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Toy Problem for Boosted Tree



Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes
by minimizing the sum of the absolute loss on n = 900 training
points.



Boosted Tree learning via GBM: m = 1

current estimate f,,(x)  7im = sign(yi — fm(2:))

tree added tree subtracted fm(x) + T ()



Boosted Tree learning via GBM: m = 2
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Boosted Tree learning via GBM: m = 3
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Boosted Tree learning via GBM: m =5
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Boosted Tree learning via GBM: m = 6
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tree added tree subtracted fm(x) + T ()



Boosted Tree learning via GBM: m =7

current estimate f,,(x)  7im = sign(yi — fm(2:))

tree added tree subtracted fm(x) + T ()



Boosted Tree learning via GBM: m =8

current estimate f,,(x)  7im = sign(yi — fm(2:))

tree added tree subtracted fm(x) + T ()



Boosted Tree learning via GBM: m =9

current estimate f,,(x)  7im = sign(yi — fm(2:))

tree added tree subtracted fm(x) + T ()



Boosted Tree learning via GBM: m = 10

true f(x current estimate f,,,(x)  7im = sign(yi — fm(z:)

tree added tree subtracted (@) + T (a




After 200 iterations

true f(l‘) f200 (.13)



Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes
by minimizing the sum of the Ls loss on n = 900 training points.
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After 200 iterations
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Introduction

e Random forests (Breiman 2001) build a large collection of
de-correlated trees and then averages their predictions.

e On many problems
performance random forest ~ performance of boosted tree

e But random forests are easier to train and tune than boosted
trees.



Random Forests



Random forests for regression or classification

e forb=1to B:
- Draw bootstrap sample Z* of size N from the training data

- Grow a random-forest tree T}, using Z* by recursively

* Select m variables (features) from the p variables (features).
* Pick the best variable/split-point among the m.

* Split the node into two child nodes.

o Output the ensemble of trees {73}7
Make a prediction at a new point z
1B
B(z) = 5 bz; Ty(x) < regression

C’fi’(w) — majority vote {Cy(2)}  « classification



Variance of averages

e Define
Sp=X1+---+Xp
where each X; ~ p(X)

e If X;'s are independent of each other and Var{X;} = o2 then
Var(Sp} = ~o?
arop; = B(T

e If X;'s are not indpt and have pairwise correlation p then

14 o2

1-—
Var{Sg} = po? + —* 5



Variance of averages

e Define
Sp=X1+---+Xp

where each X; ~ p(X)

If X,'s are independent of each other and Var{X;} = o2 then

Var{Sp} = %02

If X;'s are not indpt and have pairwise correlation p then

14 o2

1-—
Var{Sg} = po? + —* 5

Note as B — oo then Var{Sp} — po>

Therefore higher correlation limits the benefits of averaging.



Random forests

e Typically values for m are /p or even as low as 1.
e Reducing m will reduce the correlation between trees.

e Trees benefit alot from the randomization as they have
low-bias and high variance.

e Random forests do remarkably well, with very little tuning
required.



Random forests - example
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Random forests - example

California Housing Data

RF m=2

RF m=6

GBM depth=4
® GBM depth=6

0.38 0.42
1 1

Test Average Absolute Error

0.34
1

0 200 400 600 800 1000

Number of Trees

Random forests stabilize at about 200 trees (p = 8).

At 1000 trees boosting continues to improve.

® Boosting is slowed by shrinkage and smaller depth trees.

For larger m the random forests performed no better.



Details of Random Forests



Sizeof m&mn_7?

min *

The inventors make the following recommendations for the
parameters in the random forest

¢ Regression: m = |\/p| and n,, =1

o Classification: m = [p/3] and n,, =5



Out of Bag Samples

e For each observation z; = (x;,y;) its out-of-bag estimate is

oob x’L Z Tb :E’L

beB;

where B; is the index of the bootstrap samples in which z; did
not appear.

e The OOB error estimate ~ n-fold cross validation

e Therefore can predict test-error along the way without using
cross-validation.



Random Forests and Noisy Variables

e With small m performance will drop as the ratio of relevant
variables decrease

e Probability of choosing an irrelevant feature is

Tirrel

p =
Trel + Tirrel

e To learn a split node the chance of choosing at least one
relevant variable (if n,. is large) ~

m

1—p

e However, random forests seem relatively robust to an increase
in the number of noise features....



