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Introduction and Notation



Problem 1: Regression
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Problem 2: ClassificationIs it a bike or a face ?
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Some Terminology

• In Machine Learning have outputs which are predicted from
measured inputs.

• In Statistical literature have responses which are predicted
from measured predictors.

• In Pattern Recognition have responses which are predicted
from measured features.



Some Terminology

• In Machine Learning have outputs which are predicted from
measured inputs.

• In Statistical literature have responses which are predicted
from measured predictors.

• In Pattern Recognition have responses which are predicted
from measured features.

The goal of supervised learning is to predict the value of the
output(s) given an input and lots of labelled training examples

{(input1, output1), (input2, output2), . . . , (inputn, outputn)}



Variable types

• Outputs can be

• discrete (categorical, qualitative),

• continuous (quantitative) or

• ordered categorical (order is important)

• Predicting a discrete output is referred to as classification.

• Predicting a continuous output is referred to as regression.



Notation of the book

• Denote an input variable by X.

• If X is a vector, its components are denoted by Xj

• Quantitative (continuous) outputs are denoted by Y

• Qualitative (discrete) outputs are denoted by G

• Observed values are written in lower case.

• xi is the ith observed value of X. If X is a vector then xi is a
vector of the same length.

• gi is the ith observed value of G.

• Matrices are represented by bold uppercase letters.

I will try to stick these conventions in the slides.
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More Notation

• The prediction of the output for a given value of input vector
X is denoted by Ŷ .

• It is presumed that we have labelled training data for
regression problems

T = {(x1, y1), . . . , (xn, yn)}

with each xi ∈ Rp and yi ∈ R

• It is presumed that we have labelled training data for
classification problems

T = {(x1, g1), . . . , (xn, gn)}

with each xi ∈ Rp and gi ∈ {1, . . . , G}
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• The prediction of the output for a given value of input vector
X is denoted by Ŷ .

• It is presumed that we have labelled training data for
regression problems

T = {(x1, y1), . . . , (xn, yn)}
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Prediction via Least Squares and
Nearest Neighbours



Linear Model

• Have an input vector X = (X1, . . . , Xp)
t

• A linear model predicts the output Y as

Ŷ = β̂0 +

p∑

j=1

Xj β̂j

where β̂0 is known as the intercept and also as the bias

• Let X = (1, X1, . . . , Xp)
t and β̂ = (β̂0, . . . , β̂p)

t then

Ŷ = Xtβ̂
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Linear Models and Least Squares

• How is a linear model fit to a set of training data?

• Most popular approach is a Least Squares approach

• β is chosen to minimize

RSS(β) =

n∑

i=1

(yi − xtiβ)2

• As this is quadratic a minimum always exist but it may not be
unique.

• In matrix notation can write RSS(β) as

RSS(β) = (y −Xβ)t(y −Xβ)

where X ∈ Rn×p is a matrix with each row being an input
vector and y = (y1, . . . , yn)t
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• How is a linear model fit to a set of training data?

• Most popular approach is a Least Squares approach

• β is chosen to minimize
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Linear Models and Least Squares

• The solution to

β̂ = arg min
β

(y −Xβ)t(y −Xβ)

is given by

β̂ = (XtX)−1Xty

if XtX is non-singular

• This is easy to show by differentiation of RSS(β)

• This model has p+ 1 parameters.



Linear Models, Least Squares and Classification

• Assume one has training data {(xi, yi)}ni=1 with each
yi ∈ {0, 1} (it’s really categorical data)

• A linear regression model β̂ is fit to the data and

Ĝ(x) =

{
0 if xtβ̂ ≤ .5
1 if xtβ̂ > .5

• This is not the best way to perform binary classification with a
linear discriminant function...
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Example binary classification with

k = 1

• The linear classifier
mis-classifies quite a few of
the training examples

• The linear model may be
too rigid

• By inspection it seem the
two classes cannot be
separated by a line

• Points from each class are
generated from a GMM with
10 mixtures
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Example binary classification with

k = 1

• The linear classifier
mis-classifies quite a few of
the training examples

• The linear model may be
too rigid

• By inspection it seem the
two classes cannot be
separated by a line

• Points from each class are
generated from a GMM with
10 mixtures



k-Nearest Neighbour regression fitting

• the k-nearest neighbour fit for Ŷ is

Ŷ (x) =
1

k

∑

xi∈Nk(x)

yi

where Nk(x) is the neighbourhood of x defined by the k
closest points xi in the training data.

