SSS12 - HW3: TaintDroid

Alexander Georgii-Hemming Cyon
Andreas Cederholm
Mathias Pedersen
Magnus Bergman
Mattias Uskali
Carl Bjorkman

Outline

- What is TaintDroid?

- Why TaintDroid?

- Design challenges

- Design of TaintDroid

- Benchmarks and results
- Limitations

Important note

The authors of the paper are the creators of
TaintDroid

What is TaintDroid?

- TaintDroid is a software developed for
Android with the purpose of analyzing Android
applications with aspect to information flow (IF)

- TaintDroid is an example of a dynamic
analysis system of |F.

- TaintDroid is developed by various academic
persons in cooperation with Intel Labs.

- The source code of TaintDroid is available at:
www.appanalysis.org
- TaintDroid modifies the Android OS

Why TaintDroid?

- Applications on Android Market not verified by
google(which is the case in AppStore)

- Developers can only request coarse-grained
permissions

- Users rarely reads or understands the
meaning of the permissions

How IF can be applied in mobile OS

- It Is possible to develop applications which
exposes sensitive user information to third
parties.

- It is not only possible, there are a lot of apps
which does so.

- IF analysis helps with detecting those
confidentially compromising apps.

Design challenges

- Smartphones are resource constrained.
Introducing CPU/RAM overhead is much
noticeable on those devices.

- Permission system is too coarse-grained,
which gives third party apps access to a lot of
sensitive user data.

- Difficult to identify the sensitive data
- Information can be leaked to other apps

TaintDroid taint sources

- GPS

- Files on SD-card
- Contacts

- Accelerometer

- Microphone

- Camera

- SMS

- Sim card data

- IMEI Number

TaintDroid taint sinks

- WiFi

- 3G

- Bluetooth
- SMS

- NFC

Level trackings

Message-level tracking

Application Code

e}

Application Code

Virtual
Machine

Virtual
Machine

Native System Libraries

Network Interface \ Secondary Storage -+

- - -

- - -

Variable-level
tracking

Method-level
tracking

File-level

~ tracking

Flow of taints within TaintDroid

¢

Interpreted Code

Userspace
_— .

Kemel

Trusted Application Untrusted Application
__________ (8)
- Tamt Source !(1) I A
"""" T Trusted Library :‘) _T;atg{ .?i{ﬂ_(_) '
(4) (6)
Dalvik VM . : . ; Dalvik VM
Interpreter \ Virtual Taint Map) nllleniolion Interpreter
...... . L
Binder IPC Library | Bmder Hook " \ Binder Hook ~: Binder IPC Library
........... L
1 |
Binder Kernel Module

Figure 2: TaintDroid architecture within Android.

Flow of taints within TaintDroid ct'd

- What Taintdroid does is

- Every data read from a tainted source wich
and store it in a variable than that variable will
be tainted.

- If that variable then is copied that variable will
also be marked as tainted.

- The taint tags are stored next to the variable
In the memory in order to get good memory
locality

Flow of taints within TaintDroid ct'd

Low Adcresses (2x02000020) Interpreted Targets Native Targets
- out®
stack pointer (top) —* W™ goop
frame pointer (current) > 70 — localo
v@ taint tag
out® vl == in@d argld
out® taint tag vl taint tag argl
outl vZ == inl return taint
outl taint tag vZ2 taint tag arg@ taint tag
(unused) argl taint tag

WM goop

- frame pointer (previous)
== local® <—— variable

vo
v@ taint tag <+— yvariable taint tag

vl == locall
vl taint tag
vZ2 == 1n@

v4 taint tag

High Addresses (@xffffffff)

Flow of taints within TaintDroid ct'd

Table 1: DEX Taint Propagation Logic. Register variables and class fields are referenced by vx and fx, respectively.
R and F are the return and exception variables maintained within the interpreter. A, B, and C are byte-code constants.

Op Format Op Semantics Taint Propagation Description

const-op vy C vy +— C T(vg) « 0 Clear v 4 taint

move-op v URB VA — VB T(vg) « 7(vB) Set v 4 taint to v g taint
move-op-R v 5 vg + R T(vg) « T(R) Set v 4 taint to return taint
return-op v A R+ va T(R) + 7(va) Set return taint ({ if void)
move-op-E v 5 vg +— E T(va) « 7(E) Set v 4 taint to exception taint
throw-op v 4 E + vy T(E) + 7(va) Set exception taint

unary-op vA VB v4 — RUB T(va) « 7(vB) Set v 4 taint to v taint

binary-op v4 v veo
binary-op v4 vp
binary-op va vg C
aput-op vA VB VC
aget-op v VB Vo
sput-opva fp
sget-opva fB
iput-opva vg fo
iget-opva vp fc

vaA — VB KU
v — V4 QUp
vq +—vgpRC
'vB[vc] — VA
v4 + vglvel
fB+va

va + fB
vB(fc) + va
va + vB(fc)

