
SSS12 - HW3: TaintDroid
Alexander Georgii-Hemming Cyon

Andreas Cederholm
Mathias Pedersen
Magnus Bergman

Mattias Uskali
Carl Björkman

- What is TaintDroid?
- Why TaintDroid?
- Design challenges
- Design of TaintDroid
- Benchmarks and results
- Limitations

Outline

The authors of the paper are the creators of
TaintDroid

Important note

What is TaintDroid?

- TaintDroid is a software developed for
Android with the purpose of analyzing Android
applications with aspect to information flow (IF)
- TaintDroid is an example of a dynamic
analysis system of IF.
- TaintDroid is developed by various academic
persons in cooperation with Intel Labs.
- The source code of TaintDroid is available at:
www.appanalysis.org
- TaintDroid modifies the Android OS

Why TaintDroid?

- Applications on Android Market not verified by
google(which is the case in AppStore)
- Developers can only request coarse-grained
permissions
- Users rarely reads or understands the
meaning of the permissions

How IF can be applied in mobile OS

- It is possible to develop applications which
exposes sensitive user information to third
parties.
- It is not only possible, there are a lot of apps
which does so.
- IF analysis helps with detecting those
confidentially compromising apps.

Design challenges

- Smartphones are resource constrained.
Introducing CPU/RAM overhead is much
noticeable on those devices.
- Permission system is too coarse-grained,
which gives third party apps access to a lot of
sensitive user data.
- Difficult to identify the sensitive data
- Information can be leaked to other apps

TaintDroid taint sources

- GPS
- Files on SD-card
- Contacts
- Accelerometer
- Microphone
- Camera
- SMS
- Sim card data
- IMEI Number

TaintDroid taint sinks

- WiFi
- 3G
- Bluetooth
- SMS
- NFC

Level trackings

Flow of taints within TaintDroid

Flow of taints within TaintDroid ct'd

- What Taintdroid does is
- Every data read from a tainted source wich
and store it in a variable than that variable will
be tainted.
- If that variable then is copied that variable will
also be marked as tainted.
- The taint tags are stored next to the variable
in the memory in order to get good memory
locality

Flow of taints within TaintDroid ct'd

Flow of taints within TaintDroid ct'd

Message-level tracking

- Communication between applications
- IPC uses parcels

Method-level tracking

- Used for system-provided native libraries

File-level tracking

- Ensures persistent information conservatively
retains its taint markings

Benchmarks

When benchmarking security they found out
that out of 105 flagged instances, 37 of them
turned out to be well-founded flags.

Benchmarks

When it comes to speed there are two ways of
measuring: "macroscopic" and "microscopic"
speed benchmarking.
Macroscopic: High-level functionality. "How
long does it take to read a post in the contact
list?"
Microscopic: Automatable analysis of delays in
low-level calls.

Benchmarks

Benchmarks

Speed overhead in macroscopic analysis:
App load time: 3%
Address Book (create): 5%
Address Book (read): 18%
Phone Call: 10%
Take Picture: 29%

Benchmarks

Speed overhead in microscopic analysis:
Java Microbench (CaffeineMark): 14% increase
in score (more = bad)

Benchmarks

Memory overhead in IPC throughput:

Benchmarks

Benchmarks

TaintDroid limitations

- TaintDroid is incapable of detecting implicit IF
- Only dynamic analysis, not static.
- A lot of false positives
- Only detecting, not preventing, leak of
sensitive user information
- Requires Android 2.1
- Modifies the Android OS