• Closeness if defined by some metric.

• For this lecture assume it is the Euclidean distance.

• k-nearest neighbours in words:
Find the k observations xi closest to x and average their
responses.



k-Nearest Neighbour binary classification

• Training data: {(xi, gi)} with each gi ∈ {0, 1}

• the k-nearest neighbour estimate for Ĝ is

Ĝ(x) =

{
0 if

(
1
k

∑
xi∈Nk(x)

gi

)
≤ .5

1 otherwise

where Nk(x) is the neighbourhood of x defined by the k
closest points xi in the training data.

• k-nearest neighbours in words:
Find the k observations xi closest to x and estimate the class
of x as the majority class amongst the neighbours.



Example: k-Nearest Neighbour classification

k = 15
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Example: k-Nearest Neighbour classification

k = 1

• For k = 1 all the training
examples are correctly
classified.

• This is always the case !

• But how well will it perform
on test data drawn from the
same distribution?
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Effective number of parameters of k-nn

• There are two parameters that control the behaviour of k-nn.

• These are k and n the number of training samples

• The effective number of parameters of k-nn is n/k

• Intuitively

• say the nbds were non-overlapping

• Would have n/k neighbourhoods

• Need to fit one parameter (a mean) to each neighbourhood
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k-nn Vs Linear decision boundaries

• Linear decision boundary is

• smooth,

• stable to fit

• assumes a linear decision boundary is suitable

In statistical learning lingo: it has low variance and high bias

• k-nn decision boundary is

• can adapt to any shape of the data,

• unstable to fit (for small k)

• not smooth, wiggly (for small k)

In statistical learning lingo: it has high variance and low bias
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Optimal Bayes decision boundary

This is the optimal decision boundary computed from the known
pdfs for the two classes.



Mis-classification rate for the simulation experiment

0 2 4 6
0

0.1

0.2

0.3

log(nk )

Test error
Bayes error rate

Training error: k-nn

Test error: k-nn

Training error: linear

Test error: linear

ntrain = 200 and ntest = 10, 000



Statistical Decision Theory



Some statistical theory

• How do we measure how well f(X) predicts Y ?

• Statisticians would compute the Expected Prediction Error
w.r.t. some loss function

EPE(f) = EX,Y [L(Y, f(X))] =

∫ ∫
L(y, f(x)) p(x, y) dx dy

• A common loss function is the squared error loss

L(y, f(x)) = (y − f(x))2

• By conditioning on X can write

EPE(f) = EX,Y [(Y − f(X))2] = EX [EY |X [(Y − f(X))2|X] ]
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Some statistical theory

• At a point x can minimize EPE to get the best prediction of y

f(x) = arg min
c
EY |X [(Y − c)2|X = x]

• The solution is

f(x) = E[Y |X = x]

This is known as the regression function.



Some statistical theory

• At a point x can minimize EPE to get the best prediction of y

f(x) = arg min
c
EY |X [(Y − c)2|X = x]

• The solution is

f(x) = E[Y |X = x]

This is known as the regression function.

• Only one problem with this: one rarely knows the pdf
p(Y |X).

• The regression methods we encounter can be viewed as ways
to approximate E[Y |X = x].



Local Methods in High Dimensions



Intuition and k−nearest neighbour averaging

Example:

• Training data {(xi, yi)}ni=1 where xi ∈ X ⊂ Rp and yi ∈ R

• Predict response at x ∈ X using the training data and 3-nn
averaging.



