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Toy Problem for Boosted Tree



Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes
by minimizing the sum of the absolute loss on n = 900 training
points.



Boosted Tree learning via GBM: m = 1

true f(x) current estimate fm(x) rim = sign(yi − fm(xi))

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 2

true f(x) current estimate fm(x) rim = sign(yi − fm(xi))

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 3

true f(x) current estimate fm(x) rim = sign(yi − fm(xi))

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 4

true f(x) current estimate fm(x) rim = sign(yi − fm(xi))

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 5

true f(x) current estimate fm(x) rim = sign(yi − fm(xi))

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 6

true f(x) current estimate fm(x) rim = sign(yi − fm(xi))

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 7

true f(x) current estimate fm(x) rim = sign(yi − fm(xi))

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 8

true f(x) current estimate fm(x) rim = sign(yi − fm(xi))

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 9

true f(x) current estimate fm(x) rim = sign(yi − fm(xi))

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 10

true f(x) current estimate fm(x) rim = sign(yi − fm(xi))

tree added tree subtracted fm(x) + Tm(x)



After 200 iterations

true f(x) f200(x)



Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes
by minimizing the sum of the L2 loss on n = 900 training points.



Boosted Tree learning via GBM: m = 1

true f(x) current estimate fm(x) rim = yi − fm(xi)

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 2

true f(x) current estimate fm(x) rim = yi − fm(xi)

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 3

true f(x) current estimate fm(x) rim = yi − fm(xi)

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 4

true f(x) current estimate fm(x) rim = yi − fm(xi)

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 5

true f(x) current estimate fm(x) rim = yi − fm(xi)

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 6

true f(x) current estimate fm(x) rim = yi − fm(xi)

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 7

true f(x) current estimate fm(x) rim = yi − fm(xi)

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 8

true f(x) current estimate fm(x) rim = yi − fm(xi)

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 9

true f(x) current estimate fm(x) rim = yi − fm(xi)

tree added tree subtracted fm(x) + Tm(x)



Boosted Tree learning via GBM: m = 10

true f(x) current estimate fm(x) rim = yi − fm(xi)

tree added tree subtracted fm(x) + Tm(x)



After 200 iterations

true f(x) f200(x)



Introduction

• Random forests (Breiman 2001) build a large collection of
de-correlated trees and then averages their predictions.

• On many problems

performance random forest ≈ performance of boosted tree

• But random forests are easier to train and tune than boosted
trees.



Random Forests



Random forests for regression or classification

• for b = 1 to B:

- Draw bootstrap sample Z∗ of size N from the training data

- Grow a random-forest tree Tb using Z∗ by recursively

? Select m variables (features) from the p variables (features).

? Pick the best variable/split-point among the m.

? Split the node into two child nodes.

• Output the ensemble of trees {Tb}B1

Make a prediction at a new point x

f̂Brf (x) =
1

B

B∑

b=1

Tb(x) ← regression

ĈBrf (x) = majority vote {Ĉb(x)}B1 ← classification



Variance of averages

• Define

SB = X1 + · · ·+XB

where each Xi ∼ p(X)

• If Xi’s are independent of each other and Var{Xi} = σ2 then

Var{SB} =
1

B
σ2

• If Xi’s are not indpt and have pairwise correlation ρ then

Var{SB} = ρσ2 +
1− ρ
B

σ2

• Note as B →∞ then Var{SB} → ρσ2

• Therefore higher correlation limits the benefits of averaging.
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• Note as B →∞ then Var{SB} → ρσ2

• Therefore higher correlation limits the benefits of averaging.



Random forests

• Typically values for m are
√
p or even as low as 1.

• Reducing m will reduce the correlation between trees.

• Trees benefit alot from the randomization as they have
low-bias and high variance.

• Random forests do remarkably well, with very little tuning
required.



Random forests - example

15.2 Definition of Random Forests 589

Typically values for m are
√

p or even as low as 1.
After B such trees {T (x;Θb)}B

1 are grown, the random forest (regression)
predictor is

f̂B
rf (x) =

1

B

B∑

b=1

T (x;Θb). (15.2)

As in Section 10.9 (page 356), Θb characterizes the bth random forest tree in
terms of split variables, cutpoints at each node, and terminal-node values.
Intuitively, reducing m will reduce the correlation between any pair of trees
in the ensemble, and hence by (15.1) reduce the variance of the average.

0 500 1000 1500 2000 2500

0.
04

0
0.

04
5

0.
05

0
0.

