Chapter 15 \& 16: Random Forests \& Ensemble Learning

DD3364

November 27, 2012

Toy Problem for Boosted Tree

Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes by minimizing the sum of the absolute loss on $n=900$ training points.

Boosted Tree learning via GBM: $m=1$

true $f(x)$

tree added

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=\operatorname{sign}\left(y_{i}-f_{m}\left(x_{i}\right)\right)$

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=2$

true $f(x)$

tree added

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=\operatorname{sign}\left(y_{i}-f_{m}\left(x_{i}\right)\right)$

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=3$

true $f(x)$

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=\operatorname{sign}\left(y_{i}-f_{m}\left(x_{i}\right)\right)$

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=4$

true $f(x)$

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=\operatorname{sign}\left(y_{i}-f_{m}\left(x_{i}\right)\right)$

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=5$

true $f(x)$

tree added

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=\operatorname{sign}\left(y_{i}-f_{m}\left(x_{i}\right)\right)$

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=6$

true $f(x)$

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=\operatorname{sign}\left(y_{i}-f_{m}\left(x_{i}\right)\right)$

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=7$

true $f(x)$

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=\operatorname{sign}\left(y_{i}-f_{m}\left(x_{i}\right)\right)$

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=8$

true $f(x)$

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=\operatorname{sign}\left(y_{i}-f_{m}\left(x_{i}\right)\right)$

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=9$

true $f(x)$

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=\operatorname{sign}\left(y_{i}-f_{m}\left(x_{i}\right)\right)$

$$
f_{m}(x)+T_{m}(x)
$$

Boosted Tree learning via GBM: $m=10$

true $f(x)$

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=\operatorname{sign}\left(y_{i}-f_{m}\left(x_{i}\right)\right)$

tree added

$f_{m}(x)+T_{m}(x)$

Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes by minimizing the sum of the L_{2} loss on $n=900$ training points.

Boosted Tree learning via GBM: $m=1$

true $f(x)$

tree added

current estimate $f_{m}(x)$

$$
r_{i m}=y_{i}-f_{m}\left(x_{i}\right)
$$

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=2$

true $f(x)$

tree added

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=y_{i}-f_{m}\left(x_{i}\right)$

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=3$

true $f(x)$

tree added

current estimate $f_{m}(x)$

tree subtracted

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=4$

true $f(x)$

tree added

current estimate $f_{m}(x)$

tree subtracted

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=5$

true $f(x)$

tree added

current estimate $f_{m}(x)$

tree subtracted

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=6$

true $f(x)$

tree added

current estimate $f_{m}(x)$

tree subtracted

$r_{i m}=y_{i}-f_{m}\left(x_{i}\right)$

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=7$

true $f(x)$

current estimate $f_{m}(x)$

tree subtracted

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=8$

true $f(x)$

tree added

current estimate $f_{m}(x)$

tree subtracted

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=9$

true $f(x)$

tree added

current estimate $f_{m}(x)$

tree subtracted

$f_{m}(x)+T_{m}(x)$

Boosted Tree learning via GBM: $m=10$

true $f(x)$

tree added

current estimate $f_{m}(x)$
tree subtracted

$r_{i m}=y_{i}-f_{m}\left(x_{i}\right)$

$f_{m}(x)+T_{m}(x)$

Introduction

- Random forests (Breiman 2001) build a large collection of de-correlated trees and then averages their predictions.
- On many problems performance random forest \approx performance of boosted tree
- But random forests are easier to train and tune than boosted trees.

Random Forests

Random forests for regression or classification

- for $b=1$ to B :
- Draw bootstrap sample \mathbf{Z}^{*} of size N from the training data
- Grow a random-forest tree T_{b} using \mathbf{Z}^{*} by recursively \star Select m variables (features) from the p variables (features). \star Pick the best variable/split-point among the m. * Split the node into two child nodes.
- Output the ensemble of trees $\left\{T_{b}\right\}_{1}^{B}$

Make a prediction at a new point x

$$
\hat{f}_{r f}^{B}(x)=\frac{1}{B} \sum_{b=1}^{B} T_{b}(x) \quad \leftarrow \text { regression }
$$

