
1

Authentication Protocols and Key
Establishment

Peter Sjödin
psj@kth.se

Based on material by Vitaly Shmatikov, Univ. of Texas, and by
the previous course teachers

2

Authentication & handshakes
• Authentication & pitfalls

• Trusted intermediates

• Performance & randomness

3

Basic Problem

?

How do you prove to someone that
you are who you claim to be?

Any system with access control must solve this problem

4

Authentication: first attempt

Alice says “I am Alice” and sends her
secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s
password

OK

5

Authentication: Playback Attack

Alice says “I am Alice” and sends her
secret password to “prove” it.

playback attack: Trudy
records Alice’s packet

and later
plays it back to Bob

“I’m Alice”Alice’s
password

OK

“I’m Alice”Alice’s
password

6

Authentication: yet another try

Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

Failure scenario??

“I’m Alice”encrypted
password

OK

7

Authentication: another try

Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

record
and

playback
still works!

“I’m Alice”encrypted
password

OK

“I’m Alice”encrypted
password

8

Authentication by Nonce Challenge

Goal: avoid playback attack

Failures, drawbacks?

Nonce: number (R) used only once–in-a-lifetime
Bob sends Alice a nonce R. Alice must return R, encrypted
with shared secret key

“I am Alice”

R

K (R)A-B
Alice is live, and
only Alice knows
key to encrypt

nonce, so it must
be Alice! Right?

9

Authentication by Nonce Challenge

Goal: avoid playback attack

Failures, drawbacks?

Nonce: number (R) used only once–in-a-lifetime
Bob sends Alice a nonce R. Alice must return R, encrypted
with shared secret key

“I am Alice”

R

K (R)A-B
Alice is live, and
only Alice knows
key to encrypt

nonce, so it must
be Alice! Right?

• Bob isn’t authenticated
• If the key is derived from a

password, Trudy can mount a
dictionary attack

• Trudy can hijack connection after
authentication, if she can send
packets with Alice’s source
address!

• Bob isn’t authenticated
• If the key is derived from a

password, Trudy can mount a
dictionary attack

• Trudy can hijack connection after
authentication, if she can send
packets with Alice’s source
address!

10

Authentication: yet another try

Goal: avoid playback attack, efficiency

Failures, drawbacks?

Alice encrypts a timestamp with shared secret key

“I am Alice, KA-B(timestamp)”

Only Alice knows
key to encrypt
current time.

11

Authentication: yet another try

Goal: avoid playback attack, efficiency

Failures, drawbacks?

Alice encrypts a timestamp with shared secret key

“I am Alice, KA-B(timestamp)”

Only Alice knows
key to encrypt
current time.

• Requires synchronization
• In practice, there must be some

margins for time skew
•During the time-skew window,
there is room for play back
attacks and for Trudy to
impersonate Alice

• Bob is still not authenticated

• Requires synchronization
• In practice, there must be some

margins for time skew
•During the time-skew window,
there is room for play back
attacks and for Trudy to
impersonate Alice

• Bob is still not authenticated

13

fresh random RB; encryptKEY(RA)

Mutual Authentication With Symmetric
Encryption

Alice Bob

KEY

• Mutual authentication: Bob to Alice and Alice to Bob
• Bob’s reasoning: I must be talking to Alice because…

– Person who correctly encrypted RB is someone who knows KEY… Only
Alice knows KEY… Alice must have encrypted RB… Because RB is fresh,
Alice can only know RB if she received my message

KEY

“I am Alice”; fresh random RA

encryptKEY(RB)

14

Reflection Attack

• Bob’s reasoning: I must be talking to Alice because…
– Person who correctly encrypted RB is someone who knows KEY… Only

Alice knows KEY… No! Bob himself knows KEY, too!

• Security often fails because of flawed reasoning

fresh random RB; encryptKEY(RA)

Bob

KEY
“I am Alice”; fresh random RA

encryptKEY(RB)

Start new session, replay Bob’s number back at him

“I am Alice”; RB

fresh random R’B; encryptKEY(RB)

Resume first session, replay Bob’s own message
as response from “Alice”

15

Timestamp Reflection

Alice Bob

KEYKEY

“I am Alice”; EncryptKEY(time)

• Problem: same key for Alice and Bob
– Attacker can get Bob to encrypt using Alice’s key

• Problem: messages don’t include intended recipient
• Problem: Bob doesn’t remember his own messages

EncryptKEY(time+1)

Soon thereafter…

“I am Alice”; EncryptKEY(time+1)

16

Authentication with Public Key

Use nonce, public key cryptography

“I am Alice”
R

Bob checks that

K (R)A
- (K (R)) = RA

-K A
+

Only Alice could have
encrypted R that way!

17

Man-in-the-middle attack
Man (woman) in the middle attack: Trudy poses as Alice (to

Bob) and as Bob (to Alice)

I am Alice I am Alice
R

A
K (R)-

A
K (R)-R

Difficult to detect:
Trudy receives all messages as well
Replay attacks

Must not allow Trudy to abuse the authentication
to create bogus messages!