Random Forests and Noisy Variables - example

0.52 0.34 0.25 0.19 0.15

= Random Forest
= Gradient Boosting

Test Misclassification Error
0.20
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Number of (Relevant, Noise) Variables



Random Forests and overfitting

Jal@) = Eo T(z;©) = lim fP(x)
B—o0
e The distribution of © is conditional on the training data.

e May have higher variance if fit a deep tree.

e Authors’ experience: using full-grown tree does not incur
much cost.

e Note: Classifiers are much less sensitive to variance and the
effect of over-fitting is seldom seen with random-forest
classification.



Random Forests and overfitting
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Analysis of Random Forests



Variance and De-Correlation Effect

e The limiting form of the random forest regression estimate is

fe(w) = Eoz{ T(2;0(Z)) }

e The variance of this estimate at z is

where
- p(z) is the sampling correlation between any pair of trees

p(x) = corr{ T'(z;01(Z)), T(x;02(Z)) }

where ©1(Z) and ©3(Z) are a randomly drawn pair of random
forests grown to the randomly sampled Z.

- o%(x) = sampling variance of any single randomly drawn tree

o?(x) = Var{ T(z;0(Z)) }



Variance and De-Correlation Effect

The variability averaged over these calculations is both:

e conditional on Z: due to bootstrap sample and feature
sampling at each split and

e a result of the sampling variability of Z itself.

Note: the conditional covariance of a pair of tree fits at x is zero,
because bootstrap and feature sampling is i.i.d.



Simple Example: Correlation between trees

1 50
V=—"=) Xj+e
\/50; !

with all the X; and ¢ iid Gaussian.
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e Use 500 training sets of size 100
e Single test set of size 600



Variance of single tree predictors

The total variance can be decomposed into two parts

Vare z{T(x;0(Z))} = Varz{Ee|z{T(2;0(Z))}} + Ez{Vare|z{T(z;0(Z))}}

Total Variance = Var{ fr(z)} + within-Z Variance

Single Tree
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Variance

i
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| ° Total

T T T T T
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1.85
1

1.80
1

m

(numbers estimated by averaging over 600 randomly chosen )



e Bias of a rf is the same as the bias of any of the individual
sampled trees T'(z; ©(Z))

e The improvements made by random forests are solely a result

of variance reduction.

e General trend

as m decreases, the bias
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0
3 49 L
o
8 ° ||
o \
\
B o\ ceoo®
2 o .
s 8 . oo ® L
> o ®o0e®
@ L]
.
o®
2 .o
e e ®
=
w .
o &°
e
S R4 ceq L
@ ° e ®%cecsss
§ © Mean Squared Error
L2 © Squared Bias
= g | © Variance L
=)

T T T T T T
0 10 20 30 40 50

increases.

0.05 0.10 0.15 0.20

0.0

Variance



Random Forests and k-nearest neighbour have similarities

Random Forest Classifier

o %
Training Error: 0.000 o

Test Error:  0.238

Bayes Error:  0.210 (o}

3-Nearest Neighbors

i %
Training Error: 0.130

Test Error: 0.242
Bayes Error:  0.210 (0]




Ensemble Learning



Introduction

e Ensemble learning

Build a prediction model by combining the strengths of a
collection of simpler base models.

e Examples of ensemble methods
- Bagging
- Boosting
- Stacking

- Dictionary methods....



Introduction

e Ensemble learning

Build a prediction model by combining the strengths of a
collection of simpler base models.

e Examples of ensemble methods

- Bagging
- Boosting
- Stacking

- Dictionary methods....

e Ensemble consists of two tasks:

- Build a population of base learners from training data

- Combine base learners to form a composite predictor

e Focus on these issues in this chapter.



Boosting and Regularization Paths



Penalized Regression

e Consider the dictionary of all J-terminal node regression trees
T = {T}} that could be realized by the training data.

e The linear model is
7]

flx) = o Ti(x)
i=1

e Estimation of a's from training data requires regularization

2
n 7]

main Z yi—Zaka(ﬂc) +AJ ()
i=1

i=1

J(a) = S50 o ?

T(@) = 3237 feuel

Ridge regression:

Lasso:



Penalized Regression

e Solution to the lasso solution with moderate to large X\ gives
a sparse a.

e If | T is very large then solving the optimization with the lasso
penalty is not possible.

e A feasible forward stagewise strategy exists that closely
approximates the effect of lasso



Forward Stagewise Linear Regression

- Initialize ax,k=1,..., K. Set € > 0 small and M large.