$\hat{C}_{r f}^{B}(x)=$ majority vote $\left\{\hat{C}_{b}(x)\right\}_{1}^{B} \quad \leftarrow$ classification

Variance of averages

- Define

$$
S_{B}=X_{1}+\cdots+X_{B}
$$

where each $X_{i} \sim p(X)$

- If X_{i} 's are independent of each other and $\operatorname{Var}\left\{X_{i}\right\}=\sigma^{2}$ then

$$
\operatorname{Var}\left\{S_{B}\right\}=\frac{1}{B} \sigma^{2}
$$

- If X_{i} 's are not indpt and have pairwise correlation ρ then

$$
\operatorname{Var}\left\{S_{B}\right\}=\rho \sigma^{2}+\frac{1-\rho}{B} \sigma^{2}
$$

- Note as $B \rightarrow \infty$ then $\operatorname{Var}\left\{S_{B}\right\} \rightarrow \rho \sigma^{2}$

Variance of averages

- Define

$$
S_{B}=X_{1}+\cdots+X_{B}
$$

where each $X_{i} \sim p(X)$

- If X_{i} 's are independent of each other and $\operatorname{Var}\left\{X_{i}\right\}=\sigma^{2}$ then

$$
\operatorname{Var}\left\{S_{B}\right\}=\frac{1}{B} \sigma^{2}
$$

- If X_{i} 's are not indpt and have pairwise correlation ρ then

$$
\operatorname{Var}\left\{S_{B}\right\}=\rho \sigma^{2}+\frac{1-\rho}{B} \sigma^{2}
$$

- Note as $B \rightarrow \infty$ then $\operatorname{Var}\left\{S_{B}\right\} \rightarrow \rho \sigma^{2}$
- Therefore higher correlation limits the benefits of averaging.
- Typically values for m are \sqrt{p} or even as low as 1 .
- Reducing m will reduce the correlation between trees.
- Trees benefit alot from the randomization as they have low-bias and high variance.
- Random forests do remarkably well, with very little tuning required.

Random forests - example

Spam Data

Random forests - example

California Housing Data

- Random forests stabilize at about 200 trees ($p=8$).
- At 1000 trees boosting continues to improve.
- Boosting is slowed by shrinkage and smaller depth trees.
- For larger m the random forests performed no better.

Details of Random Forests

Size of $m \& n_{\min }$?

The inventors make the following recommendations for the parameters in the random forest

- Regression: $m=\lfloor\sqrt{p}\rfloor$ and $n_{\text {min }}=1$
- Classification: $m=\lfloor p / 3\rfloor$ and $n_{\text {min }}=5$

Out of Bag Samples

- For each observation $z_{i}=\left(x_{i}, y_{i}\right)$ its out-of-bag estimate is

$$
\hat{f}_{\text {oob }}\left(x_{i}\right)=\sum_{b \in \mathcal{B}_{i}} T_{b}\left(x_{i}\right)
$$

where \mathcal{B}_{i} is the index of the bootstrap samples in which z_{i} did not appear.

- The OOB error estimate $\approx n$-fold cross validation
- Therefore can predict test-error along the way without using cross-validation.

Random Forests and Noisy Variables

- With small m performance will drop as the ratio of relevant variables decrease
- Probability of choosing an irrelevant feature is

$$
p=\frac{n_{\text {irrel }}}{n_{\text {rel }}+n_{\text {irrel }}}
$$

- To learn a split node the chance of choosing at least one relevant variable (if $n_{\text {irrel }}$ is large) \approx

$$
1-p^{m}
$$

- However, random forests seem relatively robust to an increase in the number of noise features....

Random Forests and Noisy Variables - example

Random Forests and overfitting

$$
\hat{f}_{\mathrm{rf}}(x)=\mathrm{E}_{\Theta} T(x ; \Theta)=\lim _{B \rightarrow \infty} \hat{f}_{\mathrm{rf}}^{B}(x)
$$

- The distribution of Θ is conditional on the training data.
- May have higher variance if fit a deep tree.
- Authors' experience: using full-grown tree does not incur much cost.
- Note: Classifiers are much less sensitive to variance and the effect of over-fitting is seldom seen with random-forest classification.

