Chapter 2: Overview of Supervised Learning

DD3364

March 9, 2012

Introduction and Notation

Problem 1: Regression

Problem 2: Classification

Some Terminology

- In Machine Learning have outputs which are predicted from measured inputs.
- In Statistical literature have responses which are predicted from measured predictors.
- In Pattern Recognition have responses which are predicted from measured features.

Some Terminology

- In Machine Learning have outputs which are predicted from measured inputs.
- In Statistical literature have responses which are predicted from measured predictors.
- In Pattern Recognition have responses which are predicted from measured features.

The goal of supervised learning is to predict the value of the output(s) given an input and lots of labelled training examples

$$
\left\{\left(\text { input }_{1}, \text { output }_{1}\right),\left(\text { input }_{2}, \text { output }_{2}\right), \ldots,\left(\text { input }_{n}, \text { output }_{n}\right)\right\}
$$

Variable types

- Outputs can be
- discrete (categorical, qualitative),
- continuous (quantitative) or
- ordered categorical (order is important)
- Predicting a discrete output is referred to as classification.
- Predicting a continuous output is referred to as regression.

Notation of the book

- Denote an input variable by X.
- If X is a vector, its components are denoted by X_{j}
- Quantitative (continuous) outputs are denoted by Y
- Qualitative (discrete) outputs are denoted by G
- Observed values are written in lower case.
- x_{i} is the i th observed value of X. If X is a vector then x_{i} is a vector of the same length.
- g_{i} is the i th observed value of G.
- Matrices are represented by bold uppercase letters.

I will try to stick these conventions in the slides.

Notation of the book

- Denote an input variable by X.
- If X is a vector, its components are denoted by X_{j}
- Quantitative (continuous) outputs are denoted by Y
- Qualitative (discrete) outputs are denoted by G
- Observed values are written in lower case.
- x_{i} is the i th observed value of X. If X is a vector then x_{i} is a vector of the same length.
- g_{i} is the i th observed value of G.
- Matrices are represented by bold uppercase letters.

I will try to stick these conventions in the slides.

Notation of the book

- Denote an input variable by X.
- If X is a vector, its components are denoted by X_{j}
- Quantitative (continuous) outputs are denoted by Y
- Qualitative (discrete) outputs are denoted by G
- Observed values are written in lower case.
- x_{i} is the i th observed value of X. If X is a vector then x_{i} is a vector of the same length.
- g_{i} is the i th observed value of G.
- Matrices are represented by bold uppercase letters.

I will try to stick these conventions in the slides.

Notation of the book

- Denote an input variable by X.
- If X is a vector, its components are denoted by X_{j}
- Quantitative (continuous) outputs are denoted by Y
- Qualitative (discrete) outputs are denoted by G
- Observed values are written in lower case.
- x_{i} is the i th observed value of X. If X is a vector then x_{i} is a vector of the same length.
- g_{i} is the i th observed value of G.
- Matrices are represented by bold uppercase letters.

I will try to stick these conventions in the slides.

Notation of the book

- Denote an input variable by X.
- If X is a vector, its components are denoted by X_{j}
- Quantitative (continuous) outputs are denoted by Y
- Qualitative (discrete) outputs are denoted by G
- Observed values are written in lower case.
- x_{i} is the i th observed value of X. If X is a vector then x_{i} is a vector of the same length.
- g_{i} is the i th observed value of G.
- Matrices are represented by bold uppercase letters.

I will try to stick these conventions in the slides.

Notation of the book

- Denote an input variable by X.
- If X is a vector, its components are denoted by X_{j}
- Quantitative (continuous) outputs are denoted by Y
- Qualitative (discrete) outputs are denoted by G
- Observed values are written in lower case.
- x_{i} is the i th observed value of X. If X is a vector then x_{i} is a vector of the same length.
- g_{i} is the i th observed value of G.
- Matrices are represented by bold uppercase letters.

I will try to stick these conventions in the slides.

Notation of the book

- Denote an input variable by X.
- If X is a vector, its components are denoted by X_{j}
- Quantitative (continuous) outputs are denoted by Y
- Qualitative (discrete) outputs are denoted by G
- Observed values are written in lower case.
- x_{i} is the i th observed value of X. If X is a vector then x_{i} is a vector of the same length.
- g_{i} is the i th observed value of G.
- Matrices are represented by bold uppercase letters.

I will try to stick these conventions in the slides.

Notation of the book

- Denote an input variable by X.
- If X is a vector, its components are denoted by X_{j}
- Quantitative (continuous) outputs are denoted by Y
- Qualitative (discrete) outputs are denoted by G
- Observed values are written in lower case.
- x_{i} is the i th observed value of X. If X is a vector then x_{i} is a vector of the same length.
- g_{i} is the i th observed value of G.
- Matrices are represented by bold uppercase letters.

I will try to stick these conventions in the slides.