- form=1to M:
, 2
* (8°,k") =argming » ., (g/; — Z;L aTi(xi) — B T;,(;I?,j))

* Qpx — i +esign(fT)

7]

fu(@) =) aTi(x)

k=1



Similarity between Lasso & Forward Stagewise Paths

Lasso Forward Stagewise
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® 7 dimensional input vectors, M = 220,¢ = .01

o T={X1,Xo,...

, X7}



The “Bet on Sparsity” Principle

e Minimizing a loss function with a L; penalty is slow and involves
searching through the “model space”.

e The Ly penalty is computationally much easier.

e However, L1 penalty is better suited to sparse situations.



The “Bet on Sparsity” Principle

e Minimizing a loss function with a L; penalty is slow and involves
searching through the “model space”.

e The Ly penalty is computationally much easier.
e However, L1 penalty is better suited to sparse situations.

o Consider this example:

10,000 data points
- Model is a linear combination of a million trees

If the coefficients for these trees arise from a Gaussian distribution

= best predictor is ridge regression = Lo penalty.

But, if there are only a small number coefficients that are nonzero,
the Li penalty, will work better.

In the dense scenario, Lo best but will fail as too little data to estimate 1
million coefficients.

In the sparse setting, L1 penalty can do well but Lo penalty will fail.



The “Bet on Sparsity” Principle

Take home message: For high-dimensional problems

Use a procedure that does well in sparse problems, since no
procedure does well in dense problems.

Comment need some qualification:
® Sparseness/denseness depends on target function and dictionary T
e Notion of sparse Vs dense is relative to size of the training data set
and/or the noise-to-signal ratio.
More training data = can estimate coeffs with smaller standard errors
Small NSR = can identify more non-zero coeffs with a given sample

size than with high NSR

® Increase size of the dictionary = probable sparser representation, but
= harder search problem = higher variance.



Percentage Squared Prediction Error Explained

Regression

Lasso/Gaussian Ridge/Gaussian

01 02 03 04 05 01 02 03 04 05

Lasso/Subset 10 Ridge/Subset 10

4

— T
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Lasso/Subset30  Ridge/Subset 30
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Noise-to-Signal Ratio

Percentage Misclassification Error Explained

Lasso penalty Vs Ridge penalty

Classification

Lasso/Gaussian Ridge/Gaussian

0102 03 04 05 01 02 03 04 05

Lasso/Subset 10 Ridge/Subset 10

T S —
0102 03 04 05 01 02 03 04 05

Lasso/Subset30  Ridge/Subset 30

01 02 03 04 05 01 02 03 04 05

Noise-to-Signal Ratio

Regression problem
Y=X'B+e
with
® ¢~ N(0,0%) and
e X ¢ RSOO

® Top row: 3; #0, 1 <
7 <300

® Mid row: 10 non-zero f3;
® Last row: 30 non-zero f3;

L, estimation is superior in

sparse settings.



Learning Ensembles



Learning Ensembles

e How should one learn functions of the form
f(x)=ap+ Z o Ty(x)
TweT
where T is a dictionary of basis functions - typically trees ?

e Suggested approach

- Construct a finite dictionary T = {T1(z), ..., Ta(z)} from
the training data.

- Build a family of functions fy(x) by fitting a lasso path

a(A) = argmm ZL Yi, Qo + Zm Lam T () + A Z |t |
i=1



Learning Ensembles

e How should one learn functions of the form

f(x)=ap+ Z o Ty(x)

TweT
where T is a dictionary of basis functions - typically trees ?

e Suggested approach

- Construct a finite dictionary T = {T1(z), ..., Ta(z)} from
the training data.

- Build a family of functions fy(x) by fitting a lasso path

a(A) = argmm ZL Yi, Qo + Zm Lam T () + A Z |t |

i=1

e Can view this as a way to post-processing a boosted trees or
random forest



Example

Spam Data

0.09

Random Forest (5%, 6)

' ~ = Random Forest
~ = Gradient Boost (5 node)

0.08

Test Error
0.07

0.06

Number of Trees

e (lassification problem, 57 dimensional feature vector.
® Solid curves are the post-processed functions.

® Dashed line - test error of random forest, using 1000 tree grown to
maximum depth (m = 7).