Intuition and k−nearest neighbour averaging

Let

• X = [−1, 1]2 and

• the training xi’s be uniformly sampled from X .

xi’s from training sets of different size

x

x1

x2

x

x1

x2

x

x1

x2

• As n increases the expected area of the nbd containing the 3
nearest neighbours decreases

• =⇒ accuracy of ŷ increases.



Intuition and k−nearest neighbour averaging

Therefore intuition says:

Lots of training data
⇓

k-nearest neighbour produces accurate stable prediction.

More formally:
As n increases then

ŷ =
1

k

∑

xi∈Nk(x)

yi −→ E[y |x]
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The Curse of Dimensionality (Bellman, 1961)

• k-nearest neighbour averaging approach and our intuition
breaks down in high dimensions.
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• Nearest neighbours are not so close !

• The k-nn of x are closer to the boundary of X .

• Need a prohibitive number of training samples to densely
sample X ⊂ Rp
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Curse of Dimensionality: Problem 1



For large p nearest neighbours are not so close

Scenario:
Estimate a regression function, f : X → R, using a k-nn regressor.
Have

• X = [0, 1]p (the unit hyper-cube)

• training inputs are uniformly sampled from X .
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For large p nearest neighbours are not so close

Scenario:
Estimate a regression function, f : X → R, using a k-nn regressor.
Have

• X = [0, 1]p (the unit hyper-cube)

• training inputs are uniformly sampled from X .

Question:
Let k = r n where r ∈ [0, 1] and x = 0.

What is the expected length of the side of the minimal hyper-cube
containing the k-nearest neighbours of x?

Solution:
Volume of hyper-cube of side a is ap. Looking for a s.t. ap equals
a fraction r of the unit hyper-cube volume. Therefore

ap = r =⇒ a = r1/p



For large p nearest neighbours are not close

To recap the expected edge length of the hyper-cube containing a
fraction r of the training data is

ep(r) = r1/p



For large p nearest neighbours are not close

To recap the expected edge length of the hyper-cube containing a
fraction r of the training data is

ep(r) = r1/p

Plug in some numbers

Let p = 10 then

ep(.01) = .63, ep(.1) = .80

Entire range for each input is 1.

Therefore in this case 1% and
10% nearest neighbour estimate
are not local estimates.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

p = 1

p = 2

p = 3

p = 10

r

ep(r)



Curse of Dimensionality: Problem 2



For large p nearest neighbours are not close II

Scenario:
Estimate a regression function, f : X → R, using a k-nearest
neighbour regressor. Have

• X is the unit hyper-sphere(ball) in Rp centred at the origin.

• n training inputs are uniformly sampled from X .
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For large p nearest neighbours are not close II

Scenario:
Estimate a regression function, f : X → R, using a k-nearest
neighbour regressor. Have

• X is the unit hyper-sphere(ball) in Rp centred at the origin.

• n training inputs are uniformly sampled from X .

Question:
Let k = 1 and x = 0.

What is the median distance of the nearest neighbour to x?

Solution:
This median distance is given by the expression

d(p, n) = (1− .5 1
n )

1
p



Median distance of nearest neighbour to the origin

Plot of d(p, n) for n = 500

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

p

distance

Note: For p = 10 the closest training point is closer to the
boundary of X than to x



Consequence of this expression

Consequence
For large p most of the training data points are closer to the
boundary of X than to x.

This is bad because

• To make a prediction at x, you will use training samples near
the edge of the training data

• Therefore perform extrapolation as opposed to interpolation
between neighbouring samples.



Curse of Dimensionality: Problem 3



Dense sampling in high dimensions is prohibitive

Explanation:

• Say n1 = 100 samples represents a dense sampling for a single
input problem

• Then n10 = 10010 is required to densely sample with 10 such
inputs.