More Notation

- The prediction of the output for a given value of input vector X is denoted by \hat{Y}.
- It is presumed that we have labelled training data for regression problems

$$
\mathcal{T}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

with each $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in \mathbb{R}$

- It is presumed that we have labelled training data for classification problems

$$
\mathcal{T}=\left\{\left(x_{1}, g_{1}\right), \ldots,\left(x_{n}, g_{n}\right)\right\}
$$

with each $x_{i} \in \mathbb{R}^{p}$ and $g_{i} \in\{1, \ldots, G\}$

More Notation

- The prediction of the output for a given value of input vector X is denoted by \hat{Y}.
- It is presumed that we have labelled training data for regression problems

$$
\mathcal{T}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

with each $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in \mathbb{R}$

- It is presumed that we have labelled training data for classification problems

$$
\mathcal{T}=\left\{\left(x_{1}, g_{1}\right), \ldots,\left(x_{n}, g_{n}\right)\right\}
$$

with each $x_{i} \in \mathbb{R}^{p}$ and $g_{i} \in\{1, \ldots, G\}$

More Notation

- The prediction of the output for a given value of input vector X is denoted by \hat{Y}.
- It is presumed that we have labelled training data for regression problems

$$
\mathcal{T}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

with each $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in \mathbb{R}$

- It is presumed that we have labelled training data for classification problems

$$
\mathcal{T}=\left\{\left(x_{1}, g_{1}\right), \ldots,\left(x_{n}, g_{n}\right)\right\}
$$

with each $x_{i} \in \mathbb{R}^{p}$ and $g_{i} \in\{1, \ldots, G\}$

Prediction via Least Squares and Nearest Neighbours

- Have an input vector $X=\left(X_{1}, \ldots, X_{p}\right)^{t}$
- A linear model predicts the output Y as

$$
\hat{Y}=\hat{\beta}_{0}+\sum_{j=1}^{p} X_{j} \hat{\beta}_{j}
$$

where $\hat{\beta}_{0}$ is known as the intercept and also as the bias

- Have an input vector $X=\left(X_{1}, \ldots, X_{p}\right)^{t}$
- A linear model predicts the output Y as

$$
\hat{Y}=\hat{\beta}_{0}+\sum_{j=1}^{p} X_{j} \hat{\beta}_{j}
$$

where $\hat{\beta}_{0}$ is known as the intercept and also as the bias

- Let $X=\left(1, X_{1}, \ldots, X_{p}\right)^{t}$ and $\hat{\beta}=\left(\hat{\beta}_{0}, \ldots, \hat{\beta}_{p}\right)^{t}$ then

$$
\hat{Y}=X^{t} \hat{\beta}
$$

Linear Models and Least Squares

- How is a linear model fit to a set of training data?
- Most popular approach is a Least Squares approach
- β is chosen to minimize

$$
\operatorname{RSS}(\beta)=\sum_{i=1}^{n}\left(y_{i}-x_{i}^{t} \beta\right)^{2}
$$

- As this is quadratic a minimum always exist but it may not be unique.
- In matrix notation can write $\operatorname{RSS}(\beta)$ as

Linear Models and Least Squares

- How is a linear model fit to a set of training data?
- Most popular approach is a Least Squares approach
- β is chosen to minimize

$$
\operatorname{RSS}(\beta)=\sum_{i=1}^{n}\left(y_{i}-x_{i}^{t} \beta\right)^{2}
$$

- As this is quadratic a minimum always exist but it may not be unique.
- In matrix notation can write $\operatorname{RSS}(\beta)$ as

$$
\operatorname{RSS}(\beta)=(y-\mathbf{X} \beta)^{t}(y-\mathbf{X} \beta)
$$

where $\mathbf{X} \in \mathbb{R}^{n \times p}$ is a matrix with each row being an input vector and $y=\left(y_{1}, \ldots, y_{n}\right)^{t}$

Linear Models and Least Squares

- The solution to

$$
\hat{\beta}=\arg \min _{\beta}(y-\mathbf{X} \beta)^{t}(y-\mathbf{X} \beta)
$$

is given by

$$
\hat{\beta}=\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} y
$$

if $\mathbf{X}^{t} \mathbf{X}$ is non-singular

- This is easy to show by differentiation of $\operatorname{RSS}(\beta)$
- This model has $p+1$ parameters.

Linear Models, Least Squares and Classification

- Assume one has training data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ with each $y_{i} \in\{0,1\}$ (it's really categorical data)
- A linear regression model $\hat{\beta}$ is fit to the data and

$$
\hat{G}(x)= \begin{cases}0 & \text { if } x^{t} \hat{\beta} \leq .5 \\ 1 & \text { if } x^{t} \hat{\beta}>.5\end{cases}
$$

- This is not the best way to perform binary classification with a linear discriminant function

Linear Models, Least Squares and Classification

- Assume one has training data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ with each $y_{i} \in\{0,1\}$ (it's really categorical data)
- A linear regression model $\hat{\beta}$ is fit to the data and

$$
\hat{G}(x)= \begin{cases}0 & \text { if } x^{t} \hat{\beta} \leq .5 \\ 1 & \text { if } x^{t} \hat{\beta}>.5\end{cases}
$$

- This is not the best way to perform binary classification with a linear discriminant function...