® Dashed line - test error of random forest where 5% of data used to grow
each shallow tree in the forest.



Learning a Good Ensemble

e Not all ensembles T, will perform well with post-processing.

e For the ensemble of basis functions 77, want
- a collection that offers good coverage in the places needed

- and are sufficiently different from each offer to allow the
post-processing to be effective.

e Freidman and Popescu suggested an ensemble-generation
algorithm....



Importance Sampled Learning Ensemble Generation

* fo(z) = argmine 35 ) L(yi, c)

e Form=1to M do

- Ym =argming 3¢ (n)L(yz’,fm—l(xi)+b($z‘;7))

m

- fm(@) = fr—1(x) + v b(xs7)

o Tioe = {b(x;71),b(z;72), -, b(w;v) }

where

- v €]0,1] introduces memory into the randomization process,
- Sm(n) refers to a subsample 17 -n, n € [0, 1], of the training observations.

- Suggested values of eta aren < .5 and for large n pick n ~ 1/y/n.



ISLE Ensemble Generation

A number of familiar randomization schemes are special cases of
this algorithm:

e Bagging:
Has n = 1, samples with replacement and v =1

e Random forest:
Sampling is similar, with more randomness introduced by the
selection of the splitting variable.

¢ Gradient boosting:
With shrinkage uses 7 = 1, but does not produce sufficient
width o.

e Stochastic gradient boosting:
Follows the recipe exactly.



Example

Test Error

0.045 0.050 0.055 0.060

0.040

Spam Data

Gradient Boosting (5 Node)
—— Lasso Post-processed

500

T T T T
1000 1500 2000 2500

Number of Trees

ISLE, n = .5,v = 0.05, used to generate an ensemble of trees with

5 terminal nodes



e Consider this function of X ~ U[0, 1]*%°
f(X)=10- H?:1 exp{—Qng} + Z?i@ X
e The response variable, with 0 = 1.3, is
Y =f(X)+e e~N(0,0?%)

e Estimate f(X) from a training set of size n = 1000.

e Results: nyy = 600 and averaged over 20 different training sets.

B GBM (1, 0.01)
— GBM (01,001)
— ISLE GB

o — ISLERF

El -~ Random Forest

Mean Squared Error
L

T T T T
0 500 1000 1500 2000 2500

Number of Trees



Rule Ensembles

A typical tree in an ensemble from which rules can be derived

X1 <21/ \X1 > 2.1

X3 € {S} qu{l\[ L}

X7 < 4.5/ X7>45

Derived rules:

Ri(X) =1(X1 <2.1)

Ry(X) =1(X1 >2.1)

Rs(X) =1(X, >2.1) - I(X3 € {S})

Ry(X) =1(Xy >21)-I(Xs € {M,L})

Rs(X) =1(X1 >21) - I(X3 € {S}) - I(X7 < 4.5)
Re(X) =I(X1 >2.1) - I(X3 € {S}) - [(X7 > 4.5)



Rule Ensembles

e This rule set is an over-complete basis for the tree.

Ri(X)=1I(X, <21)

Ro(X) = I(X, >2.1)

Rs(X) = I(X1 > 2.1) - I(Xs € {S})

Ra(X) = I(X1 >2.1) - I(Xs € {M,L})

Rs(X) = I(X, > 2.1) - I(Xs € {S}) - (X7 < 4.5)
Re(X) = I(X, > 2.1) - I(Xs € {S}) - I(X7 > 4.5)



Rule Ensembles

e For each tree T, € T construct its ensemble of rules 7./
and set

M
True = U TRiLe
m=1

e This ensemble then treated like any other and post-processed.
e Via the lasso, that is, find « to minimize

n

arg mgn { Z L(ys. Zszl ag Ri(zi)) + A Zf:l |k }
i=1

or some other regularized procedure.



Rule Ensembles: Advantages?

e Space of possible models enlarged = potential greater
capacity of final f.

e Rules are easier to interpret than trees.

e Can augment Tgy e with each variable X; to allow ensemble
to also model linear functions.



e Consider this function of X ~ U[0, 1]*%°
F(X) =10 TT5_, exp{-2X7} + 372 X;
e The response variable, with 0 = 1.3, is
Y=f(X)+e e~N(0,0%

e Estimate f(X) from a training set of size n = 1000.

e Results: nyy = 600 and averaged over 20 different training sets.

«

@
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Rules Rules + Linear

Mean Squared Error