05
5

0.
06

0
0.

06
5

0.
07

0

Spam Data

Number of Trees

Te
st

 E
rro

r

Bagging
Random Forest
Gradient Boosting (5 Node)

FIGURE 15.1. Bagging, random forest, and gradient boosting, applied to the
spam data. For boosting, 5-node trees were used, and the number of trees were
chosen by 10-fold cross-validation (2500 trees). Each “step” in the figure corre-
sponds to a change in a single misclassification (in a test set of 1536).

Not all estimators can be improved by shaking up the data like this.
It seems that highly nonlinear estimators, such as trees, benefit the most.
For bootstrapped trees, ρ is typically small (0.05 or lower is typical; see
Figure 15.9), while σ2 is not much larger than the variance for the original
tree. On the other hand, bagging does not change linear estimates, such
as the sample mean (hence its variance either); the pairwise correlation
between bootstrapped means is about 50% (Exercise 15.4).



Random forests - example
15.2 Definition of Random Forests 591
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FIGURE 15.3. Random forests compared to gradient boosting on the California
housing data. The curves represent mean absolute error on the test data as a
function of the number of trees in the models. Two random forests are shown, with
m = 2 and m = 6. The two gradient boosted models use a shrinkage parameter
ν = 0.05 in (10.41), and have interaction depths of 4 and 6. The boosted models
outperform random forests.

Figure 15.2 shows the results of a simulation3 comparing random forests
to gradient boosting on the nested spheres problem [Equation (10.2) in
Chapter 10]. Boosting easily outperforms random forests here. Notice that
smaller m is better here, although part of the reason could be that the true
decision boundary is additive.

Figure 15.3 compares random forests to boosting (with shrinkage) in a
regression problem, using the California housing data (Section 10.14.1).
Two strong features that emerge are

• Random forests stabilize at about 200 trees, while at 1000 trees boost-
ing continues to improve. Boosting is slowed down by the shrinkage,
as well as the fact that the trees are much smaller.

• Boosting outperforms random forests here. At 1000 terms, the weaker
boosting model (GBM depth 4) has a smaller error than the stronger

3Details: The random forests were fit using the R package randomForest 4.5-11,

with 500 trees. The gradient boosting models were fit using R package gbm 1.5, with

shrinkage parameter set to 0.05, and 2000 trees.

• Random forests stabilize at about 200 trees (p = 8).

• At 1000 trees boosting continues to improve.

• Boosting is slowed by shrinkage and smaller depth trees.

• For larger m the random forests performed no better.



Details of Random Forests



Size of m & nmin?

The inventors make the following recommendations for the
parameters in the random forest

• Regression: m = b√pc and nmin = 1

• Classification: m = bp/3c and nmin = 5



Out of Bag Samples

• For each observation zi = (xi, yi) its out-of-bag estimate is

f̂oob(xi) =
∑

b∈Bi

Tb(xi)

where Bi is the index of the bootstrap samples in which zi did
not appear.

• The OOB error estimate ≈ n-fold cross validation

• Therefore can predict test-error along the way without using
cross-validation.



Random Forests and Noisy Variables

• With small m performance will drop as the ratio of relevant
variables decrease

• Probability of choosing an irrelevant feature is

p =
nirrel

nrel + nirrel

• To learn a split node the chance of choosing at least one
relevant variable (if nirrel is large) ≈

1− pm

• However, random forests seem relatively robust to an increase
in the number of noise features....



Random Forests and Noisy Variables - example
15.4 Analysis of Random Forests 597
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FIGURE 15.7. A comparison of random forests and gradient boosting on prob-
lems with increasing numbers of noise variables. In each case the true decision
boundary depends on two variables, and an increasing number of noise variables
are included. Random forests uses its default value m =

√
p. At the top of each

pair is the probability that one of the relevant variables is chosen at any split.
The results are based on 50 simulations for each pair, with a training sample of
300, and a test sample of 500.

15.4 Analysis of Random Forests

In this section we analyze the mechanisms at play with the additional
randomization employed by random forests. For this discussion we focus
on regression and squared error loss, since this gets at the main points,
and bias and variance are more complex with 0–1 loss (see Section 7.3.1).
Furthermore, even in the case of a classification problem, we can consider
the random-forest average as an estimate of the class posterior probabilities,
for which bias and variance are appropriate descriptors.