Example binary classification with

Example binary classification with

$$
k=1
$$

- The linear classifier mis-classifies quite a few of the training examples
- The linear model may be too rigid
- By inspection it seem the two classes cannot be separated by a line
- Points from each class are generated from a GMM with 10 mixtures

Example binary classification with

$$
k=1
$$

- The linear classifier mis-classifies quite a few of the training examples
- The linear model may be too rigid
- By inspection it seem the two classes cannot be separated by a line
- Points from each class are generated from a GMM with 10 mixtures

Example binary classification with

$$
k=1
$$

- The linear classifier mis-classifies quite a few of the training examples
- The linear model may be too rigid
- By inspection it seem the two classes cannot be separated by a line
- Points from each class are generated from a GMM with 10 mixtures

k-Nearest Neighbour regression fitting

- the k-nearest neighbour fit for \hat{Y} is

$$
\hat{Y}(x)=\frac{1}{k} \sum_{x_{i} \in N_{k}(x)} y_{i}
$$

where $N_{k}(x)$ is the neighbourhood of x defined by the k closest points x_{i} in the training data.

- Closeness if defined by some metric.
- For this lecture assume it is the Euclidean distance.
- k-nearest neighbours in words:

Find the k observations x_{i} closest to x and average their responses.

k-Nearest Neighbour binary classification

- Training data: $\left\{\left(x_{i}, g_{i}\right)\right\}$ with each $g_{i} \in\{0,1\}$
- the k-nearest neighbour estimate for \hat{G} is

$$
\hat{G}(x)= \begin{cases}0 & \text { if }\left(\frac{1}{k} \sum_{x_{i} \in N_{k}(x)} g_{i}\right) \leq .5 \\ 1 & \text { otherwise }\end{cases}
$$

where $N_{k}(x)$ is the neighbourhood of x defined by the k closest points x_{i} in the training data.

- k-nearest neighbours in words:

Find the k observations x_{i} closest to x and estimate the class of x as the majority class amongst the neighbours.

Example: k-Nearest Neighbour classification

Example: k-Nearest Neighbour classification

Example: k-Nearest Neighbour classification

$$
k=1
$$

- For $k=1$ all the training examples are correctly classified.
- This is always the case!
- But how well will it perform on test data drawn from the same distribution?

Example: k-Nearest Neighbour classification

$$
k=1
$$

- For $k=1$ all the training examples are correctly classified.
- This is always the case!
- But how well will it perform on test data drawn from the same distribution?

Example: k-Nearest Neighbour classification

$$
k=1
$$

- For $k=1$ all the training examples are correctly classified.
- This is always the case!
- But how well will it perform on test data drawn from the same distribution?

Effective number of parameters of k-nn

- There are two parameters that control the behaviour of k-nn.
- These are k and n the number of training samples
- The effective number of parameters of k-nn is n / k
- Intuitively
- say the nbds were non-overlapping
- Would have n / k neighbourhoods
- Need to fit one parameter (a mean) to each neighbourhood

Effective number of parameters of k-nn

- There are two parameters that control the behaviour of k-nn.
- These are k and n the number of training samples
- The effective number of parameters of k-nn is n / k
- Intuitively
- say the nbds were non-overlapping
- Would have n / k neighbourhoods
- Need to fit one parameter (a mean) to each neighbourhood

k-nn Vs Linear decision boundaries

- Linear decision boundary is
- smooth,
- stable to fit
- assumes a linear decision boundary is suitable

In statistical learning lingo: it has low variance and high bias

- k-nn decision boundary is
- can adant to any shane of the data,
- not smooth, wiggly (for small k)
statistical learning lingo: it has high variance and low bias

k-nn Vs Linear decision boundaries

- Linear decision boundary is
- smooth,
- stable to fit
- assumes a linear decision boundary is suitable

In statistical learning lingo: it has low variance and high bias

- k-nn decision boundary is
- can adapt to any shape of the data,
- unstable to fit (for small k)
- not smooth, wiggly (for small k)

In statistical learning lingo: it has high variance and low bias

Optimal Bayes decision boundary

This is the optimal decision boundary computed from the known pdfs for the two classes.