Therefore in high dimensions all feasible training sets sparsely
sample the input space.
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The Set-up

−1 0 1
0

0.5

1

x

e−8x2

• Let X = [−1, 1]p and have n = 1000 training examples xi
uniformly sampled from X .

• The relationship between the inputs and output is defined by

Y = f(X) = e−8‖X‖
2



The regression method

−1 0 1
0

0.5

1

x(1)

ŷ0

x0 x

e−8x2

Use 1-nearest neighbour rule to predict y0 at a test point x0



Histogram of the position of nearest neighbour
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p = 1, n = 20



Average estimate of ŷ0
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p = 1, n = 20, ntrial = 400

Note: True value is y = 1



p = 2
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• Let X = [−1, 1]p and have n = 1000 training examples xi
uniformly sampled from X .

• The relationship between the inputs and output is defined by

Y = f(X) = e−8‖X‖
2
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Use 1-nearest neighbour rule to predict y0 at a test point x0



1-nn estimate of y0

0 0.5 1
0

20

40

60

ŷ0
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1-nn estimate of y0
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Note: True value is y = 1



As p increases

2 4 6 8 10

0.2

0.4

0.6

0.8

p

average distance to nn

2 4 6 8 10

0

0.5

1

p

average value of ŷ0

ntrain = 1000, ntrial = 400

• average distance to nearest neighbour increases rapidly with p

• thus average estimate of ŷ0 also rapidly degrades



Bias-Variance Decomposition

• For the simulation experiment have a completely deterministic
relationship:

Y = f(X) = e−8‖X‖
2

• Mean Squared Error for estimating f(0) is

MSE(x0) = ET [(f(x0)− ŷ0)2]
= ET [(ŷ0 − ET [ŷ0])

2] + (ET [ŷ0]− f(x0))
2

= VarT (ŷ0) + Bias2(ŷ0)



Bias-Variance Decomposition for this example

2 4 6 8 10
0

0.5

1

p

MSE
Bias2

Variance
MSE

• The Bias dominates the MSE as p increases.

• Why?
• As p increases the nearest neighbour is never close to x0 = 0

• Hence the estimate ŷ0 tends to 0.



Another Simulated Example

where variance dominates the MSE



The Set-up

−1 0 1
0

1
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x

1
2(x+ 1)3

• Let X = [−1, 1]p and have n = 1000 training examples xi
uniformly sampled from X .

• The relationship between the inputs and output is defined by

Y = f(X) =
1

2
(X1 + 1)3



The regression method

−1 0 1
0

1

2

3

4

x(1)

ŷ0

x0 x

1
2(x+ 1)3

Use a 1-nn to estimate f(x0) where x0 = 0.



Variance dominates the MSE as p increases

2 4 6 8 10
0

0.1

0.2

p

MSE
Bias2

Variance
MSE

• The variance dominates the MSE as p increases.

• Why?
• as the deterministic function only involves one dimension the

bias doesn’t explode as p increases!



Comparison of Linear and NN predictors



Case 1

−1 0 1

−2

0

2
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x1

.5(x1 + 1)3 + ε

Y = .5(X1 + 1)3 + ε, ε ∼ N(0, 1)



Case 2

−1 0 1

−2

0

2

4

x1

x1 + ε

Y = X1 + ε, ε ∼ N(0, 1)



Linear predictor Vs 1-NN predictor

2 4 6 8 10

1

1.5

2

p

EPE
f(x): linear, Pred: 1-nn

f(x): linear, Pred: linear

f(x): cubic, Pred: 1-nn

f(x): cubic, Pred: linear

• EPE refers to the expected prediction error at point x0 = 0

EPE(x0) = Ey0|x0 [ET [(y0 − ŷ0)2] ]



Linear predictor Vs 1-NN predictor

2 4 6 8 10

1

1.5

2

p

EPE
f(x): linear, Pred: 1-nn

f(x): linear, Pred: linear
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f(x): cubic, Pred: linear