15.4.1 Variance and the De-Correlation Effect

The limiting form (B → ∞) of the random forest regression estimator is

f̂rf(x) = EΘ|ZT (x;Θ(Z)), (15.4)

where we have made explicit the dependence on the training data Z. Here
we consider estimation at a single target point x. From (15.1) we see that



Random Forests and overfitting

f̂rf(x) = EΘ T (x; Θ) = lim
B→∞

f̂Brf (x)

• The distribution of Θ is conditional on the training data.

• May have higher variance if fit a deep tree.

• Authors’ experience: using full-grown tree does not incur
much cost.

• Note: Classifiers are much less sensitive to variance and the
effect of over-fitting is seldom seen with random-forest
classification.



Random Forests and overfitting

598 15. Random Forests
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FIGURE 15.8. The effect of tree size on the error in random forest regres-
sion. In this example, the true surface was additive in two of the 12 variables,
plus additive unit-variance Gaussian noise. Tree depth is controlled here by the
minimum node size; the smaller the minimum node size, the deeper the trees.

Varf̂rf(x) = ρ(x)σ2(x). (15.5)

Here

• ρ(x) is the sampling correlation between any pair of trees used in the
averaging:

ρ(x) = corr[T (x;Θ1(Z)), T (x;Θ2(Z))], (15.6)

where Θ1(Z) and Θ2(Z) are a randomly drawn pair of random forest
trees grown to the randomly sampled Z;

• σ2(x) is the sampling variance of any single randomly drawn tree,

σ2(x) = Var T (x;Θ(Z)). (15.7)

It is easy to confuse ρ(x) with the average correlation between fitted trees
in a given random-forest ensemble; that is, think of the fitted trees as N -
vectors, and compute the average pairwise correlation between these vec-
tors, conditioned on the data. This is not the case; this conditional corre-
lation is not directly relevant in the averaging process, and the dependence
on x in ρ(x) warns us of the distinction. Rather, ρ(x) is the theoretical
correlation between a pair of random-forest trees evaluated at x, induced
by repeatedly making training sample draws Z from the population, and
then drawing a pair of random forest trees. In statistical jargon, this is the
correlation induced by the sampling distribution of Z and Θ.

More precisely, the variability averaged over in the calculations in (15.6)
and (15.7) is both



Analysis of Random Forests



Variance and De-Correlation Effect

• The limiting form of the random forest regression estimate is

f̂rf(x) = EΘ|Z{T (x; Θ(Z)) }

• The variance of this estimate at x is

f̂rf(x) = ρ(x)σ2(x)

where
- ρ(x) is the sampling correlation between any pair of trees

ρ(x) = corr{T (x; Θ1(Z)), T (x; Θ2(Z)) }

where Θ1(Z) and Θ2(Z) are a randomly drawn pair of random

forests grown to the randomly sampled Z.

- σ2(x) = sampling variance of any single randomly drawn tree

σ2(x) = Var{T (x; Θ(Z)) }



Variance and De-Correlation Effect

The variability averaged over these calculations is both:

• conditional on Z: due to bootstrap sample and feature
sampling at each split and

• a result of the sampling variability of Z itself.

Note: the conditional covariance of a pair of tree fits at x is zero,

because bootstrap and feature sampling is i.i.d.



Simple Example: Correlation between trees

Y =
1√
50

50∑

j=1

Xj + ε

with all the Xj and ε iid Gaussian.

15.4 Analysis of Random Forests 599

• conditional on Z: due to the bootstrap sampling and feature sampling
at each split, and

• a result of the sampling variability of Z itself.

In fact, the conditional covariance of a pair of tree fits at x is zero, because
the bootstrap and feature sampling is i.i.d; see Exercise 15.5.
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FIGURE 15.9. Correlations between pairs of trees drawn by a random-forest
regression algorithm, as a function of m. The boxplots represent the correlations
at 600 randomly chosen prediction points x.

The following demonstrations are based on a simulation model

Y =
1√
50

50∑

j=1

Xj + ε, (15.8)

with all the Xj and ε iid Gaussian. We use 500 training sets of size 100, and
a single set of test locations of size 600. Since regression trees are nonlinear
in Z, the patterns we see below will differ somewhat depending on the
structure of the model.

Figure 15.9 shows how the correlation (15.6) between pairs of trees de-
creases as m decreases: pairs of tree predictions at x for different training
sets Z are likely to be less similar if they do not use the same splitting
variables.