Mis-classification rate for the simulation experiment

Statistical Decision Theory

Some statistical theory

- How do we measure how well $f(X)$ predicts Y ?
- Statisticians would compute the Expected Prediction Error w.r.t. some loss function

$$
\operatorname{EPE}(f)=E_{X, Y}[L(Y, f(X))]=\iint L(y, f(x)) p(x, y) d x d y
$$

- A common loss function is the squared error loss

$$
L(y, f(x))=(y-f(x))^{2}
$$

- By conditioning on X can write

Some statistical theory

- How do we measure how well $f(X)$ predicts Y ?
- Statisticians would compute the Expected Prediction Error w.r.t. some loss function

$$
\operatorname{EPE}(f)=E_{X, Y}[L(Y, f(X))]=\iint L(y, f(x)) p(x, y) d x d y
$$

- A common loss function is the squared error loss

$$
L(y, f(x))=(y-f(x))^{2}
$$

- By conditioning on X can write $\operatorname{EPE}(f)=E_{X, Y}\left[(Y-f(X))^{2}\right]=E_{X}\left[E_{Y \mid X}\left[(Y-f(X))^{2} \mid X\right]\right]$

Some statistical theory

- At a point x can minimize EPE to get the best prediction of y

$$
f(x)=\arg \min _{c} E_{Y \mid X}\left[(Y-c)^{2} \mid X=x\right]
$$

- The solution is

$$
f(x)=E[Y \mid X=x]
$$

This is known as the regression function.

Some statistical theory

- At a point x can minimize EPE to get the best prediction of y

$$
f(x)=\arg \min _{c} E_{Y \mid X}\left[(Y-c)^{2} \mid X=x\right]
$$

- The solution is

$$
f(x)=E[Y \mid X=x]
$$

This is known as the regression function.

- Only one problem with this: one rarely knows the pdf $p(Y \mid X)$.
- The regression methods we encounter can be viewed as ways to approximate $E[Y \mid X=x]$.

Local Methods in High Dimensions

Intuition and k-nearest neighbour averaging

Example:

- Training data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ where $x_{i} \in \mathcal{X} \subset \mathbb{R}^{p}$ and $y_{i} \in \mathbb{R}$
- Predict response at $x \in \mathcal{X}$ using the training data and 3-nn averaging.

Intuition and k-nearest neighbour averaging

Let

- $\mathcal{X}=[-1,1]^{2}$ and
- the training x_{i} 's be uniformly sampled from \mathcal{X}.
x_{i} 's from training sets of different size

- As n increases the expected area of the nbd containing the 3 nearest neighbours decreases
- \Longrightarrow accuracy of \hat{y} increases.

Intuition and k-nearest neighbour averaging

Therefore intuition says:

Lots of training data
\Downarrow
k-nearest neighbour produces accurate stable prediction.

More formally:

As n increases then

Intuition and k-nearest neighbour averaging

Therefore intuition says:

Lots of training data
\Downarrow
k-nearest neighbour produces accurate stable prediction.

More formally:
As n increases then

$$
\hat{y}=\frac{1}{k} \sum_{x_{i} \in N_{k}(x)} y_{i} \longrightarrow E[y \mid x]
$$

The Curse of Dimensionality (Bellman, 1961)

- k-nearest neighbour averaging approach and our intuition breaks down in high dimensions.

The Curse of Dimensionality (Bellman, 1961)

- k-nearest neighbour averaging approach and our intuition breaks down in high dimensions.

Manifestations of this problem

For large p

- Nearest neighbours are not so close !
- The k-nn of x are closer to the boundary of \mathcal{X}.
- Need a prohibitive number of training samples to densely sample $\mathcal{X} \subset R^{p}$

The Curse of Dimensionality (Bellman, 1961)

- k-nearest neighbour averaging approach and our intuition breaks down in high dimensions.

Manifestations of this problem

For large p

- Nearest neighbours are not so close !
- The k-nn of x are closer to the boundary of \mathcal{X}.
- Need a prohibitive number of training samples to densely sample $\mathcal{X} \subset R^{p}$

The Curse of Dimensionality (Bellman, 1961)

- k-nearest neighbour averaging approach and our intuition breaks down in high dimensions.

Manifestations of this problem

For large p

- Nearest neighbours are not so close !
- The k-nn of x are closer to the boundary of \mathcal{X}.
- Need a prohibitive number of training samples to densely sample $\mathcal{X} \subset R^{p}$

Curse of Dimensionality: Problem 1

For large p nearest neighbours are not so close

Scenario:
Estimate a regression function, $f: \mathcal{X} \rightarrow \mathbb{R}$, using a k-nn regressor. Have

- $\mathcal{X}=[0,1]^{p}$ (the unit hyper-cube)
- training inputs are uniformly sampled from \mathcal{X}.

For large p nearest neighbours are not so close

Scenario:

Estimate a regression function, $f: \mathcal{X} \rightarrow \mathbb{R}$, using a k-nn regressor. Have

- $\mathcal{X}=[0,1]^{p}$ (the unit hyper-cube)
- training inputs are uniformly sampled from \mathcal{X}.

Question:

Let $k=r n$ where $r \in[0,1]$ and $x=\mathbf{0}$.
What is the expected length of the side of the minimal hyper-cube containing the k-nearest neighbours of x ?

