Chapter 15 & 16: Random Forests & Ensemble Learning

DD3364

November 27, 2012

Toy Problem for Boosted Tree

Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes by minimizing the sum of the **absolute loss** on n = 900 training points.

tree added

tree subtracted

tree added

tree subtracted

After 200 iterations

true f(x)

 $f_{200}(x)$

Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes by minimizing the sum of the L_2 loss on n = 900 training points.

tree added

tree subtracted

tree added

tree subtracted

After 200 iterations

true f(x)

 $f_{200}(x)$

- Random forests (Breiman 2001) build a large collection of de-correlated trees and then averages their predictions.
- On many problems
 performance random forest ≈ *performance of boosted tree*
- But random forests are easier to train and tune than boosted trees.

Random Forests

Random forests for regression or classification

- for b = 1 to B:
 - Draw bootstrap sample \mathbf{Z}^* of size N from the training data
 - Grow a random-forest tree T_b using \mathbf{Z}^* by recursively
 - **\star** Select *m* variables (features) from the *p* variables (features).
 - **\star** Pick the best variable/split-point among the m.
 - \star Split the node into two child nodes.
- Output the ensemble of trees $\{T_b\}_1^B$

Make a prediction at a new point x

$$\hat{f}_{rf}^{B}(x) = \frac{1}{B} \sum_{b=1}^{B} T_{b}(x) \quad \leftarrow \text{regression}$$

$$\hat{C}_{rf}^{B}(x) = \text{majority vote } \{\hat{C}_{b}(x)\}_{1}^{B} \quad \leftarrow \text{classification}$$

Variance of averages

Define

$$S_B = X_1 + \dots + X_B$$

where each $X_i \sim p(X)$

• If X_i 's are independent of each other and $Var{X_i} = \sigma^2$ then

$$\mathsf{Var}\{S_B\} = \frac{1}{B}\sigma^2$$

• If X_i 's are not indpt and have pairwise correlation ρ then

$$\operatorname{Var}\{S_B\} = \rho \sigma^2 + \frac{1-\rho}{B} \sigma^2$$

- Note as $B \to \infty$ then $Var\{S_B\} \to \rho \sigma^2$
- Therefore higher correlation limits the benefits of averaging.

Variance of averages

Define

$$S_B = X_1 + \dots + X_B$$

where each $X_i \sim p(X)$

• If X_i 's are independent of each other and $Var{X_i} = \sigma^2$ then

$$\mathsf{Var}\{S_B\} = \frac{1}{B}\sigma^2$$

• If X_i 's are not indpt and have pairwise correlation ρ then

$$\mathsf{Var}\{S_B\} = \rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$$

- Note as $B \to \infty$ then $Var{S_B} \to \rho \sigma^2$
- Therefore higher correlation limits the benefits of averaging.

- Typically values for m are \sqrt{p} or even as low as 1.
- Reducing m will reduce the correlation between trees.
- Trees benefit alot from the randomization as they have low-bias and high variance.
- Random forests do remarkably well, with very little tuning required.

Random forests - example

California Housing Data

- Random forests stabilize at about 200 trees (p = 8).
- At 1000 trees boosting continues to improve.
- Boosting is slowed by shrinkage and smaller depth trees.
- For larger m the random forests performed no better.

Details of Random Forests

The inventors make the following recommendations for the parameters in the random forest

- Regression: $m = \lfloor \sqrt{p} \rfloor$ and $n_{\min} = 1$
- Classification: $m = \lfloor p/3 \rfloor$ and $n_{\min} = 5$
Out of Bag Samples

• For each observation $z_i = (x_i, y_i)$ its *out-of-bag* estimate is

$$\hat{f}_{\text{oob}}(x_i) = \sum_{b \in \mathcal{B}_i} T_b(x_i)$$

where \mathcal{B}_i is the index of the bootstrap samples in which z_i did not appear.

- The OOB error estimate $\approx n$ -fold cross validation
- Therefore can predict test-error along the way without using cross-validation.