In the left panel of Figure 15.10 we consider the variances of single tree
predictors, VarT (x;Θ(Z)) (averaged over 600 prediction points x drawn
randomly from our simulation model). This is the total variance, and can be

• Use 500 training sets of size 100

• Single test set of size 600



Variance of single tree predictors

The total variance can be decomposed into two parts

VarΘ,Z{T (x; Θ(Z))} = VarZ{EΘ|Z{T (x; Θ(Z))}} + EZ{VarΘ|Z{T (x; Θ(Z))}}

Total Variance = Var{f̂rf(x)} + within-Z Variance

600 15. Random Forests

decomposed into two parts using standard conditional variance arguments
(see Exercise 15.5):

VarΘ,ZT (x;Θ(Z)) = VarZEΘ|ZT (x;Θ(Z)) + EZVarΘ|ZT (x;Θ(Z))

Total Variance = VarZf̂rf(x) + within-Z Variance
(15.9)

The second term is the within-Z variance—a result of the randomization,
which increases as m decreases. The first term is in fact the sampling vari-
ance of the random forest ensemble (shown in the right panel), which de-
creases as m decreases. The variance of the individual trees does not change
appreciably over much of the range of m, hence in light of (15.5), the vari-
ance of the ensemble is dramatically lower than this tree variance.
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FIGURE 15.10. Simulation results. The left panel shows the average variance of
a single random forest tree, as a function of m. “Within Z” refers to the average
within-sample contribution to the variance, resulting from the bootstrap sampling
and split-variable sampling (15.9). “Total” includes the sampling variability of
Z. The horizontal line is the average variance of a single fully grown tree (with-
out bootstrap sampling). The right panel shows the average mean-squared error,
squared bias and variance of the ensemble, as a function of m. Note that the
variance axis is on the right (same scale, different level). The horizontal line is
the average squared-bias of a fully grown tree.

15.4.2 Bias

As in bagging, the bias of a random forest is the same as the bias of any
of the individual sampled trees T (x;Θ(Z)):

(numbers estimated by averaging over 600 randomly chosen x)



Bias

• Bias of a rf is the same as the bias of any of the individual
sampled trees T (x; Θ(Z))

• The improvements made by random forests are solely a result
of variance reduction.

• General trend as m decreases, the bias increases.

600 15. Random Forests

decomposed into two parts using standard conditional variance arguments
(see Exercise 15.5):

VarΘ,ZT (x;Θ(Z)) = VarZEΘ|ZT (x;Θ(Z)) + EZVarΘ|ZT (x;Θ(Z))

Total Variance = VarZf̂rf(x) + within-Z Variance
(15.9)

The second term is the within-Z variance—a result of the randomization,
which increases as m decreases. The first term is in fact the sampling vari-
ance of the random forest ensemble (shown in the right panel), which de-
creases as m decreases. The variance of the individual trees does not change
appreciably over much of the range of m, hence in light of (15.5), the vari-
ance of the ensemble is dramatically lower than this tree variance.
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FIGURE 15.10. Simulation results. The left panel shows the average variance of
a single random forest tree, as a function of m. “Within Z” refers to the average
within-sample contribution to the variance, resulting from the bootstrap sampling
and split-variable sampling (15.9). “Total” includes the sampling variability of
Z. The horizontal line is the average variance of a single fully grown tree (with-
out bootstrap sampling). The right panel shows the average mean-squared error,
squared bias and variance of the ensemble, as a function of m. Note that the
variance axis is on the right (same scale, different level). The horizontal line is
the average squared-bias of a fully grown tree.

15.4.2 Bias

As in bagging, the bias of a random forest is the same as the bias of any
of the individual sampled trees T (x;Θ(Z)):



Random Forests and k-nearest neighbour have similarities

602 15. Random Forests

Random Forest Classifier
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FIGURE 15.11. Random forests versus 3-NN on the mixture data. The axis-ori-
ented nature of the individual trees in a random forest lead to decision regions
with an axis-oriented flavor.

Bibliographic Notes

Random forests as described here were introduced by Breiman (2001), al-
though many of the ideas had cropped up earlier in the literature in dif-
ferent forms. Notably Ho (1995) introduced the term “random forest,” and
used a consensus of trees grown in random subspaces of the features. The
idea of using stochastic perturbation and averaging to avoid overfitting was
introduced by Kleinberg (1990), and later in Kleinberg (1996). Amit and
Geman (1997) used randomized trees grown on image features for image
classification problems. Breiman (1996a) introduced bagging, a precursor
to his version of random forests. Dietterich (2000b) also proposed an im-
provement on bagging using additional randomization. His approach was
to rank the top 20 candidate splits at each node, and then select from the
list at random. He showed through simulations and real examples that this
additional randomization improved over the performance of bagging. Fried-
man and Hall (2007) showed that sub-sampling (without replacement) is
an effective alternative to bagging. They showed that growing and aver-
aging trees on samples of size N/2 is approximately equivalent (in terms
bias/variance considerations) to bagging, while using smaller fractions of
N reduces the variance even further (through decorrelation).