Random Forests and overfitting

Analysis of Random Forests

Variance and De-Correlation Effect

- The limiting form of the random forest regression estimate is

$$
\hat{f}_{\mathrm{rf}}(x)=\mathrm{E}_{\Theta \mid \mathbf{Z}}\{T(x ; \Theta(\mathbf{Z}))\}
$$

- The variance of this estimate at x is

$$
\hat{f}_{\mathrm{ff}}(x)=\rho(x) \sigma^{2}(x)
$$

where

- $\rho(x)$ is the sampling correlation between any pair of trees

$$
\rho(x)=\operatorname{corr}\left\{T\left(x ; \Theta_{1}(\mathbf{Z})\right), T\left(x ; \Theta_{2}(\mathbf{Z})\right)\right\}
$$

where $\Theta_{1}(\mathbf{Z})$ and $\Theta_{2}(\mathbf{Z})$ are a randomly drawn pair of random forests grown to the randomly sampled \mathbf{Z}.

- $\sigma^{2}(x)=$ sampling variance of any single randomly drawn tree

$$
\sigma^{2}(x)=\operatorname{Var}\{T(x ; \Theta(\mathbf{Z}))\}
$$

Variance and De-Correlation Effect

The variability averaged over these calculations is both:

- conditional on Z: due to bootstrap sample and feature sampling at each split and
- a result of the sampling variability of \mathbf{Z} itself.

Note: the conditional covariance of a pair of tree fits at x is zero, because bootstrap and feature sampling is i.i.d.

Simple Example: Correlation between trees

$$
Y=\frac{1}{\sqrt{50}} \sum_{j=1}^{50} X_{j}+\epsilon
$$

with all the X_{j} and ϵ iid Gaussian.

Number of Randomly Selected Splitting Variables m

- Use 500 training sets of size 100
- Single test set of size 600

Variance of single tree predictors

The total variance can be decomposed into two parts

$$
\begin{array}{rll}
\operatorname{Var}_{\Theta, \mathbf{Z}}\{T(x ; \Theta(\mathbf{Z}))\} & =\operatorname{Var}_{\mathbf{Z}}\left\{\mathrm{E}_{\Theta \mid \mathbf{Z}}\{T(x ; \Theta(\mathbf{Z}))\}\right\} & +\mathrm{E}_{\mathbf{Z}}\left\{\operatorname{Var}_{\Theta \mid \mathbf{Z}}\{T(x ; \Theta(\mathbf{Z}))\}\right\} \\
\text { Total Variance } & =\operatorname{Var}\left\{\hat{f}_{\text {fr }}(x)\right\} & + \text { within-Z Variance }
\end{array}
$$

(numbers estimated by averaging over 600 randomly chosen x)

- Bias of a rf is the same as the bias of any of the individual sampled trees $T(x ; \Theta(\mathbf{Z}))$
- The improvements made by random forests are solely a result of variance reduction.
- General trend as m decreases, the bias increases.

Random Forests and k-nearest neighbour have similarities

Random Forest Classifier

3-Nearest Neighbors

Ensemble Learning

Introduction

- Ensemble learning

Build a prediction model by combining the strengths of a collection of simpler base models.

- Examples of ensemble methods
- Bagging
- Boosting
- Stacking
- Dictionary methods....
- Ensemble consists of two tasks:
- Build a population of base learners from training data
- Combine base learners to form a composite predictor

Introduction

- Ensemble learning

Build a prediction model by combining the strengths of a collection of simpler base models.

- Examples of ensemble methods
- Bagging
- Boosting
- Stacking
- Dictionary methods....
- Ensemble consists of two tasks:
- Build a population of base learners from training data
- Combine base learners to form a composite predictor
- Focus on these issues in this chapter.