Random Forests and Noisy Variables

- With small *m* performance will drop as the ratio of relevant variables decrease
- Probability of choosing an irrelevant feature is

$$p = \frac{n_{\rm irrel}}{n_{\rm rel} + n_{\rm irrel}}$$

• To learn a split node the chance of choosing at least one relevant variable (if $n_{\rm irrel}$ is large) \approx

$$1 - p^{m}$$

• However, random forests seem relatively robust to an increase in the number of noise features....

Random Forests and Noisy Variables - example

$$\hat{f}_{\rm rf}(x) = \mathsf{E}_\Theta \, T(x;\Theta) = \lim_{B \to \infty} \hat{f}^B_{\rm rf}(x)$$

- The distribution of Θ is conditional on the training data.
- May have higher variance if fit a deep tree.
- Authors' experience: using full-grown tree does not incur much cost.
- **Note**: Classifiers are much less sensitive to variance and the effect of over-fitting is seldom seen with random-forest classification.

Random Forests and overfitting

Minimum Node Size

Analysis of Random Forests

Variance and De-Correlation Effect

• The limiting form of the random forest regression estimate is

$$\hat{f}_{\rm rf}(x) = \mathsf{E}_{\Theta|\mathbf{Z}}\{T(x;\Theta(\mathbf{Z}))\}$$

• The variance of this estimate at x is

$$\hat{f}_{\rm rf}(x) = \rho(x) \, \sigma^2(x)$$

where

- $\rho(x)$ is the sampling correlation between any pair of trees

 $\rho(x) = \operatorname{corr}\{T(x; \Theta_1(\mathbf{Z})), T(x; \Theta_2(\mathbf{Z}))\}\$

where $\Theta_1(\mathbf{Z})$ and $\Theta_2(\mathbf{Z})$ are a randomly drawn pair of random forests grown to the randomly sampled \mathbf{Z} .

- $\sigma^2(x)=$ sampling variance of any single randomly drawn tree $\sigma^2(x)={\rm Var}\{\,T(x;\Theta({\bf Z}))\,\}$

Variance and De-Correlation Effect

The variability averaged over these calculations is both:

- conditional on **Z**: due to bootstrap sample and feature sampling at each split **and**
- a result of the sampling variability of Z itself.

Note: the conditional covariance of a pair of tree fits at x is zero, because bootstrap and feature sampling is i.i.d.

Simple Example: Correlation between trees

$$Y = \frac{1}{\sqrt{50}} \sum_{j=1}^{50} X_j + \epsilon$$

with all the X_i and ϵ iid Gaussian.

- Use 500 training sets of size 100
- Single test set of size 600

Variance of single tree predictors

The total variance can be decomposed into two parts

 $\mathsf{Var}_{\Theta,\mathbf{Z}}\{T(x;\Theta(\mathbf{Z}))\} \ = \ \mathsf{Var}_{\mathbf{Z}}\{\mathsf{E}_{\Theta|\mathbf{Z}}\{T(x;\Theta(\mathbf{Z}))\}\} \ + \ \mathsf{E}_{\mathbf{Z}}\{\mathsf{Var}_{\Theta|\mathbf{Z}}\{T(x;\Theta(\mathbf{Z}))\}\}$

Total Variance = $Var{\hat{f}_{rf}(x)}$ + within-Z Variance

(numbers estimated by averaging over 600 randomly chosen x)

- Bias of a rf is the same as the bias of any of the individual sampled trees $T(x;\Theta({\bf Z}))$
- The improvements made by random forests are solely a result of variance reduction.
- General trend as *m* decreases, the bias increases.

Random Forests and k-nearest neighbour have similarities

Random Forest Classifier

3-Nearest Neighbors

Ensemble Learning

• Ensemble learning

Build a prediction model by combining the strengths of a collection of simpler base models.

- Examples of ensemble methods
 - Bagging
 - Boosting
 - Stacking
 - Dictionary methods....
- Ensemble consists of two tasks:
 - Build a population of base learners from training data
 - Combine base learners to form a composite predictor
- Focus on these issues in this chapter.