There are several free software implementations of random forests. In
this chapter we used the randomForest package in R, maintained by Andy
Liaw, available from the CRAN website. This allows both split-variable se-
lection, as well as sub-sampling. Adele Cutler maintains a random forest
website http://www.math.usu.edu/∼adele/forests/ where (as of Au-
gust 2008) the software written by Leo Breiman and Adele Cutler is freely



Ensemble Learning



Introduction

• Ensemble learning

Build a prediction model by combining the strengths of a
collection of simpler base models.

• Examples of ensemble methods

- Bagging

- Boosting

- Stacking

- Dictionary methods....

• Ensemble consists of two tasks:

- Build a population of base learners from training data

- Combine base learners to form a composite predictor

• Focus on these issues in this chapter.
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Boosting and Regularization Paths



Penalized Regression

• Consider the dictionary of all J-terminal node regression trees
T = {Tk} that could be realized by the training data.

• The linear model is

f(x) =

|T |∑

i=1

αk Tk(x)

• Estimation of α’s from training data requires regularization

min
α





n∑

i=1


yi −

|T |∑

i=1

αk Tk(x)




2

+ λJ(α)





Ridge regression: J(α) =
∑|T |
k=1 |αk|2

Lasso: J(α) =
∑|T |
k=1 |αk|



Penalized Regression

• Solution to the lasso solution with moderate to large λ gives
a sparse α.

• If |T | is very large then solving the optimization with the lasso
penalty is not possible.

• A feasible forward stagewise strategy exists that closely
approximates the effect of lasso



Forward Stagewise Linear Regression

- Initialize α̃k, k = 1, . . . ,K. Set ε > 0 small and M large.

- for m = 1 to M :

? (β∗, k∗) = arg minβ,k
∑n
i=1

(
yi −

∑|T |
l=1 α̃lTl(xi)− β Tk(xi)

)2

? α̃k∗ → α̃k∗ + ε sign(β∗)

- Output:

fM (x) =

|T |∑

k=1

α̃kTk(x)



Similarity between Lasso & Forward Stagewise Paths
16.2 Boosting and Regularization Paths 609
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FIGURE 16.1. Profiles of estimated coefficients from linear regression, for the
prostate data studied in Chapter 3. The left panel shows the results from the lasso,
for different values of the bound parameter t =

P

k |αk|. The right panel shows
the results of the stagewise linear regression Algorithm 16.1, using M = 220
consecutive steps of size ε = .01.

nal variables Xk themselves; that is, a multiple linear regression model. The
left panel displays the profiles of estimated coefficients from the lasso, for
different values of the bound parameter t =

∑
k |αk|. The right panel shows

the results of the stagewise Algorithm 16.1, with M = 250 and ε = 0.01.
[The left and right panels of Figure 16.1 are the same as Figure 3.10 and
the left panel of Figure 3.19, respectively.] The similarity between the two
graphs is striking.

In some situations the resemblance is more than qualitative. For example,
if all of the basis functions Tk are mutually uncorrelated, then as ε ↓ 0, M ↑
such that Mε → t, Algorithm 16.1 yields exactly the same solution as the
lasso for bound parameter t =

∑
k |αk| (and likewise for all solutions along

the path). Of course, tree-based regressors are not uncorrelated. However,
the solution sets are also identical if the coefficients α̂k(λ) are all monotone
functions of λ. This is often the case when the correlation between the
variables is low. When the α̂k(λ) are not monotone in λ, then the solution
sets are not identical. The solution sets for Algorithm 16.1 tend to change
less rapidly with changing values of the regularization parameter than those
of the lasso.

• 7 dimensional input vectors, M = 220, ε = .01

• T = {X1, X2, . . . , X7}



The “Bet on Sparsity” Principle

• Minimizing a loss function with a L1 penalty is slow and involves

searching through the “model space”.

• The L2 penalty is computationally much easier.

• However, L1 penalty is better suited to sparse situations.

• Consider this example:

- 10,000 data points

- Model is a linear combination of a million trees

- If the coefficients for these trees arise from a Gaussian distribution

=⇒ best predictor is ridge regression =⇒ L2 penalty.