18

Encryption Tricking

• Alice can be tricked into providing:
– Digital signature
– Message decryption
– …

• Key reuse should be avoided
• Data should have structure

– (so Alice would know what kind of data she signs, encrypts, etc)

I am Alice

A
K (M)-M

Encryption tricking: Trudy tricks Alice to encrypt something
with her private key

19

Authentication & handshakes
• Authentication & pitfalls

• Trusted intermediates

• Performance & randomness

20

Trusted Intermediaries

Symmetric key problem:
• How do two entities establish

shared secret key over
network?

Solution:
• trusted key distribution center

(KDC) acting as intermediary
between entities

Public key problem:
• When Alice obtains Bob’s

public key (from web site, e-
mail, diskette), how does she
know it is Bob’s public key,
not Trudy’s?

Solution:
• trusted certification

authority (CA)

21

Key Distribution Center (KDC)

• Alice, Bob need shared symmetric key.
• KDC: server shares different secret key with each registered

user (many users)
• Alice, Bob know own symmetric keys, KA-KDC KB-KDC , for

communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

22

Key Distribution Center (KDC)

Alice
knows
KA-B

Bob knows KA-B for
communication with

Alice

Alice and Bob can communicate using KA-B as
session key for shared symmetric encryption

KDC generates KA-B

KB-KDC(A, KA-B)

KA-KDC(A,B)

KA-KDC(KA-B, KB-KDC(A,KA-B))
Ticket to Bob

23

Needham-Schroeder Protocol

KB-KDC(A, KA-B), KA-B(N2)

KA-KDC(N1, A, B)

KA-KDC(N1, B, KA-B, KB-KDC(A,KA-B))

KA-B(N2-1, N3)

KA-B(N3-1)

24

Needham-Schroeder Protocol

KB-KDC(A, KA-B), KA-B(N2)

KA-KDC(N1, A, B)

KA-KDC(N1, B, KA-B, KB-KDC(A,KA-B))

KA-B(N2-1, N3)

KA-B(N3-1)

Nonce to prevent
against replay

attacks
Includes “B” so Alice

knows KA-B is for
communication with Bob
(and not with Trudy…)

Nonce challenge

Bob could decrypt N2 ⇒
he could decrypt KA-B ⇒
he knew KB-KDC and must

be Bob!
Nonce challenge

Alice could decrypt N3 ⇒
she knows KA-B

25

Ticket Invalidation Problem

KB-KDC(A, KA-B), KA-B(N2)

KA-KDC(N1, A, B)

KA-KDC(N1, B, KA-B, KB-KDC(A,KA-B))

KA-B(N2-1, N3)

KA-B(N3-1)

2. Trudy steals Alice’s key KA-KDC

3. Alice changes to a new key

1. Trudy sees the message from
KDC to Alice

4. Trudy can still trick Bob to
communicate with her, using Alice’s
old key. Bob cannot detect that the
key is invalid!

28

Key Distribution Center (KDC)
• Many subtle problems to consider

– How to prevent key reuse by attacker?
– What kind of nonce do we use (more later)

29

Certification Authorities

• Certification authority (CA): binds public key to particular
entity, E.

• E (person, router) registers its public key with CA.
– E provides “proof of identity” to CA.
– CA creates certificate binding E to its public key.
– certificate containing E’s public key digitally signed by CA

• CA says “this is E’s public key”

Bob’s
public

key K B
+

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

30

Certification Authorities

• When Alice wants Bob’s public key:
– gets Bob’s certificate (Bob or elsewhere).
– apply CA’s public key to Bob’s certificate, get Bob’s

public key

Bob’s
public

key K B
+

digital
signature
(decrypt)

CA
public

key
K CA
+

K B
+

31

A certificate contains:

• Serial number (unique to issuer)
• info about certificate owner, including algorithm and key

value itself (not shown)

info about
certificate
issuer
valid dates
digital
signature by
issuer

32

Certificates & CAs

• No prior arrangement needed with peer
• CA does not need to be online for verification

– Peers can distribute their own certificates
– Only need to have received CA's public key securly at some

point in the past
– Note: Online CA required to support revocation!

33

Authentication & handshakes
• Authentication & pitfalls

• Trusted intermediates

• Performance & randomness

34

Performance and randomness

• Performance issues force us to encrypt only as
much as is absolutely necessary
– Encryption and decryption times can differ

• RSA 2048 decrypt = 60 * RSA 2048 encrypt

– Public key cryptos often orders of magnitude more
expensive than symmetric crypto

• Message exchanges are also very expensive
– ~100ms RTT to the US
– Limit number of messages, piggybacking

• Sometimes leads to weaknesses!

35

Performance and randomness

• Randomness is very important!
– True randomness is hard to achieve

• Radioactive decay
• Source of white noise

– Pseudo-randomness = pseudo-security
• Need good seeds to pseudrandom generators
• Seeds must not be exposed!
• “Normal” rand()-functions not random enough!

• Who controls source of randomness?

36

Nonces – Numbers used once
• Nonces injects “noise” into protocols

– Sequence numbers
– Time stamps
– Large random numbers

• Sequence numbers and time stamps can be attacked by
guessing and may repeat
– If you know NX, you can guess NX+1

– Setting back clock/lost state

37

Summary

• Like cryptographic algorithms, the design of an
authentication algorithm requires a lot of skill and
care – don't do this at home!

• Using KDCs and CAs allows communication with
unrelated peers – trusted intermediate

• Performance considerations impact on the design of
authentication algorithms

• Randomness is both tricky to achieve and important
for the result