• The noise level destroys the 1-nn predictor

• linear predictor has a biased estimate of the cubic function

• linear predictor fits well even in the presence of noise and high
dimension for the linear f

• linear model beats curse of dimensionality



Words of Caution



Case of horses for courses

• In previous example linear predictor out-performed the 1-nn
regression function as

bias of linear predictor � variance of the 1-nn predictor

• But could easily manufacture and example where

bias of linear predictor � variance of the 1-nn predictor



More predictors than linear and NN

• There are a whole hosts of models in between the rigid linear
model and the extremely flexible 1-nn method

• Each one has it own assumptions and biases

• Many are specifically designed to avoid the exponential
growth in complexity of functions in high dimensions.



Statistical models,

Supervised learning and

Function approximation



Goal

• Know there is a function f(x) relating inputs to outputs:

Y ≈ f(X)

• Want to find an estimate f̂(x) of f(x) from labelled training
data.

• This is difficult when X is high dimensional

• In this case need to incorporate special structure

• reduce the bias and variance of the estimates

• help combat the curse of dimensionality



A Statistical Model for Regression
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random variable indept of input X

Y = f(X) + ε

output deterministic relationship



Additive Error Model

Y = f(X) + ε

where

• the random variable ε has E[ε] = 0

• ε is independent of X

• f(x) = E[Y |X = x]

• any departures from the deterministic relationship are mopped
up by ε



Statistical model for binary classification
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p(G|X = x) is modelled as a Bernoulli distribution with

p(x) = p(G = 1|X = x)

Therefore

E[G|X = x] = p(x) and Var[G|X = x] = p(x)(1− p(x))



Supervised Learning - Function Approximation

• Have training data

T = {(x1, y1), . . . , (xn, yn)}

where each xi ∈ Rp and yi ∈ R.

0 1 2 3
0

5

10

x

y

• Learn deterministic relationship f between X and Y from T .

• In book Supervised Learning is viewed as a problem in
function approximation.



Common approach
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FIGURE 2.10. Least squares fitting of a function of two inputs. The parameters
of fθ(x) are chosen so as to minimize the sum-of-squared vertical errors.

principle for estimation is maximum likelihood estimation. Suppose we have
a random sample yi, i = 1, . . . , N from a density Prθ(y) indexed by some
parameters θ. The log-probability of the observed sample is

L(θ) =

N∑

i=1

log Prθ(yi). (2.33)

The principle of maximum likelihood assumes that the most reasonable
values for θ are those for which the probability of the observed sample is
largest. Least squares for the additive error model Y = fθ(X) + ε, with
ε ∼ N(0, σ2), is equivalent to maximum likelihood using the conditional
likelihood

Pr(Y |X, θ) = N(fθ(X), σ2). (2.34)

So although the additional assumption of normality seems more restrictive,
the results are the same. The log-likelihood of the data is

L(θ) = −N

2
log(2π) − N log σ − 1

2σ2

N∑

i=1

(yi − fθ(xi))
2, (2.35)

and the only term involving θ is the last, which is RSS(θ) up to a scalar
negative multiplier.

A more interesting example is the multinomial likelihood for the regres-
sion function Pr(G|X) for a qualitative output G. Suppose we have a model
Pr(G = Gk|X = x) = pk,θ(x), k = 1, . . . ,K for the conditional probabil-
ity of each class given X, indexed by the parameter vector θ. Then the

• Decide on parametric form of fθ, i.e. linear basis expansion

fθ(x) =

M∑

m=1

hm(x) θm

• Use least squares to estimate θ in by minimizing

RSS(θ) =

n∑

i=1

(yi − fθ(xi))2



Don’t have to always use least squares

• Can find θ by optimizing other criteria.

• Another option is Maximum Likelihood Estimation

• For the additive model, Y = fθ(X) + ε have

P (Y |X, θ) = N(fθ(X), σ2)

• Log-likelihood of the training data is

L(θ) =

n∑

i=1

logP (Y = yi|X = xi, θ)

=

n∑

i=1

log
(
N(yi; fθ(xi), σ

2)
)

• Find the θ that minimizes L(θ)



Structured Regression Models



Why do we need structure?