T(va) + T(vB)UT(vC)
T(va) ¢ T(va) UT(vB)

T(va) < 7(vB)

T(vB[]) & T(vB[]) UT(va)
T(va) < T(vB[]) UT(ve)

7(fB) + 7(va)
T(va) < 7(fB)
T(ve(fc)) « 7(va)

T(va) < T(ve(fc)) UT(vp)

Set v 4 taint to v taint U v taint

Update v 4 taint with vp taint

Set v 4 taint to v taint

Update array v g taint with v 4 taint

Set v 4 taint to array and index taint

Set field fp taint to v 4 taint

Set v 4 taint to field fp taint

Set field fe taint to v 4 taint

Set v 4 taint to field f- and object reference taint

Message-level tracking

- Communication between applications
- |IPC uses parcels

Method-level tracking

- Used for system-provided native libraries

File-level tracking

- Ensures persistent information conservatively
retains its taint markings

Benchmarks

When benchmarking security they found out
that out of 105 flagged instances, 37 of them

turned out to be well-founded flags.

Benchmarks

When it comes to speed there are two ways of
measuring: "macroscopic" and "microscopic”
speed benchmarking.

Macroscopic: High-level functionality. "How
long does it take to read a post in the contact
list?"

Microscopic: Automatable analysis of delays in
low-level calls.

Benchmarks

Table 4: Macrobenchmark Results

Android | TaintDroid
App Load Time 63 ms 65 ms
Address Book (create) | 348 ms 367 ms
Address Book (read) 101 ms 119 ms
Phone Call 96 ms 106 ms
Take Picture 1718 ms 2216 ms

Benchmarks

Speed overhead in macroscopic analysis:
App load time: 3%

Address Book (create): 5%

Address Book (read): 18%

Phone Call: 10%

Take Picture: 29%

Benchmarks

Speed overhead in microscopic analysis:

Java Microbench (CaffeineMark): 14% increase
In score (more = bad)

Benchmarks

Memory overhead in IPC throughput:

Table 5: IPC Throughput Test (10,000 msgs).

Android | TaintDroid
Time (s) 8.58 10.89
Memory (client) | 21.06MB 21.88MB
Memory (service) | 18.92MB 19.48MB

Benchmarks

Table 2: Applications grouped by the requested permissions (L: location, C: camera, A: audio, P: phone state). Android
Market categories are indicated in parenthesis, showing the diversity of the studied applications.

Permissions'

Applications i L C A P

The Weather Channel (News & Weather); Cestos, Solitaire (Game); Movies (Entertainment); | 6 X
Babble (Social); Manga Browser (Comics)

Bump, Wertago (Social); Antivirus (Communication); ABC — Animals, Traffic Jam, Hearts, | 14 X X
Blackjack, (Games); Horoscope (Lifestyle); Yellow Pages (Reference); 3001 Wisdom Quotes
Lite, Dastelefonbuch, Astrid (Productivity), BBC News Live Stream (News & Weather); Ring-
tones (Entertainment)

Layar (Lifestyle); Knocking (Social); Coupons (Shopping); Trapster (Travel); Spongebob Slide | 6 X X X
(Game); ProBasketBall (Sports)

MySpace (Social); Barcode Scanner, ixMAT (Shopping) 3 X

Evernote (Productivity) 1 X X X

* Listed names correspond to the name displayed on the phone and not necessarily the name listed in the Android Market.
T All listed applications also require access to the Internet.

Benchmarks

Table 3: Potential privacy violations by 20 of the studied applications. Note that three applications had multiple
violations, one of which had a violation in all three categories.

Observed Behavior (# of apps) Details

Phone Information to Content Servers (2) | 2 apps sent out the phone number, IMSI, and ICC-ID along with the
geo-coordinates to the app’s content server.

Device ID to Content Servers (7)* 2 Social, 1 Shopping, 1 Reference and three other apps transmitted
the IMEI number to the app’s content server.

Location to Advertisement Servers (15) 5 apps sent geo-coordinates to ad.qwapi.com, 5 apps to admob.com,
2 apps to ads.mobclix.com (1 sent location both to admob.com and
ads.mobclix.com) and 4 apps sent location' to data.flurry.com.

* TaintDroid flagged nine applications in this category, but only seven transmitted the raw IMEI without mentioning such practice in the EULA.
To the best of our knowledge, the binary messages contained tainted location data (see the discussion below).

TaintDroid limitations

- TaintDroid is incapable of detecting implicit IF
- Only dynamic analysis, not static.
- A lot of false positives

- Only detecting,_not preventing. leak of
sensitive user information

- Requires Android 2.1
- Modifies the Android OS

