IPSEC: AH and ESP

Markus Hidell

mahidell@kth.se

Based on material by Vitaly Shmatikov, Univ. of Texas, and by the previous course teachers

Reading

• Kaufman, chapter 16-17

TCP/IP Example

IP Security Issues

- Eavesdropping
- Modification of packets in transit
- Identity spoofing (forged source IP addresses)
- Denial of service
- Many solutions are application-specific
 - TLS for Web, S/MIME for email, SSH for remote login
- IPsec aims to provide a framework of open standards for secure communications over IP
 - Protect every protocol running on top of IPv4 and IPv6

Operating system layers

- SSL (Secure Socket Layer) changes the API to TCP/IP
 - Applications change, but OS doesn't
- IPSec implemented in OS
 - Applications and API remain unchanged (at least in theory)
- To make full use of IPSec, API and apps have to change!
 - and accordingly also the applications

Overview of IPsec

- Authenticated Keying
 - Internet Key Exchange (IKE)
 - Next lecture
- Data Encapsulation
 - ESP: IP Encapsulating Security Payload (RFC 4303)
 - AH: IP Authentication Header (RFC 4302)
- Security Architecture (RFC 4301)
 - Tunnel/transport Mode
 - Databases (Security Association, Policy, Peer Authorization)

IPsec: Network Layer Security

- AH and ESP rely on an existing security association
 - Idea: parties must share a set of secret keys and agree on each other's IP addresses and crypto algorithms
- Internet Key Exchange (IKE)
 - Goal: establish security association for AH and ESP
 - If IKE is broken, AH and ESP provide no protection!

IPsec Security Services

- Authentication and integrity for packet sources
 - Ensures connectionless integrity (for a single packet) and partial sequence integrity (prevent packet replay)
- Confidentiality (encapsulation) for packet contents
- Authentication and encapsulation can be used separately or together
- Either provided in one of two modes
 - Transport mode
 - Tunnel mode

IPsec Modes

- Transport mode
 - Used to deliver services from host to host or from host to gateway
 - Usually within the same network, but can also be end-to-end across networks
- Tunnel mode
 - Used to deliver services from gateway to gateway or from host to gateway
 - Usually gateways owned by the same organization
 - With an insecure network in the middle

IPsec in Transport Mode

- End-to-end security between two hosts
 - Typically, client to gateway (e.g., PC to remote host)
- Requires IPsec support at each host

IPsec in Tunnel Mode

- Gateway-to-gateway security
 - Internal traffic behind gateways not protected
 - Typical application: virtual private network (VPN)
- Only requires IPsec support at gateways

Tunnel Mode Illustration

IPsec protects communication on the insecure part of the network

Transport Mode vs Tunnel Mode

 Transport mode secures packet payload and leaves IP header unchanged

IP header (real dest)	IPSec header	TCP/UDP header + data
--------------------------	--------------	-----------------------

 Tunnel mode encapsulates both IP header and payload into IPsec packets

IP header (gateway)	IPSec header	IP header (real dest)	TCP/UDP header + data
------------------------	--------------	--------------------------	-----------------------

Security Association (SA)

- One-way sender-recipient relationship
 - Manually configured or negotiated through IKE
- SA determines how packets are processed
 - Cryptographic algorithms, keys, AH/ESP, lifetimes, sequence numbers, mode (transport or tunnel) – read Kaufman!
- SA is uniquely identified by {SPI, dst IP addr, flag}
 - SPI: Security Parameter Index
 - Chosen be destination (unless traffic is multicast...)
 - Flag: ESP or AH
 - Each IPsec implementation keeps a database of SAs
 - SPI is sent with packet, tells recipient which SA to use

Sending and Receiving IPsec Packets

- When Alice is sending to Bob:
 - Consult "security policy database" (SPD) to check if packet should protected with IPsec or not ("selector" fields)
 - SPD provides pointer to the associated SA entry in the security association database (SAD)
 - SA provides SPI, algorithm, key, sequence number, etc.
 - Include the SPI in the message

• When Bob receives a message:

- Lookup the SA based on the *destination* address and SPI (In a multicast message the address is not Bob's own)
- Find algorithm, key, sequence number, etc.
- After decrypting message, verify that packet matches "selector" in the policy database (SPD)

Encapsulation Formats

- AH
 - Authentication Header
 - Only provides integrity
- ESP
 - Encapsulating Security Payload
 - Provides integrity and/or privacy

AH: Authentication Header

- RFC 4302
- Sender authentication
- Integrity for packet contents and IP header
- Sender and receiver must share a secret key
 - This key is used in HMAC computation
 - The key is set up by IKE key establishment protocol and recorded in the Security Association (SA)

AH and IP Header

- Mutable fields
 - may change
 - Service type
 - Fragm. offset
 - TTL
 - Header checksum
- Predictable fields
 - may change in a predictable way
 - Dst address (source routing)
- Immutable fields
 - will not change
 - the rest....

Mutable fields can't be included in the AH's end-to-end integrity check

Authentication Header Format

- Provides integrity and origin authentication
- Authenticates portions of the IP header
- Anti-replay service (to counter denial of service)
- No confidentiality

ESP: Encapsulating Security Payload

- RFC 4303
- Adds new header and trailer fields to packet
- Transport mode
 - Confidentiality of packet between two hosts
 - Complete hole through firewalls
 - Used sparingly
- Tunnel mode
 - Confidentiality of packet between two gateways or a host and a gateway
 - Implements VPN tunnels

ESP Security Guarantees

- Confidentiality and integrity for packet payload
 - Symmetric cipher negotiated as part of security assoc
- <u>Optionally</u> provides authentication (similar to AH)
- Can work in transport...

ESP Packet

Virtual Private Networks (VPN)

- ESP is often used to implement a VPN
 - Packets go from internal network to a gateway with TCP/IP headers for address in another network
 - Entire packet hidden by encryption
 - Including original headers so destination addresses are hidden
 - Receiving gateway decrypts packet and forwards original IP packet to receiving address in the network that it protects
- This is known as a VPN tunnel
 - Secure communication between parts of the same organization over public Internet

Use Cases Summary

- Host-Host
 - Transport mode
 - (Or tunnel mode)
- Gateway-Gateway
 - Tunnel mode
- Host-Gateway
 - Tunnel mode