• Ensemble learning

Build a prediction model by combining the strengths of a collection of simpler base models.

- Examples of ensemble methods
 - Bagging
 - Boosting
 - Stacking
 - Dictionary methods....
- Ensemble consists of two tasks:
 - Build a population of base learners from training data
 - Combine base learners to form a composite predictor
- Focus on these issues in this chapter.

Boosting and Regularization Paths

- Consider the dictionary of all J-terminal node regression trees $\mathcal{T} = \{T_k\}$ that could be realized by the training data.
- The linear model is

$$f(x) = \sum_{i=1}^{|\mathcal{T}|} \alpha_k T_k(x)$$

• Estimation of α 's from training data requires regularization

$$\min_{\alpha} \left\{ \sum_{i=1}^{n} \left(y_i - \sum_{i=1}^{|\mathcal{T}|} \alpha_k T_k(x) \right)^2 + \lambda J(\alpha) \right\}$$

Ridge regression: $J(\alpha) = \sum_{k=1}^{|\mathcal{T}|} |\alpha_k|^2$

Lasso: $J(\alpha) = \sum_{k=1}^{|\mathcal{T}|} |\alpha_k|$

Penalized Regression

- Solution to the **lasso** solution with moderate to large λ gives a sparse α .
- If $|\mathcal{T}|$ is very large then solving the optimization with the lasso penalty is not possible.
- A feasible forward stagewise strategy exists that closely approximates the effect of lasso

Forward Stagewise Linear Regression

- Initialize $\tilde{\alpha}_k, k = 1, \dots, K$. Set $\epsilon > 0$ small and M large.

- for
$$m = 1$$
 to M :
 $\star (\beta^*, k^*) = \arg \min_{\beta, k} \sum_{i=1}^n \left(y_i - \sum_{l=1}^{|\mathcal{T}|} \tilde{\alpha}_l T_l(x_i) - \beta T_k(x_i) \right)^2$
 $\star \tilde{\alpha}_{k^*} \to \tilde{\alpha}_{k^*} + \epsilon \operatorname{sign}(\beta^*)$

- Output:

$$f_M(x) = \sum_{k=1}^{|\mathcal{T}|} \tilde{\alpha}_k T_k(x)$$

Similarity between Lasso & Forward Stagewise Paths

• 7 dimensional input vectors, $M = 220, \epsilon = .01$

•
$$\mathcal{T} = \{X_1, X_2, \ldots, X_7\}$$

The "Bet on Sparsity" Principle

- Minimizing a loss function with a L₁ penalty is slow and involves searching through the "model space".
- The L₂ penalty is computationally much easier.
- However, L_1 penalty is better suited to sparse situations.
- Consider this example:
 - 10,000 data points
 - Model is a linear combination of a million trees
 - If the coefficients for these trees arise from a Gaussian distribution \implies best predictor is ridge regression $\implies L_2$ penalty.
 - But, if there are only a small number coefficients that are nonzero, the L₁ penalty, will work better.

In the dense scenario, L_2 best but will fail as too little data to estimate 1 million coefficients.

In the sparse setting, L_1 penalty can do well but L_2 penalty will fail.

The "Bet on Sparsity" Principle

- Minimizing a loss function with a L₁ penalty is slow and involves searching through the "model space".
- The L₂ penalty is computationally much easier.
- However, L_1 penalty is better suited to sparse situations.
- Consider this example:
 - 10,000 data points
 - Model is a linear combination of a million trees
 - If the coefficients for these trees arise from a Gaussian distribution \implies best predictor is ridge regression $\implies L_2$ penalty.
 - But, if there are only a small number coefficients that are nonzero, the *L*₁ penalty, will work better.

In the dense scenario, L_2 best but will fail as too little data to estimate 1 million coefficients.

In the sparse setting, L_1 penalty can do well but L_2 penalty will fail.

Take home message: For high-dimensional problems

Use a procedure that does well in *sparse problems*, since no procedure does well in dense problems.