For large p nearest neighbours are not so close

Scenario:

Estimate a regression function, $f: \mathcal{X} \rightarrow \mathbb{R}$, using a k-nn regressor. Have

- $\mathcal{X}=[0,1]^{p}$ (the unit hyper-cube)
- training inputs are uniformly sampled from \mathcal{X}.

Question:

Let $k=r n$ where $r \in[0,1]$ and $x=\mathbf{0}$.
What is the expected length of the side of the minimal hyper-cube containing the k-nearest neighbours of x ?

Solution:

Volume of hyper-cube of side a is a^{p}. Looking for a s.t. a^{p} equals a fraction r of the unit hyper-cube volume. Therefore

$$
a^{p}=r \Longrightarrow a=r^{1 / p}
$$

For large p nearest neighbours are not close

To recap the expected edge length of the hyper-cube containing a fraction r of the training data is

$$
e_{p}(r)=r^{1 / p}
$$

For large p nearest neighbours are not close

To recap the expected edge length of the hyper-cube containing a fraction r of the training data is

$$
e_{p}(r)=r^{1 / p}
$$

Plug in some numbers

Let $p=10$ then
$e_{p}(.01)=.63, \quad e_{p}(.1)=.80$
Entire range for each input is 1.
Therefore in this case 1% and 10% nearest neighbour estimate are not local estimates.

Curse of Dimensionality: Problem 2

For large p nearest neighbours are not close II

Scenario:
Estimate a regression function, $f: \mathcal{X} \rightarrow \mathbb{R}$, using a k-nearest neighbour regressor. Have

- \mathcal{X} is the unit hyper-sphere(ball) in \mathbb{R}^{p} centred at the origin.
- n training inputs are uniformly sampled from \mathcal{X}.

For large p nearest neighbours are not close II

Scenario:

Estimate a regression function, $f: \mathcal{X} \rightarrow \mathbb{R}$, using a k-nearest neighbour regressor. Have

- \mathcal{X} is the unit hyper-sphere(ball) in \mathbb{R}^{p} centred at the origin.
- n training inputs are uniformly sampled from \mathcal{X}.

Question:

Let $k=1$ and $x=\mathbf{0}$.
What is the median distance of the nearest neighbour to x ?

For large p nearest neighbours are not close II

Scenario:

Estimate a regression function, $f: \mathcal{X} \rightarrow \mathbb{R}$, using a k-nearest neighbour regressor. Have

- \mathcal{X} is the unit hyper-sphere(ball) in \mathbb{R}^{p} centred at the origin.
- n training inputs are uniformly sampled from \mathcal{X}.

Question:

Let $k=1$ and $x=\mathbf{0}$.
What is the median distance of the nearest neighbour to x ?

Solution:

This median distance is given by the expression

$$
d(p, n)=\left(1-.5^{\frac{1}{n}}\right)^{\frac{1}{p}}
$$

Median distance of nearest neighbour to the origin

Plot of $d(p, n)$ for $n=500$

Note: For $p=10$ the closest training point is closer to the boundary of \mathcal{X} than to x

Consequence of this expression

Consequence

For large p most of the training data points are closer to the boundary of \mathcal{X} than to x.

This is bad because

- To make a prediction at x, you will use training samples near the edge of the training data
- Therefore perform extrapolation as opposed to interpolation between neighbouring samples.

Curse of Dimensionality: Problem 3

Dense sampling in high dimensions is prohibitive

Explanation:

- Say $n_{1}=100$ samples represents a dense sampling for a single input problem
- Then $n_{10}=100^{10}$ is required to densely sample with 10 such inputs.

Therefore in high dimensions all feasible training sets sparsely
sample the input space.

Dense sampling in high dimensions is prohibitive

Explanation:

- Say $n_{1}=100$ samples represents a dense sampling for a single input problem
- Then $n_{10}=100^{10}$ is required to densely sample with 10 such inputs.

Therefore in high dimensions all feasible training sets sparsely sample the input space.

Simulated Example

- Let $\mathcal{X}=[-1,1]^{p}$ and have $n=1000$ training examples x_{i} uniformly sampled from \mathcal{X}.
- The relationship between the inputs and output is defined by

$$
Y=f(X)=e^{-8\|X\|^{2}}
$$

The regression method

Use 1-nearest neighbour rule to predict y_{0} at a test point x_{0}

Histogram of the position of nearest neighbour

$$
p=1, n=20
$$

Note: True value is $y=1$

- Let $\mathcal{X}=[-1,1]^{p}$ and have $n=1000$ training examples x_{i} uniformly sampled from \mathcal{X}.
- The relationship between the inputs and output is defined by

$$
Y=f(X)=e^{-8\|X\|^{2}}
$$

Use 1-nearest neighbour rule to predict y_{0} at a test point x_{0}

1 -nn estimate of y_{0}

Note: True value is $y=1$

1 -nn estimate of y_{0}

Note: True value is $y=1$

$$
n_{\text {train }}=1000, n_{\text {trial }}=400
$$

- average distance to nearest neighbour increases rapidly with p
- thus average estimate of \hat{y}_{0} also rapidly degrades