Boosting and Regularization Paths

Penalized Regression

- Consider the dictionary of all J-terminal node regression trees $\mathcal{T}=\left\{T_{k}\right\}$ that could be realized by the training data.
- The linear model is

$$
f(x)=\sum_{i=1}^{|\mathcal{T}|} \alpha_{k} T_{k}(x)
$$

- Estimation of α 's from training data requires regularization

$$
\min _{\alpha}\left\{\sum_{i=1}^{n}\left(y_{i}-\sum_{i=1}^{|\mathcal{T}|} \alpha_{k} T_{k}(x)\right)^{2}+\lambda J(\alpha)\right\}
$$

Ridge regression: $\quad J(\alpha)=\sum_{k=1}^{|\mathcal{T}|}\left|\alpha_{k}\right|^{2}$
Lasso:

$$
J(\alpha)=\sum_{k=1}^{|\mathcal{T}|}\left|\alpha_{k}\right|
$$

Penalized Regression

- Solution to the lasso solution with moderate to large λ gives a sparse α.
- If $|\mathcal{T}|$ is very large then solving the optimization with the lasso penalty is not possible.
- A feasible forward stagewise strategy exists that closely approximates the effect of lasso

Forward Stagewise Linear Regression

- Initialize $\tilde{\alpha}_{k}, k=1, \ldots, K$. Set $\epsilon>0$ small and M large.
- for $m=1$ to M :

$$
\begin{aligned}
& \star\left(\beta^{*}, k^{*}\right)=\arg \min _{\beta, k} \sum_{i=1}^{n}\left(y_{i}-\sum_{l=1}^{|\mathcal{T}|} \tilde{\alpha}_{l} T_{l}\left(x_{i}\right)-\beta T_{k}\left(x_{i}\right)\right)^{2} \\
& \star \tilde{\alpha}_{k^{*}} \rightarrow \tilde{\alpha}_{k^{*}}+\epsilon \operatorname{sign}\left(\beta^{*}\right)
\end{aligned}
$$

- Output:

$$
f_{M}(x)=\sum_{k=1}^{|\mathcal{T}|} \tilde{\alpha}_{k} T_{k}(x)
$$

Similarity between Lasso \& Forward Stagewise Paths

Lasso

Forward Stagewise

- 7 dimensional input vectors, $M=220, \epsilon=.01$
- $\mathcal{T}=\left\{X_{1}, X_{2}, \ldots, X_{7}\right\}$

The "Bet on Sparsity" Principle

- Minimizing a loss function with a L_{1} penalty is slow and involves searching through the "model space".
- The L_{2} penalty is computationally much easier.
- However, L_{1} penalty is better suited to sparse situations.
- Consider this example:
- 10,000 data points
- Model is a linear combination of a million trees
- If the coefficients for these trees arise from a Gaussian distribution \Longrightarrow hest nredictor is ridge regrecsion $\Longrightarrow I$ n nenalty

[^0]
The "Bet on Sparsity" Principle

- Minimizing a loss function with a L_{1} penalty is slow and involves searching through the "model space".
- The L_{2} penalty is computationally much easier.
- However, L_{1} penalty is better suited to sparse situations.
- Consider this example:
- 10,000 data points
- Model is a linear combination of a million trees
- If the coefficients for these trees arise from a Gaussian distribution \Longrightarrow best predictor is ridge regression $\Longrightarrow L_{2}$ penalty.
- But, if there are only a small number coefficients that are nonzero, the L_{1} penalty, will work better.

In the dense scenario, L_{2} best but will fail as too little data to estimate 1 million coefficients.

In the sparse setting, L_{1} penalty can do well but L_{2} penalty will fail.

The "Bet on Sparsity" Principle

Take home message: For high-dimensional problems

Use a procedure that does well in sparse problems, since no procedure does well in dense problems.

Comment need some qualification:

- Sparseness/denseness depends on target function and dictionary \mathcal{T}
- Notion of sparse Vs dense is relative to size of the training data set and/or the noise-to-signal ratio.

More training data \Longrightarrow can estimate coeffs with smaller standard errors Small NSR \Longrightarrow can identify more non-zero coeffs with a given sample size than with high NSR

- Increase size of the dictionary \Longrightarrow probable sparser representation, but \Longrightarrow harder search problem \Longrightarrow higher variance.

Lasso penalty Vs Ridge penalty

Regression problem

$$
Y=X^{t} \beta+\epsilon
$$

with

- $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and
- $X \in \mathbb{R}^{300}$
- Top row: $\beta_{j} \neq 0,1 \leq$ $j \leq 300$
- Mid row: 10 non-zero β_{j}
- Last row: 30 non-zero β_{j}
L_{1} estimation is superior in sparse settings.