Comment need some qualification:

- Sparseness/denseness depends on target function and dictionary ${\cal T}$
- Notion of *sparse* Vs *dense* is relative to size of the training data set and/or the noise-to-signal ratio.

More training data \implies can estimate coeffs with smaller standard errors

Small NSR \implies can identify more non-zero coeffs with a given sample size than with high NSR

• Increase size of the dictionary \implies probable sparser representation, but \implies harder search problem \implies higher variance.

Lasso penalty Vs Ridge penalty

Regression

Classification

Regression problem

$$Y = X^t \beta + \epsilon$$

with

- $\epsilon \sim \mathcal{N}(0, \sigma^2)$ and
- $X \in \mathbb{R}^{300}$
- Top row: $\beta_j \neq 0, 1 \leq j \leq 300$
- Mid row: 10 non-zero β_i
- Last row: 30 non-zero β_j

 L_1 estimation is superior in sparse settings.

Learning Ensembles

Learning Ensembles

· How should one learn functions of the form

$$f(x) = \alpha_0 + \sum_{T_k \in \mathcal{T}} \alpha_k T_k(x)$$

where \mathcal{T} is a dictionary of basis functions - typically trees ?

- Suggested approach
 - Construct a finite dictionary $\mathcal{T}_L = \{T_1(x), \ldots, T_M(x)\}$ from the training data.
 - Build a family of functions $f_{\lambda}(x)$ by fitting a lasso path

$$\alpha(\lambda) = \arg\min_{\alpha} \sum_{i=1}^{n} L(y_i, \alpha_0 + \sum_{m=1}^{M} \alpha_m T_m(x)) + \lambda \sum_{m=1}^{M} |\alpha_m|$$

• Can view this as a way to post-processing a boosted trees or random forest

Learning Ensembles

How should one learn functions of the form

$$f(x) = \alpha_0 + \sum_{T_k \in \mathcal{T}} \alpha_k T_k(x)$$

where ${\cal T}$ is a dictionary of basis functions - $_{typically\ trees}$?

- Suggested approach
 - Construct a finite dictionary $\mathcal{T}_L = \{T_1(x), \ldots, T_M(x)\}$ from the training data.
 - Build a family of functions $f_{\lambda}(x)$ by fitting a lasso path

$$\alpha(\lambda) = \arg\min_{\alpha} \sum_{i=1}^{n} L(y_i, \alpha_0 + \sum_{m=1}^{M} \alpha_m T_m(x)) + \lambda \sum_{m=1}^{M} |\alpha_m|$$

 Can view this as a way to post-processing a boosted trees or random forest

Example

Spam Data

- Classification problem, 57 dimensional feature vector.
- Solid curves are the post-processed functions.
- Dashed line test error of random forest, using 1000 tree grown to maximum depth (m = 7).
- Dashed line test error of random forest where 5% of data used to grow each shallow tree in the forest.

Learning a Good Ensemble

- Not all ensembles \mathcal{T}_L will perform well with post-processing.
- For the ensemble of basis functions \mathcal{T}_L want
 - a collection that offers good coverage in the places needed
 - and are **sufficiently different** from each offer to allow the post-processing to be effective.
- Freidman and Popescu suggested an ensemble-generation algorithm....

Importance Sampled Learning Ensemble Generation

•
$$f_0(x) = \arg\min_c \sum_{i=1}^n L(y_i, c)$$

• For
$$m=1$$
 to M do

-
$$\gamma_m = \arg \min_{\gamma} \sum_{i \in S_m(\eta)} L(y_i, f_{m-1}(x_i) + b(x_i; \gamma))$$

-
$$f_m(x) = f_{m-1}(x) + \nu b(x; \gamma)$$

•
$$\mathcal{T}_{\mathsf{ISLE}} = \{b(x;\gamma_1), b(x;\gamma_2), \dots, b(x;\gamma_M)\}$$

where

- $\nu \in [0,1]$ introduces memory into the randomization process,
- $S_m(\eta)$ refers to a subsample $\eta \cdot n$, $\eta \in [0,1]$, of the training observations.
- Suggested values of $eta~{\rm are}\eta\leq .5$ and for large $n~{\rm pick}~\eta\approx 1/\sqrt{n}.$

ISLE Ensemble Generation

A number of familiar randomization schemes are special cases of this algorithm:

• Bagging:

Has $\eta = 1$, samples with replacement and $\nu = 1$

Random forest:

Sampling is similar, with more randomness introduced by the selection of the splitting variable.