• Consider the Residual Sum of Squares for a function f

RSS(f) =

n∑

i=1

(yi − f(xi))
2

• There are infinitely many f̂ with

f̂ = arg min
f

RSS(f) and RSS(f̂) = 0



Why do we need structure?

• Any function f̂ passing through the training points (xi, yi) is
a solution.

• Obviously not all the f̂ will be equally good at predicting the
value of unseen test points...



Must restrict the class of f considered

• Don’t consider and arbitrary function f̂ ,

• Instead restrict ourselves to f̂ ∈ F

f̂ = arg min
f∈F

RSS(f)

• But what restrictions should be used....

• Initial ambiguity in choosing f̂ has just been transferred to
choice of constraint.



Must restrict the class of f considered

• Don’t consider and arbitrary function f̂ ,

• Instead restrict ourselves to f̂ ∈ F

f̂ = arg min
f∈F

RSS(f)

• But what restrictions should be used....

• Initial ambiguity in choosing f̂ has just been transferred to
choice of constraint.



Options to restrict the class of f

• Have a parametric representation of fθ

• Linear model: fθ(x) = θt1 x+ θ0

• Quadratic: fθ(x) = xtΘx+ θt1 x+ θ0

• Impose complexity restrictions on the function.

• i.e. f̂ must have some regular behaviour in small
neighbourhoods of the input space, but then

• What size should the neighbourhood be?

• What form should f have in the neighbourhood?

• No unique way to impose complexity constraints



Complexity and Neighbourhood size

• Large neighbourhood =⇒ strong constraint

• Small neighbourhood =⇒ weak constraint



Classes of Restricted Estimators



How to restrict the predictor f̂

• The techniques used to restrict the regression or classification
function learned loosely fall into several classes.

• Each class has parameter(s) termed smoothing parameters
which control the effective size of the local neighbourhood.

• Some examples from each class follow.



How to restrict the predictor f̂

• The techniques used to restrict the regression or classification
function learned loosely fall into several classes.

• Each class has parameter(s) termed smoothing parameters
which control the effective size of the local neighbourhood.

• Some examples from each class follow.

Note:

• It is assumed we have training examples {(xi, yi)}ni=1 and

• We present the energy functions or functionals which are
minimised in order to find f̂



Class 1: Roughness Penalty

ensure f predicts the training values

penalty parameter

PRSS(f, λ) =
∑n

i=1(yi − f(xi))
2 + λ J(f)

functional measuring smoothness of f

• One such penalty functional is

J(f) =

∫
[f ′′(x)]2dx

For wiggly f ’s this functional will have a large value while for
linear f ’s it is zero.

• Regularization methods express our belief that the f we’re
trying to approximate has a certain smoothness properties.



Class 2: Kernel Methods and Local Regression

• Estimate the regression or classification function in a local
neighbourhood.

• Need to specify
• the nature of local neighbourhood

• the class of functions used in local fit



Kernel Methods and Local Regression

• Can define a local regression estimate of f(x0), from training
data {(xi, yi)}, as fθ̂(x0) where θ̂ minimizes

RSS(fθ, x0) =

n∑

i=1

Kλ(x0, xi)(yi − fθ(xi))2

where
• Kernel function: Kλ(x0, xi) assign weights to xi depending

on its closeness to x0.
• Base regression function: fθ is a parameterized function

such as a low order polynomial.

• A common kernel is the Gaussian kernel

Kλ(x0, x) =
1

λ
exp

[
−‖x0 − x‖

2

2λ

]



Class 3: Basis functions and Dictionary methods

• f is modelled as a linear expansion of basis functions

fθ(x) =

M∑

m=1

θm hm(x)

• Each hm is a function of the input x.

