DD2491 p2 2009/2010

Load balancing and traffic control in BGP

Olof Hagsand KTH /CSC

Issues in load balancing

- Load balancing: spread traffic on several paths instead of a single.
- •Why?
- •Use resources better

Can postpone upgrade of infra-structure

Geography

Example: Dont use trans-oceanic links twice

Cost reasons

Balance traffic for optimal price

Redundancy

- •Redundancy and load balancing are not always aligned
- •Example: if you use load balancing over several links, and one link goes down: can you still forward all traffic on the single link?
- •For redundancy it is may sometimes be better to send/announce all traffic on a single link and then have redundant links for backup
- •At the edge, it may be easier to get symmetrical routing which is better for filtering

Sub-link-layer load-balancing

- Two physical links is aggregated into a single Link-Aggregate Group.
- Single (20Mb/s) link
- Load balancing normally on flows

Link-layer load-balancing

• In (metro) Ethernet, load balancing can not be made: Spanning tree computes a single link

•Example: only one link between 222 and 333 can be used for forwarding.

IGP load balancing in IBGP

•IS-IS / OSPF equal-cost multipath provides load balancing in IBGP

Since next-hop self uses peering between loop-backs, and the IBGP neighbor may be reachable via more than one nexthop

Loopback peering in EBGP

 Loopback peering can also be used in EBGP, but routing of loopback is then set-up using static routes Uncommon to use IGP between AS

BGP Multipath

• By default, the best selection algorithm in BGP selects *one* route no load balancing from a *single* router to a *single* prefix possible unless "outside" BGP using loopback peering for example

- unless "outside" BGP using loopback peering for example •BGP multipath enables load balancing between "equal" paths (to the level of comparing routerids)
- Limited JunOS functionality
 - set protocol bgp group extern multipath [multiple-as]
- •By default equal cost multipath

Book also describes unequal cost multipath in CISCO

IBGP Multipath example

Internal (eg from A) vs external (from D) load balancing
Equal cost vs unequal cost multipath (links between B-D and C-D have different bandwidth).

Balance prefix announcements

- •For incoming traffic, you can partition your prefixes and anounce different prefix sets on different peerings.
- If you have many transit operators, you can balance the traffic to get optimal price.
- If you want higher granularity of the balancing, it is common to de-aggregate (or refrain from aggregating) Bad for global BGP table sizes

Load balancing + robustness

• For robustness, you may wisth to announce all prefixes on all peerings, but use better metric (shorter AS-PATH / longer prefixes) where you prefer traffic

•Example: prefixes

Load balancing + robustness

•Example: AS-PATH

Longer prefix announcements

- •Using longer prefixes introduces issues with address allocation and PI/PA addresses
- In the sitiation below where PA addresses are used (AS2:s block), all inbound traffic will flow via AS3
- AS2 must either

announce the more specific prefix = 'punching a hole' in 10.1.0.0/16 by 'leaking' 10.1.1.0/24 AS1 must get PI addresses

Conditional advertisement

- •Advertize a prefix when some (network) condition is met Specific route must be present in routing table
- •Example SUNET

If IGP reachability fails to campus, do not announce network.

Practical BGP: pages 63-65

Intelligent routing

•A generalization of Conditional advertisement is 'Intelligent routing'

External event triggers announcements

- •Example 1: Announce an anycast route to a DNS server if you can access an A-record from it
- •Example 2: Only announce routes to a site if performance measurement ensures a minimal bandwidth of 10Mb/s

Controlling outbound traffic

- •No BGP: Announce (default) routes using IGP metrics, load balance using equal-cost multipath
- Control outgoing traffic by filtering input routes accepting partial routes
- Internal multi-path BGP
- Tag with communities for internal use
- or even LOCALPREF (seldom used)

Forcing symmetric entry/exit points

- •Asymmetric routing is normal behavior for multi-homed networks
- But enterprise may want to enforce symmetric routing. (Providers usually do not have this problem)

Exercise: Symmetry

• D/24 and E/24 are yout networks that you anounce to AS-A and AS-B

•Try to device a *symmetric* solution for D.1 and E.1 communicating with A.1, B.1 and C.1 respectively

• You should have some level of load-balancing.

Forcing symmetric entry/exit points

•Using the topology shown you do not actually require symmetric routing, it is enough to be traffic be symmetric w.r.t the firewalls: the routing could be asymmetric over RA and RB.

•This is usually done by splitting the address space internally and letting the IGP handle symmetric FW access

Load-balancing lab

- EBGP loopback peering
- •EBGP over multiple links
- Balance prefixes on multiple EBGP peerings
- Redundancy