Gradient boosting:

With shrinkage uses $\eta = 1$, but does not produce sufficient width σ .

• Stochastic gradient boosting:

Follows the recipe exactly.

Example

Spam Data

ISLE, $\eta=.5,\nu=0.05,$ used to generate an ensemble of trees with 5 terminal nodes

• Consider this function of $X \sim U[0,1]^{100}$

$$f(X) = 10 \cdot \prod_{j=1}^{5} \exp\{-2X_j^2\} + \sum_{j=6}^{36} X_j$$

• The response variable, with $\sigma = 1.3$, is

$$Y = f(X) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

- Estimate f(X) from a training set of size n = 1000.
- Results: $n_{\text{test}} = 600$ and averaged over 20 different training sets.

Number of Trees

Rule Ensembles

A typical tree in an ensemble from which rules can be derived

Derived rules:

$$R_{1}(X) = I(X_{1} < 2.1)$$

$$R_{2}(X) = I(X_{1} \ge 2.1)$$

$$R_{3}(X) = I(X_{1} \ge 2.1) \cdot I(X_{3} \in \{S\})$$

$$R_{4}(X) = I(X_{1} \ge 2.1) \cdot I(X_{3} \in \{M, L\})$$

$$R_{5}(X) = I(X_{1} \ge 2.1) \cdot I(X_{3} \in \{S\}) \cdot I(X_{7} < 4.5)$$

$$R_{6}(X) = I(X_{1} \ge 2.1) \cdot I(X_{3} \in \{S\}) \cdot I(X_{7} \ge 4.5)$$

• This rule set is an over-complete basis for the tree.

$$\begin{aligned} R_1(X) &= I(X_1 < 2.1) \\ R_2(X) &= I(X_1 \ge 2.1) \\ R_3(X) &= I(X_1 \ge 2.1) \cdot I(X_3 \in \{S\}) \\ R_4(X) &= I(X_1 \ge 2.1) \cdot I(X_3 \in \{M, L\}) \\ R_5(X) &= I(X_1 \ge 2.1) \cdot I(X_3 \in \{S\}) \cdot I(X_7 < 4.5) \\ R_6(X) &= I(X_1 \ge 2.1) \cdot I(X_3 \in \{S\}) \cdot I(X_7 \ge 4.5) \end{aligned}$$

• For each tree $T_m \in \mathcal{T}$ construct its ensemble of rules $\mathcal{T}^m_{\text{RULE}}$ and set

$$\mathcal{T}_{ ext{rule}} = igcup_{m=1}^M \mathcal{T}_{ ext{rule}}^m$$

- This ensemble then treated like any other and post-processed.
- Via the lasso, that is, find α to minimize

$$\arg\min_{\alpha} \left\{ \sum_{i=1}^{n} L(y_i, \sum_{k=1}^{K} \alpha_k R_k(x_i)) + \lambda \sum_{k=1}^{K} |\alpha_k| \right\}$$

or some other regularized procedure.
- Space of possible models enlarged \implies potential greater capacity of final f.
- Rules are easier to interpret than trees.
- Can augment $\mathcal{T}_{\text{RULE}}$ with each variable X_j to allow ensemble to also model linear functions.

• Consider this function of $X \sim U[0,1]^{100}$

$$f(X) = 10 \cdot \prod_{j=1}^{5} \exp\{-2X_j^2\} + \sum_{j=6}^{36} X_j$$

• The response variable, with $\sigma = 1.3$, is

$$Y = f(X) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

- Estimate f(X) from a training set of size n = 1000.
- Results: $n_{\text{test}} = 600$ and averaged over 20 different training sets.