• Linear refers to the actions of the θ parameters.



Example 1: Radial Basis Functions

fθ(x) =

M∑

m=1

Kλ(µm, x) θm

where

• Kλm(µm, x) is a symmetric kernel centred at location µm.

• the Gaussian kernel is a popular kernel to use

Kλ(µm, x) = exp(−‖µm − x‖2/(2λ))

• If µm’s and λm’s pre-defined =⇒ estimating θ a linear
problem.

• However, if µm’s and λm’s not pre-defined =⇒ estimating
θ, λm’s and µm’s is a hard non-linear problem.



Example 2: Adaptive basis function method

fθ(x) =

M∑

m=1

βm σ(αtm x+ bm)

where

• θ = (β1, . . . , βM , α1, . . . , αM , b1, . . . , bm)t

• σ(z) = 1/(1 + e−z) is the activation function.

• The directions αm and bias terms bm have to be determined
and estimating them is the core of the estimation.



Dictionary methods

• Adaptively chosen basis function methods aka dictionary
methods

• Challenge is to choose a number of basis functions from a
dictionary set D of candidate basis functions (possibly
infinite).

• Models are built up by employing some kind of search
mechanism



Model Selection and,

the Bias-Variance Trade-off



The complexity of learnt function

• Many models have a parameter which control its complexity.

• We have seen examples of this

• k - number of nearest neighbours (nearest neighbour classifier)

• σ - width of the kernel (radial basis functions)

• M - number of basis functions (dictionary methods)

• λ - weight of the penalty term (spline fitting)

• How does increasing or decreasing the complexity of the
model affect their predictive behaviour?



Consider the nearest neighbour regression fit
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• Approximate f(x) with 1-nn regression fit f̂1(x) given
{(xi, yi)}ni=1 and n = 100.

• Each training example is yi = f(xi) + εi with εi ∼ N(0, σ2)
and σ = .1



Expected predictor when k = 1
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• Shown above is the expected prediction of the 1-nn regression
fit given n = 100 and σ = .1

• E[f̂1(x)] is a good approximation to f(x). There is no bias!

• At each x one std of the estimate is shown. Note its
magnitude.



15-nn regression fit
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• Approximate f(x) with 15-nn regression fit f̂15(x) given
{(xi, yi)}ni=1 and n = 100.

• Each training example is yi = f(xi) + εi with εi ∼ N(0, σ2)
and σ = .1



Expected predictor when k = 15
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• E[f̂15(x)] is smooth but biased.

• Compare the peak of f(x) and E[f̂15(x)] !

• Note the variance of estimate is much smaller than when
k = 1.



Have illustrated the Bias-Variance trade-off
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High complexity: k = 1 Lower complexity: k = 15

• Model complexity increased, the variance tends to increase
and the squared bias tends to decrease.

• Model complexity is decreased, the variance tends to
decrease, but the squared bias tends to increase.



How to choose the model complexity?

What not to do:

• Want to choose model complexity which minimizes test error.

• Training error is one estimate of the test error.

• Could choose the model complexity that produces the
predictor which minimizes the training error.

• Not a good idea!



How to choose the model complexity?

What not to do:

• Want to choose model complexity which minimizes test error.

• Training error is one estimate of the test error.

• Could choose the model complexity that produces the
predictor which minimizes the training error.

• Not a good idea!

Why??

Training error decreases when model complexity
increases



Overfitting
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FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)

2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

• Too much fitting =⇒ adapt too closely to the training data

• Have a high variance predictor

• This scenario is termed overfitting

• In such cases predictor loses the ability to generalize



Underfitting
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be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)

2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

• Low complexity model =⇒ predictor may have large bias

• Therefore predictor has poor generalization

• Latter on in the course will discuss how to overcome these
problems.



Underfitting
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be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)

2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

• Low complexity model =⇒ predictor may have large bias

• Therefore predictor has poor generalization

• Latter on in the course will discuss how to overcome these
problems.