Learning Ensembles

Learning Ensembles

- How should one learn functions of the form

$$
f(x)=\alpha_{0}+\sum_{T_{k} \in \mathcal{T}} \alpha_{k} T_{k}(x)
$$

where \mathcal{T} is a dictionary of basis functions - typically trees ?

- Suggested approach
- Construct a finite dictionary $\mathcal{T}_{L}=\left\{T_{1}(x), \ldots, T_{M}(x)\right\}$ from the training data.
- Build a family of functions $f_{\lambda}(x)$ by fitting a lasso path

$$
\alpha(\lambda)=\arg \min _{\alpha} \sum_{i=1}^{n} L\left(y_{i}, \alpha_{0}+\sum_{m=1}^{M} \alpha_{m} T_{m}(x)\right)+\lambda \sum_{m=1}^{M}\left|\alpha_{m}\right|
$$

- Can view this as a way to post-processing a boosted trees or random forest

Learning Ensembles

- How should one learn functions of the form

$$
f(x)=\alpha_{0}+\sum_{T_{k} \in \mathcal{T}} \alpha_{k} T_{k}(x)
$$

where \mathcal{T} is a dictionary of basis functions - typically trees ?

- Suggested approach
- Construct a finite dictionary $\mathcal{T}_{L}=\left\{T_{1}(x), \ldots, T_{M}(x)\right\}$ from the training data.
- Build a family of functions $f_{\lambda}(x)$ by fitting a lasso path

$$
\alpha(\lambda)=\arg \min _{\alpha} \sum_{i=1}^{n} L\left(y_{i}, \alpha_{0}+\sum_{m=1}^{M} \alpha_{m} T_{m}(x)\right)+\lambda \sum_{m=1}^{M}\left|\alpha_{m}\right|
$$

- Can view this as a way to post-processing a boosted trees or random forest

Example

- Classification problem, 57 dimensional feature vector.
- Solid curves are the post-processed functions.
- Dashed line - test error of random forest, using 1000 tree grown to maximum depth ($m=7$).
- Dashed line - test error of random forest where 5% of data used to grow each shallow tree in the forest.

Learning a Good Ensemble

- Not all ensembles \mathcal{T}_{L} will perform well with post-processing.
- For the ensemble of basis functions \mathcal{T}_{L} want
- a collection that offers good coverage in the places needed
- and are sufficiently different from each offer to allow the post-processing to be effective.
- Freidman and Popescu suggested an ensemble-generation algorithm....

Importance Sampled Learning Ensemble Generation

- $f_{0}(x)=\arg \min _{c} \sum_{i=1}^{n} L\left(y_{i}, c\right)$
- For $m=1$ to M do

$$
\begin{aligned}
& -\gamma_{m}=\arg \min _{\gamma} \sum_{i \in S_{m}(\eta)} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+b\left(x_{i} ; \gamma\right)\right) \\
& -f_{m}(x)=f_{m-1}(x)+\nu b(x ; \gamma)
\end{aligned}
$$

- $\mathcal{T}_{\text {ISLE }}=\left\{b\left(x ; \gamma_{1}\right), b\left(x ; \gamma_{2}\right), \ldots, b\left(x ; \gamma_{M}\right)\right\}$
where
- $\nu \in[0,1]$ introduces memory into the randomization process,
- $S_{m}(\eta)$ refers to a subsample $\eta \cdot n, \eta \in[0,1]$, of the training observations.
- Suggested values of eta are $\eta \leq .5$ and for large n pick $\eta \approx 1 / \sqrt{n}$.

ISLE Ensemble Generation

A number of familiar randomization schemes are special cases of this algorithm:

- Bagging: Has $\eta=1$, samples with replacement and $\nu=1$
- Random forest:

Sampling is similar, with more randomness introduced by the selection of the splitting variable.

- Gradient boosting:

With shrinkage uses $\eta=1$, but does not produce sufficient width σ.

- Stochastic gradient boosting:

Follows the recipe exactly.