Bias-Variance Decomposition

- For the simulation experiment have a completely deterministic relationship:

$$
Y=f(X)=e^{-8\|X\|^{2}}
$$

- Mean Squared Error for estimating $f(0)$ is

$$
\begin{aligned}
\operatorname{MSE}\left(x_{0}\right) & =E_{\mathcal{T}}\left[\left(f\left(x_{0}\right)-\hat{y}_{0}\right)^{2}\right] \\
& =E_{\mathcal{T}}\left[\left(\hat{y}_{0}-E_{\mathcal{T}}\left[\hat{y}_{0}\right]\right)^{2}\right]+\left(E_{\mathcal{T}}\left[\hat{y}_{0}\right]-f\left(x_{0}\right)\right)^{2} \\
& =\operatorname{Var}_{\mathcal{T}}\left(\hat{y}_{0}\right)+\operatorname{Bias}^{2}\left(\hat{y}_{0}\right)
\end{aligned}
$$

Bias-Variance Decomposition for this example

- The Bias dominates the MSE as p increases.
- Why?
- As p increases the nearest neighbour is never close to $x_{0}=0$
- Hence the estimate \hat{y}_{0} tends to 0 .

Another Simulated Example

 where variance dominates the MSE

- Let $\mathcal{X}=[-1,1]^{p}$ and have $n=1000$ training examples x_{i} uniformly sampled from \mathcal{X}.
- The relationship between the inputs and output is defined by

$$
Y=f(X)=\frac{1}{2}\left(X_{1}+1\right)^{3}
$$

The regression method

Use a 1-nn to estimate $f\left(x_{0}\right)$ where $x_{0}=0$.

Variance dominates the MSE as p increases

- The variance dominates the MSE as p increases.
- Why?
- as the deterministic function only involves one dimension the bias doesn't explode as p increases!

Comparison of Linear and NN predictors

Linear predictor Vs 1-NN predictor

- EPE refers to the expected prediction error at point $x_{0}=0$

$$
\operatorname{EPE}\left(x_{0}\right)=E_{y_{0} \mid x_{0}}\left[E_{\mathcal{T}}\left[\left(y_{0}-\hat{y}_{0}\right)^{2}\right]\right]
$$

Linear predictor Vs 1-NN predictor

- The noise level destroys the $1-\mathrm{nn}$ predictor
- linear predictor has a biased estimate of the cubic function
- linear predictor fits well even in the presence of noise and high dimension for the linear f
- linear model beats curse of dimensionality

Words of Caution

Case of horses for courses

- In previous example linear predictor out-performed the 1-nn regression function as
bias of linear predictor \ll variance of the 1 -nn predictor
- But could easily manufacture and example where
bias of linear predictor \gg variance of the $1-\mathrm{nn}$ predictor

More predictors than linear and NN

- There are a whole hosts of models in between the rigid linear model and the extremely flexible 1-nn method
- Each one has it own assumptions and biases
- Many are specifically designed to avoid the exponential growth in complexity of functions in high dimensions.

Statistical models,

Supervised learning and
 Function approximation

- Know there is a function $f(x)$ relating inputs to outputs:

$$
Y \approx f(X)
$$

- Want to find an estimate $\hat{f}(x)$ of $f(x)$ from labelled training data.
- This is difficult when X is high dimensional
- In this case need to incorporate special structure
- reduce the bias and variance of the estimates
- help combat the curse of dimensionality

A Statistical Model for Regression

random variable indept of input X

Additive Error Model

$$
Y=f(X)+\epsilon
$$

where

- the random variable ϵ has $E[\epsilon]=0$
- ϵ is independent of X
- $f(x)=E[Y \mid X=x]$
- any departures from the deterministic relationship are mopped up by ϵ

Statistical model for binary classification

$p(G \mid X=x)$ is modelled as a Bernoulli distribution with

$$
p(x)=p(G=1 \mid X=x)
$$

Therefore

$$
E[G \mid X=x]=p(x) \quad \text { and } \quad \operatorname{Var}[G \mid X=x]=p(x)(1-p(x))
$$

Supervised Learning - Function Approximation

- Have training data

$$
\mathcal{T}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

where each $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in \mathbb{R}$.

- Learn deterministic relationship f between X and Y from \mathcal{T}.
- In book Supervised Learning is viewed as a problem in function approximation.