- But, if there are only a small number coefficients that are nonzero,

the L1 penalty, will work better.

In the dense scenario, L2 best but will fail as too little data to estimate 1
million coefficients.

In the sparse setting, L1 penalty can do well but L2 penalty will fail.
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The “Bet on Sparsity” Principle

Take home message: For high-dimensional problems

Use a procedure that does well in sparse problems, since no
procedure does well in dense problems.

Comment need some qualification:

• Sparseness/denseness depends on target function and dictionary T

• Notion of sparse Vs dense is relative to size of the training data set
and/or the noise-to-signal ratio.

More training data =⇒ can estimate coeffs with smaller standard errors

Small NSR =⇒ can identify more non-zero coeffs with a given sample
size than with high NSR

• Increase size of the dictionary =⇒ probable sparser representation, but
=⇒ harder search problem =⇒ higher variance.



Lasso penalty Vs Ridge penalty
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FIGURE 16.2. Simulations that show the superiority of the L1 (lasso) penalty
over L2 (ridge) in regression and classification. Each run has 50 observations
with 300 independent Gaussian predictors. In the top row all 300 coefficients are
nonzero, generated from a Gaussian distribution. In the middle row, only 10 are
nonzero, and the last row has 30 nonzero. Gaussian errors are added to the linear
predictor η(X) for the regression problems, and binary responses generated via the
inverse-logit transform for the classification problems. Scaling of η(X) resulted in
the noise-to-signal ratios shown. Lasso is used in the left sub-columns, ridge in the
right. We report the optimal percentage of error explained on test data (relative
to the error of a constant model), displayed as boxplots over 20 realizations for
each combination. In the only situation where ridge beats lasso (top row), neither
do well.

Regression problem

Y = Xtβ + ε

with

• ε ∼ N (0, σ2) and

• X ∈ R300

• Top row: βj 6= 0, 1 ≤
j ≤ 300

• Mid row: 10 non-zero βj

• Last row: 30 non-zero βj

L1 estimation is superior in

sparse settings.
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Learning Ensembles

• How should one learn functions of the form

f(x) = α0 +
∑

Tk∈T
αkTk(x)

where T is a dictionary of basis functions - typically trees ?

• Suggested approach

- Construct a finite dictionary TL = {T1(x), . . . , TM (x)} from

the training data.

- Build a family of functions fλ(x) by fitting a lasso path

α(λ) = arg min
α

n∑

i=1

L(yi, α0 +
∑M
m=1 αmTm(x)) + λ

M∑

m=1

|αm|

• Can view this as a way to post-processing a boosted trees or
random forest
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FIGURE 16.6. Application of the lasso post-processing (16.9) to the spam data.
The horizontal blue line is the test error of a random forest fit to the spam data,
using 1000 trees grown to maximum depth (with m = 7; see Algorithm 15.1).
The jagged blue curve is the test error after post-processing the first 500 trees
using the lasso, as a function of the number of trees with nonzero coefficients.
The orange curve/line use a modified form of random forest, where a random
draw of 5% of the data are used to grow each tree, and the trees are forced to
be shallow (typically six terminal nodes). Here the post-processing offers much
greater improvement over the random forest that generated the ensemble.

where they are needed, and are sufficiently different from each other for
the post-processor to be effective.

Friedman and Popescu (2003) gain insights from numerical quadrature
and importance sampling. They view the unknown function as an integral

f(x) =

∫
β(γ)b(x; γ)dγ, (16.10)

where γ ∈ Γ indexes the basis functions b(x; γ). For example, if the basis
functions are trees, then γ indexes the splitting variables, the split-points
and the values in the terminal nodes. Numerical quadrature amounts to
finding a set of M evaluation points γm ∈ Γ and corresponding weights
αm so that fM (x) = α0 +

∑M
m=1 αmb(x; γm) approximates f(x) well over

the domain of x. Importance sampling amounts to sampling γ at random,
but giving more weight to relevant regions of the space Γ. Friedman and
Popescu (2003) suggest a measure of (lack of) relevance that uses the loss
function (16.9):

• Classification problem, 57 dimensional feature vector.

• Solid curves are the post-processed functions.

• Dashed line - test error of random forest, using 1000 tree grown to
maximum depth (m = 7).

• Dashed line - test error of random forest where 5% of data used to grow
each shallow tree in the forest.



Learning a Good Ensemble

• Not all ensembles TL will perform well with post-processing.