Example

Spam Data

ISLE, $\eta=.5, \nu=0.05$, used to generate an ensemble of trees with 5 terminal nodes

Example

- Consider this function of $X \sim U[0,1]^{100}$

$$
f(X)=10 \cdot \prod_{j=1}^{5} \exp \left\{-2 X_{j}^{2}\right\}+\sum_{j=6}^{36} X_{j}
$$

- The response variable, with $\sigma=1.3$, is

$$
Y=f(X)+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Estimate $f(X)$ from a training set of size $n=1000$.
- Results: $n_{\text {test }}=600$ and averaged over 20 different training sets.

Rule Ensembles

A typical tree in an ensemble from which rules can be derived

Derived rules:

$$
\begin{aligned}
& R_{1}(X)=I\left(X_{1}<2.1\right) \\
& R_{2}(X)=I\left(X_{1} \geq 2.1\right) \\
& R_{3}(X)=I\left(X_{1} \geq 2.1\right) \cdot I\left(X_{3} \in\{S\}\right) \\
& R_{4}(X)=I\left(X_{1} \geq 2.1\right) \cdot I\left(X_{3} \in\{M, L\}\right) \\
& R_{5}(X)=I\left(X_{1} \geq 2.1\right) \cdot I\left(X_{3} \in\{S\}\right) \cdot I\left(X_{7}<4.5\right) \\
& R_{6}(X)=I\left(X_{1} \geq 2.1\right) \cdot I\left(X_{3} \in\{S\}\right) \cdot I\left(X_{7} \geq 4.5\right)
\end{aligned}
$$

Rule Ensembles

- This rule set is an over-complete basis for the tree.

$$
\begin{aligned}
& R_{1}(X)=I\left(X_{1}<2.1\right) \\
& R_{2}(X)=I\left(X_{1} \geq 2.1\right) \\
& R_{3}(X)=I\left(X_{1} \geq 2.1\right) \cdot I\left(X_{3} \in\{S\}\right) \\
& R_{4}(X)=I\left(X_{1} \geq 2.1\right) \cdot I\left(X_{3} \in\{M, L\}\right) \\
& R_{5}(X)=I\left(X_{1} \geq 2.1\right) \cdot I\left(X_{3} \in\{S\}\right) \cdot I\left(X_{7}<4.5\right) \\
& R_{6}(X)=I\left(X_{1} \geq 2.1\right) \cdot I\left(X_{3} \in\{S\}\right) \cdot I\left(X_{7} \geq 4.5\right)
\end{aligned}
$$

- For each tree $T_{m} \in \mathcal{T}$ construct its ensemble of rules $\mathcal{T}_{\text {RULE }}^{m}$ and set

$$
\mathcal{T}_{\text {RULE }}=\bigcup_{m=1}^{M} \mathcal{T}_{\text {RULE }}^{m}
$$

- This ensemble then treated like any other and post-processed.
- Via the lasso, that is, find α to minimize

$$
\arg \min _{\alpha}\left\{\sum_{i=1}^{n} L\left(y_{i}, \sum_{k=1}^{K} \alpha_{k} R_{k}\left(x_{i}\right)\right)+\lambda \sum_{k=1}^{K}\left|\alpha_{k}\right|\right\}
$$

or some other regularized procedure.

Rule Ensembles: Advantages?

- Space of possible models enlarged \Longrightarrow potential greater capacity of final f.
- Rules are easier to interpret than trees.
- Can augment $\mathcal{T}_{\text {Rule }}$ with each variable X_{j} to allow ensemble to also model linear functions.

Example

- Consider this function of $X \sim U[0,1]^{100}$

$$
f(X)=10 \cdot \prod_{j=1}^{5} \exp \left\{-2 X_{j}^{2}\right\}+\sum_{j=6}^{36} X_{j}
$$

- The response variable, with $\sigma=1.3$, is

$$
Y=f(X)+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Estimate $f(X)$ from a training set of size $n=1000$.
- Results: $n_{\text {test }}=600$ and averaged over 20 different training sets.

[^0]: - But, if there are only a small number coefficients that are nonzero the I nenalty will work hetter

 In the dense scenario, L_{2} best but will fail as too little data to estimate 1 million coefficients

