
An Overview of Common Adversary Models

An Overview of Common Adversary Models

Karl Palmskog
palmskog@kth.se

2012-03-29



An Overview of Common Adversary Models

Introduction

Requirements of Software Systems

1 Functional

Correctness: partial, termination, liveness, safety, . . .

2 Nonfunctional

Performance: time/memory/message complexity, . . .
Security: . . .

3 Architectural

4 . . .



An Overview of Common Adversary Models

Introduction

Security Requirements: Some Questions

Why do we need security?

Assuming a nonadversarial world, do we need security at all?
What are we protecting?
Who are we protecting it from?

How do we describe security?

What assumptions must be made?
What are the capabilities of the adversary?



An Overview of Common Adversary Models

Introduction

On Encryption

“Encryption is not synonymous with security.”

— Mart́ın Abadi



An Overview of Common Adversary Models

The World

Examples of Assumptions About the World

Type Assumption
Fundamental P 6= NP
Fundamental exists 1-way functions

Problem-Specific Decision Diffie-Hellman

Problem-Specific Computational Diffie-Hellman

Problem-Specific Discrete Logarithms

Situation-Specific exists trusted party



An Overview of Common Adversary Models

The World

Building Blocks of Cryptography

1-way hash shared-key public-key

SHA AES RSA



An Overview of Common Adversary Models

The Adversary

Examples of Properties of the Adversary

Computational Power
unlimited/bounded/structurally limited

Intent
curious/hostile



An Overview of Common Adversary Models

The Adversary

Capabilities of the Adversary

“We assume that an intruder can interpose a computer in
all communication paths, and thus can alter or copy parts
of messages, replay messages, or emit false material.”

— Needham/Schroeder (1978)



An Overview of Common Adversary Models

The Adversary

Current Standard Capabilities of the Adversary

Participate in some protocol runs

Know certain data in advance

Intercept message on some or all communication paths

Inject any messages that it can produce



An Overview of Common Adversary Models

Models

Unconditional Security

Unconditional Security: “trust nothing”

Adversary has unbounded computational resources

Must not obtain information from observing ciphertext

Definition

A cryptosystem has perfect secrecy if the a posteriori probability
that the plaintext is x , given that the ciphertext y is observed, is
identical to the a priori probability that the plaintext is x .



An Overview of Common Adversary Models

Models

The Formal Model

The Formal Model: “trust your primitives”

Assume perfect cryptographic primitives (“black boxes”)

Messages exchanged are terms on cryptographic primitives

Adversary is restricted to only reason on terms, e.g.

substitute terms for variables in equations
use equation terms in other equations

Example equations for symmetric cryptography:

∀x∀y sdec(senc(x , y), y) = x

∀x∀y scheck(senc(x , y), y) = ok



An Overview of Common Adversary Models

Models

The Formal Model

The Formal Model Illustrated

A B

O

senc(m1,KB)

senc(m2,KA)



An Overview of Common Adversary Models

Models

The Formal Model

The Formal Model Illustrated

A B

O

senc(m1,KB)

senc(m2,KA)



An Overview of Common Adversary Models

Models

The Formal Model

The Formal Model Illustrated

A B

O

senc(m1,KB)

senc(m2,KA)



An Overview of Common Adversary Models

Models

The Formal Model

Example Properties in the Formal Model

Secrecy
Adversary cannot obtain the secret

Correspondance
Authentication

Strong Secrecy
Adversary does not see the difference when the value
of the secret changes



An Overview of Common Adversary Models

Models

The Formal Model

Pros and Cons of the Formal Model

+ simple

+ tool support

+ necessary for security

- insufficient for security

- unrealistic?



An Overview of Common Adversary Models

Models

The Computational Model

The Computational Model: “limit trust in your primitives”

Messages are bitstrings

Adversary is a polynomial-time probabilistic Turing machine

Adversary can do low-level bit operations on messages

Assumes Computational Diffie-Hellman



An Overview of Common Adversary Models

Models

The Computational Model

The Computational Model Illustrated

A B

O

0010010011

0101011010



An Overview of Common Adversary Models

Models

The Computational Model

The Computational Model Illustrated

A B

O

0010010011

0101011010



An Overview of Common Adversary Models

Models

The Computational Model

The Computational Model Illustrated

A B

O

0010010011

0101011010



An Overview of Common Adversary Models

Models

The Computational Model

Example Properties in the Computational Model

Secrecy
Adversary cannot obtain the secret

Correspondences
Authentication

Resilience
Probability of success of an attack against the
protocol as a function of the probability of breaking
each cryptographic primitive and of the number of
sessions



An Overview of Common Adversary Models

Models

The Computational Model

Pros and Cons of the Computational Model

+ sufficient for probabilistic security

+ reduction-based

+ realistic?