• For the ensemble of basis functions TL want

- a collection that offers good coverage in the places needed

- and are sufficiently different from each offer to allow the

post-processing to be effective.

• Freidman and Popescu suggested an ensemble-generation
algorithm....



Importance Sampled Learning Ensemble Generation

• f0(x) = arg minc
∑n

i=1 L(yi, c)

• For m = 1 to M do

- γm = arg minγ
∑
i∈Sm(η) L (yi, fm−1(xi) + b(xi; γ))

- fm(x) = fm−1(x) + ν b(x; γ)

• TISLE = {b(x; γ1), b(x; γ2), . . . , b(x; γM )}
where

- ν ∈ [0, 1] introduces memory into the randomization process,

- Sm(η) refers to a subsample η · n, η ∈ [0, 1], of the training observations.

- Suggested values of eta areη ≤ .5 and for large n pick η ≈ 1/
√
n.



ISLE Ensemble Generation

A number of familiar randomization schemes are special cases of
this algorithm:

• Bagging:
Has η = 1, samples with replacement and ν = 1

• Random forest:
Sampling is similar, with more randomness introduced by the
selection of the splitting variable.

• Gradient boosting:
With shrinkage uses η = 1, but does not produce sufficient
width σ.

• Stochastic gradient boosting:
Follows the recipe exactly.



Example

620 16. Ensemble Learning

Random forest sampling is similar, with more randomness introduced by
the selection of the splitting variable. Reducing η < 1/2 in algo-
rithm 16.2 has a similar effect to reducing m in random forests, but
does not suffer from the potential biases discussed in Section 15.4.2.

Gradient boosting with shrinkage (10.41) uses η = 1, but typically does
not produce sufficient width σ.

Stochastic gradient boosting (Friedman, 1999) follows the recipe exactly.

The authors recommend values ν = 0.1 and η ≤ 1
2 , and call their combined

procedure (ensemble generation and post processing) Importance sampled
learning ensemble (ISLE).

Figure 16.7 shows the performance of an ISLE on the spam data. It does
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FIGURE 16.7. Importance sampling learning ensemble (ISLE) fit to the spam
data. Here we used η = 1/2, ν = 0.05, and trees with five terminal nodes. The
lasso post-processed ensemble does not improve the prediction error in this case,
but it reduces the number of trees by a factor of five.

not improve the predictive performance, but is able to produce a more
parsimonious model. Note that in practice the post-processing includes
the selection of the regularization parameter λ in (16.9), which would be

ISLE, η = .5, ν = 0.05, used to generate an ensemble of trees with
5 terminal nodes



Example

• Consider this function of X ∼ U [0, 1]100

f(X) = 10 ·∏5
j=1 exp{−2X2

j }+
∑36
j=6Xj

• The response variable, with σ = 1.3, is

Y = f(X) + ε, ε ∼ N (0, σ2)

• Estimate f(X) from a training set of size n = 1000.

• Results: ntest = 600 and averaged over 20 different training sets.
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chosen by cross-validation. Here we simply demonstrate the effects of post-
processing by showing the entire path on the test data.

Figure 16.8 shows various ISLEs on a regression example. The generating
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FIGURE 16.8. Demonstration of ensemble methods on a regression simulation
example. The notation GBM (0.1, 0.01) refers to a gradient boosted model, with
parameters (η, ν). We report mean-squared error from the true (known) function.
Note that the sub-sampled GBM model (green) outperforms the full GBM model
(orange). The lasso post-processed version achieves similar error. The random
forest is outperformed by its post-processed version, but both fall short of the
other models.

function is

f(X) = 10 ·
5∏

j=1

e−2X2
j +

35∑

j=6

Xj , (16.13)

where X ∼ U [0, 1]100 (the last 65 elements are noise variables). The re-
sponse Y = f(X) + ε where ε ∼ N(0,σ2); we chose σ = 1.3 resulting in a
signal-to-noise ratio of approximately 2. We used a training sample of size
1000, and estimated the mean squared error E(f̂(X)−f(X))2 by averaging
over a test set of 500 samples. The sub-sampled GBM curve (light blue)
is an instance of stochastic gradient boosting (Friedman, 1999) discussed in
Section 10.12, and it outperforms gradient boosting on this example.



Rule Ensembles

A typical tree in an ensemble from which rules can be derived
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16.3.2 Rule Ensembles

Here we describe a modification of the tree-ensemble method that focuses
on individual rules (Friedman and Popescu, 2003). We encountered rules
in Section 9.3 in the discussion of the PRIM method. The idea is to enlarge
an ensemble of trees by constructing a set of rules from each of the trees
in the collection.