Common approach

- Decide on parametric form of f_{θ}, i.e. linear basis expansion

$$
f_{\theta}(x)=\sum_{m=1}^{M} h_{m}(x) \theta_{m}
$$

- Use least squares to estimate θ in by minimizing

$$
\operatorname{RSS}(\theta)=\sum_{i=1}^{n}\left(y_{i}-f_{\theta}\left(x_{i}\right)\right)^{2}
$$

Don't have to always use least squares

- Can find θ by optimizing other criteria.
- Another option is Maximum Likelihood Estimation
- For the additive model, $Y=f_{\theta}(X)+\epsilon$ have

$$
P(Y \mid X, \theta)=N\left(f_{\theta}(X), \sigma^{2}\right)
$$

- Log-likelihood of the training data is

$$
\begin{aligned}
L(\theta) & =\sum_{i=1}^{n} \log P\left(Y=y_{i} \mid X=x_{i}, \theta\right) \\
& =\sum_{i=1}^{n} \log \left(N\left(y_{i} ; f_{\theta}\left(x_{i}\right), \sigma^{2}\right)\right)
\end{aligned}
$$

- Find the θ that minimizes $L(\theta)$

Structured Regression Models

Why do we need structure?

- Consider the Residual Sum of Squares for a function f

$$
\operatorname{RSS}(f)=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

- There are infinitely many \hat{f} with

$$
\hat{f}=\arg \min _{f} \operatorname{RSS}(f) \quad \text { and } \quad \operatorname{RSS}(\hat{f})=0
$$

Why do we need structure?

- Any function \hat{f} passing through the training points $\left(x_{i}, y_{i}\right)$ is a solution.
- Obviously not all the \hat{f} will be equally good at predicting the value of unseen test points...

Must restrict the class of f considered

- Don't consider and arbitrary function \hat{f},
- Instead restrict ourselves to $\hat{f} \in \mathcal{F}$

$$
\hat{f}=\arg \min _{f \in \mathcal{F}} \operatorname{RSS}(f)
$$

- But what restrictions should be used....
- Initial ambiguity in choosing \hat{f} has just been transferred to choice of constraint.

Must restrict the class of f considered

- Don't consider and arbitrary function \hat{f},
- Instead restrict ourselves to $\hat{f} \in \mathcal{F}$

$$
\hat{f}=\arg \min _{f \in \mathcal{F}} \operatorname{RSS}(f)
$$

- But what restrictions should be used....
- Initial ambiguity in choosing \hat{f} has just been transferred to choice of constraint.

Options to restrict the class of f

- Have a parametric representation of f_{θ}
- Linear model: $f_{\theta}(x)=\theta_{1}^{t} x+\theta_{0}$
- Quadratic: $f_{\theta}(x)=x^{t} \Theta x+\theta_{1}^{t} x+\theta_{0}$
- Impose complexity restrictions on the function.
- i.e. \hat{f} must have some regular behaviour in small neighbourhoods of the input space, but then
- What size should the neighbourhood be?
- What form should f have in the neighbourhood?
- No unique way to impose complexity constraints

Complexity and Neighbourhood size

- Large neighbourhood \Longrightarrow strong constraint
- Small neighbourhood \Longrightarrow weak constraint

Classes of Restricted Estimators

How to restrict the predictor \hat{f}

- The techniques used to restrict the regression or classification function learned loosely fall into several classes.
- Each class has parameter(s) termed smoothing parameters which control the effective size of the local neighbourhood.
- Some examples from each class follow.

How to restrict the predictor \hat{f}

- The techniques used to restrict the regression or classification function learned loosely fall into several classes.
- Each class has parameter(s) termed smoothing parameters which control the effective size of the local neighbourhood.
- Some examples from each class follow.

Note:

- It is assumed we have training examples $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ and
- We present the energy functions or functionals which are minimised in order to find \hat{f}

Class 1: Roughness Penalty

ensure f predicts the training values

- One such penalty functional is

$$
J(f)=\int\left[f^{\prime \prime}(x)\right]^{2} d x
$$

For wiggly f 's this functional will have a large value while for linear f 's it is zero.

- Regularization methods express our belief that the f we're trying to approximate has a certain smoothness properties.

Class 2: Kernel Methods and Local Regression

- Estimate the regression or classification function in a local neighbourhood.
- Need to specify
- the nature of local neighbourhood
- the class of functions used in local fit

Kernel Methods and Local Regression

- Can define a local regression estimate of $f\left(x_{0}\right)$, from training data $\left\{\left(x_{i}, y_{i}\right)\right\}$, as $f_{\hat{\theta}}\left(x_{0}\right)$ where $\hat{\theta}$ minimizes

$$
\operatorname{RSS}\left(f_{\theta}, x_{0}\right)=\sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)\left(y_{i}-f_{\theta}\left(x_{i}\right)\right)^{2}
$$

where

- Kernel function: $K_{\lambda}\left(x_{0}, x_{i}\right)$ assign weights to x_{i} depending on its closeness to x_{0}.
- Base regression function: f_{θ} is a parameterized function such as a low order polynomial.
- A common kernel is the Gaussian kernel

$$
K_{\lambda}\left(x_{0}, x\right)=\frac{1}{\lambda} \exp \left[-\frac{\left\|x_{0}-x\right\|^{2}}{2 \lambda}\right]
$$

Class 3: Basis functions and Dictionary methods

- f is modelled as a linear expansion of basis functions

$$
f_{\theta}(x)=\sum_{m=1}^{M} \theta_{m} h_{m}(x)
$$

- Each h_{m} is a function of the input x.
- Linear refers to the actions of the θ parameters.