- complicated

- tool support



An Overview of Common Adversary Models

Models

Byzantine Fault Tolerance

Byzantine Fault Tolerance

Distributed system with n nodes connected in a network

m < n nodes behave erratically (can omit or falsify messages)

Lemma

Suppose we have a network with nodes n1, n2 and n3, where n3
behaves erratically. Then n1 and n2 cannot become in agreement
on a value by network communication.

Theorem

Reaching agreement by network communication (without using
cryptographic assumptions) is only possible when n ≥ 3m + 1.



An Overview of Common Adversary Models

Models

Multiparty Computation

Multiparty Computation

n parties communicating through a network

Each party has private input and knows function to compute

t < n parties are passively or actively corrupted



An Overview of Common Adversary Models

Models

Multiparty Computation

Example Properties in Multiparty Computation

Secrecy
Players’ inputs remain secret

Correctness
Results of the computation are correct

Resilience
Above holds despite corruption



An Overview of Common Adversary Models

Models

Universal Composability Framework

Universal Composability Framework

Adversary is any interactive probabilistic polynomial time
Turing machine

Exists “operating system” that takes care of subprotocols

Asynchronous network in ideal or real communication model

Ideal “Dummy” parties, but has trusted party
performing ideal functionality

Real “Real” parties, adversary and environment



An Overview of Common Adversary Models

Models

Universal Composability Framework

Universal Composability Real Model Illustrated

P1 P2 P3 A

C

Z



An Overview of Common Adversary Models

Models

Universal Composability Framework

Universal Composability Ideal Model Illustrated

P1 P2 P3 S

CZ

Z

F



An Overview of Common Adversary Models

Models

Universal Composability Framework

Some Properties of Universal Composability

A protocol π in the real model securely realizes an ideal
functionality F if for any real adversary A, there exists ideal
adversary S such that no environment Z can tell1 whether it
is interacting with real or ideal model

If the protocol π securely realizes some functionality F , π can
be used instead of the functionality regardless of how F is
employed

Protocols remain secure even if arbitrarily composed with
other instances of the same or other protocols

1with non-negligable probability



An Overview of Common Adversary Models

Models

Information Flow

Information Flow

Assume variables in a program P are divided into levels, e.g.:

L (low) for publicly visible variables
H (high) for private, or secret, variables

Assume adversary:

Knows the syntax and semantics of P
Can observe L-variables before and after executing P



An Overview of Common Adversary Models

Models

Information Flow

Example Properties of Information Flow

Information about secret s can be exposed by:

explicit flow a variable in L being assigned s
implicit flow branching on s and assigning to variable in L

Define noninterference for program P:

∀σ1, σ2. σ1 ≈L σ2 ⇒ P(σ1) ≈L P(σ2)

Can be generalized to distributed systems

use logics of knowledge



An Overview of Common Adversary Models

Summary

Applicability

Adversary model as part of designing a software system

Explicit assumptions about

Cryptographic primitives
Resources of adversary
Intent of adversary
Authenticity requirements
Secrecy requirements

Tradeoff between correctness, resource usage, security and
performance



An Overview of Common Adversary Models

Summary

The Ideal System

Functional Requirements
Certificate of adherence to specification

Performance Requirements
Certificate of adherence for performance model to
performance requirements and evidence that it
represents real system

Security Requirements
Certificate of security against specified adversary
model



An Overview of Common Adversary Models

Summary

Questions to Ponder

What is the adversary model for a simple web service?

How do XSS attacks fit into this model?



An Overview of Common Adversary Models

Summary

Further Reading

[1] M. Abadi. Security protocols: Principles and calculi. In Tutorial
Lectures, FOSAD 2006/2007, 2007.

[2] R. Carnetti. Universally composable security: a new paradigm for
cryptographic protocols. In 42nd IEEE Symposium on Foundations of
Computer Science, pages 136–145, 2001.

[3] R. Impagliazzo. A personal view of average-case complexity. In 10th
IEEE Conference on Structure in Complexity Theory, pages 134–147,
1995.

[4] U. Maurer. Secure multi-party computation made simple. In Lecture
Notes in Computer Science 2576, pages 14–28. Springer, 2003.

[5] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, 1980.

[6] K. Wiegers. Software Requirements. Microsoft Press, second edition,
2003.


	Introduction
	The World
	The Adversary
	Models
	Unconditional Security
	The Formal Model
	The Computational Model
	Byzantine Fault Tolerance
	Multiparty Computation
	Universal Composability Framework
	Information Flow

	Summary
	References