1 2

3

0

4

5 6

X1 < 2.1 X1 ≥ 2.1

X3 ∈ {M, L}X3 ∈ {S}

X7 < 4.5 X7 ≥ 4.5

FIGURE 16.9. A typical tree in an ensemble, from which rules can be derived.

Figure 16.9 depicts a small tree, with numbered nodes. The following
rules can be derived from this tree:

R1(X) = I(X1 < 2.1)
R2(X) = I(X1 ≥ 2.1)
R3(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S})
R4(X) = I(X1 ≥ 2.1) · I(X3 ∈ {M, L})
R5(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S}) · I(X7 < 4.5)
R6(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S}) · I(X7 ≥ 4.5)

(16.14)

A linear expansion in rules 1, 4, 5 and 6 is equivalent to the tree itself
(Exercise 16.3); hence (16.14) is an over-complete basis for the tree.

For each tree Tm in an ensemble T , we can construct its mini-ensemble
of rules T m

RULE, and then combine them all to form a larger ensemble

TRULE =
M⋃

m=1

T m
RULE. (16.15)

This is then treated like any other ensemble, and post-processed via the
lasso or similar regularized procedure.

There are several advantages to this approach of deriving rules from the
more complex trees:

• The space of models is enlarged, and can lead to improved perfor-
mance.

Derived rules:

R1(X) = I(X1 < 2.1)

R2(X) = I(X1 ≥ 2.1)

R3(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S})
R4(X) = I(X1 ≥ 2.1) · I(X3 ∈ {M,L})
R5(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S}) · I(X7 < 4.5)

R6(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S}) · I(X7 ≥ 4.5)



Rule Ensembles

• This rule set is an over-complete basis for the tree.

R1(X) = I(X1 < 2.1)

R2(X) = I(X1 ≥ 2.1)

R3(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S})
R4(X) = I(X1 ≥ 2.1) · I(X3 ∈ {M,L})
R5(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S}) · I(X7 < 4.5)

R6(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S}) · I(X7 ≥ 4.5)



Rule Ensembles

• For each tree Tm ∈ T construct its ensemble of rules T mRULE
and set

TRULE =

M⋃

m=1

T mRULE

• This ensemble then treated like any other and post-processed.

• Via the lasso, that is, find α to minimize

arg min
α

{
n∑

i=1

L(yi,
∑K

k=1 αk Rk(xi)) + λ
∑K

k=1 |αk|
}

or some other regularized procedure.



Rule Ensembles: Advantages?

• Space of possible models enlarged =⇒ potential greater
capacity of final f .

• Rules are easier to interpret than trees.

• Can augment TRULE with each variable Xj to allow ensemble
to also model linear functions.



Example

• Consider this function of X ∼ U [0, 1]100

f(X) = 10 ·∏5
j=1 exp{−2X2

j }+
∑36
j=6Xj

• The response variable, with σ = 1.3, is

Y = f(X) + ε, ε ∼ N (0, σ2)

• Estimate f(X) from a training set of size n = 1000.

• Results: ntest = 600 and averaged over 20 different training sets.
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FIGURE 16.10. Mean squared error for rule ensembles, using 20 realizations
of the simulation example (16.13).

• Rules are easier to interpret than trees, so there is the potential for
a simplified model.

• It is often natural to augment T RULE by including each variable Xj

separately as well, thus allowing the ensemble to model linear func-
tions well.

Friedman and Popescu (2008) demonstrate the power of this procedure on a
number of illustrative examples, including the simulation example (16.13).
Figure 16.10 shows boxplots of the mean-squared error from the true model
for twenty realizations from this model. The models were all fit using the
Rulefit software, available on the ESL homepage3, which runs in an auto-
matic mode.

On the same training set as used in Figure 16.8, the rule based model
achieved a mean-squared error of 1.06. Although slightly worse than the
best achieved in that figure, the results are not comparable because cross-
validation was used here to select the final model.

Bibliographic Notes

As noted in the introduction, many of the new methods in machine learning
have been dubbed “ensemble” methods. These include neural networks
boosting, bagging and random forests; Dietterich (2000a) gives a survey of
tree-based ensemble methods. Neural networks (Chapter 11) are perhaps
more deserving of the name, since they simultaneously learn the parameters

3ESL homepage: www-stat.stanford.edu/ElemStatLearn


