames
Authorized request: +password (misleading, only 1 bit: correct or not)



Performance

Double Cache: all data caches duplicated to store security 
labels
Original Cache: data cache partitioned into two equally sized 
pieces

security instructions independent of original program 
instructions 
→ well parallelizeable



Comparison with other techniques

static analysis (e.g. Jif) proof-carrying code RIFLE (dynamic)

verification: compile time compile time / pre-run runtime

source requirements: source code source code binary

policy decisions: developer developer user

trust: developer user user



Limitations of RIFLE

● Covert channels not detected
○ Timing based
○ Termination

●User must be educated
○ Proper labeling of inputs and outputs 
○ Interpreting results (e. g. thttpd problem: password not 

leaked, only correctness)

● Assumptions (realistic?) 
○  Hardware support (by virtualization?)
○  Operation system support (suppress illegal outputs)



Conclusion
●  RIFLE = run-time analysis of information flow 

(labels propagate through computation instead of  being 
statically assigned to storage locations)

●  dynamic analysis is not less secure than static approach
●  RIFLE consists of three parts:

1. Architecture (security registers and semantics on them)
2. Binary translation 
3. OS support for enforcing the policies

advantages:
●  language independent, no source code required
●  user sets policy and does not have to trust the developer

 
disadvantages:

●  runtime performance decrease
●  results have to be interpreted by an educated user