Example 1: Radial Basis Functions

$$
f_{\theta}(x)=\sum_{m=1}^{M} K_{\lambda}\left(\mu_{m}, x\right) \theta_{m}
$$

where

- $K_{\lambda_{m}}\left(\mu_{m}, x\right)$ is a symmetric kernel centred at location μ_{m}.
- the Gaussian kernel is a popular kernel to use

$$
K_{\lambda}\left(\mu_{m}, x\right)=\exp \left(-\left\|\mu_{m}-x\right\|^{2} /(2 \lambda)\right)
$$

- If μ_{m} 's and λ_{m} 's pre-defined \Longrightarrow estimating θ a linear problem.
- However, if μ_{m} 's and λ_{m} 's not pre-defined \Longrightarrow estimating θ, λ_{m} 's and μ_{m} 's is a hard non-linear problem.

Example 2: Adaptive basis function method

$$
f_{\theta}(x)=\sum_{m=1}^{M} \beta_{m} \sigma\left(\alpha_{m}^{t} x+b_{m}\right)
$$

where

- $\theta=\left(\beta_{1}, \ldots, \beta_{M}, \alpha_{1}, \ldots, \alpha_{M}, b_{1}, \ldots, b_{m}\right)^{t}$
- $\sigma(z)=1 /\left(1+e^{-z}\right)$ is the activation function.
- The directions α_{m} and bias terms b_{m} have to be determined and estimating them is the core of the estimation.

Dictionary methods

- Adaptively chosen basis function methods aka dictionary methods
- Challenge is to choose a number of basis functions from a dictionary set \mathcal{D} of candidate basis functions (possibly infinite).
- Models are built up by employing some kind of search mechanism

Model Selection and,

 the Bias-Variance Trade-off
The complexity of learnt function

- Many models have a parameter which control its complexity.
- We have seen examples of this
- k - number of nearest neighbours (nearest neighbour classifier)
- σ - width of the kernel (radial basis functions)
- M - number of basis functions (dictionary methods)
- λ - weight of the penalty term (spline fitting)
- How does increasing or decreasing the complexity of the model affect their predictive behaviour?

Consider the nearest neighbour regression fit

- Approximate $f(x)$ with 1 -nn regression fit $\hat{f}_{1}(x)$ given $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ and $n=100$.
- Each training example is $y_{i}=f\left(x_{i}\right)+\epsilon_{i}$ with $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ and $\sigma=.1$

Expected predictor when $k=1$

- Shown above is the expected prediction of the $1-\mathrm{nn}$ regression fit given $n=100$ and $\sigma=.1$
- $E\left[\hat{f}_{1}(x)\right]$ is a good approximation to $f(x)$. There is no bias!
- At each x one std of the estimate is shown. Note its magnitude.

15-nn regression fit

- Approximate $f(x)$ with 15 -nn regression fit $\hat{f}_{15}(x)$ given $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ and $n=100$.
- Each training example is $y_{i}=f\left(x_{i}\right)+\epsilon_{i}$ with $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ and $\sigma=.1$

Expected predictor when $k=15$

- $E\left[\hat{f}_{15}(x)\right]$ is smooth but biased.
- Compare the peak of $f(x)$ and $E\left[\hat{f}_{15}(x)\right]$!
- Note the variance of estimate is much smaller than when $k=1$.

High complexity: $k=1$

Lower complexity: $k=15$

- Model complexity increased, the variance tends to increase and the squared bias tends to decrease.
- Model complexity is decreased, the variance tends to decrease, but the squared bias tends to increase.

How to choose the model complexity?

What not to do:

- Want to choose model complexity which minimizes test error.
- Training error is one estimate of the test error.
- Could choose the model complexity that produces the predictor which minimizes the training error.
- Not a good idea!

How to choose the model complexity?

What not to do:

- Want to choose model complexity which minimizes test error.
- Training error is one estimate of the test error.
- Could choose the model complexity that produces the predictor which minimizes the training error.
- Not a good idea!

> Why??

Training error decreases when model complexity increases

Overfitting

- Too much fitting \Longrightarrow adapt too closely to the training data
- Have a high variance predictor
- This scenario is termed overfitting
- In such cases predictor loses the ability to generalize

Underfitting

- Low complexity model \Longrightarrow predictor may have large bias
- Therefore predictor has poor generalization
- Latter on in the course will discuss how to overcome these problems.

Underfitting

- Low complexity model \Longrightarrow predictor may have large bias
- Therefore predictor has poor generalization
- Latter on in the course will discuss how to overcome these problems.

