
Some Course Admin



For those wanting to do some programming?

• Assignment 1 By Monday the 2nd of April send me ∼ 1 page
describing a problem related to your research you would like to
tackle with the methods introduced so far in the course.

• In this description include some of the methods/algorithms
you would will use and why.

• Assignment 2 Will obviously be implementing this plan!



Deadline for the homework exercises

• Deadline for homework sets 1, 2,3 Monday the 2nd of
April.

• Note this deadline is only to ensure you get the homework
corrected in a timely fashion!



Chapter 3: Linear Methods for Regression

DD3364

March 16, 2012



Introduction: Why focus on these models?

• Simple and Interpretable

E[Y |X] = β0 + β1X1 + · · ·+ βpXp (1)

• Can outperform non-linear methods when one has

• a small number of training examples

• low signal-to-noise ratio

• sparse data

• Can be made non-linear by applying a non-linear
transformation to the data.
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Linear Regression Models and Least Squares

• Have an input vector X = (X1, X2, . . . , Xp)
t.

• Want to predict a real-valued output Y .

• The linear regression has the form

f(X) = β0 + β1X1 + · · ·+ βpXp

How to estimate β:

• Training data: (x1, y1), . . . , (xn, yn) each xi ∈ Rp and yi ∈ R

• Estimate parameters: Choose β which minimizes

RSS(β) =

n∑

i=1

(yi − f(xi))
2 =

n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2

residual sum-of-squares
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Linear least squares fitting
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FIGURE 3.1. Linear least squares fitting with X ∈ IR2. We seek the linear
function of X that minimizes the sum of squared residuals from Y .

space occupied by the pairs (X,Y ). Note that (3.2) makes no assumptions
about the validity of model (3.1); it simply finds the best linear fit to the
data. Least squares fitting is intuitively satisfying no matter how the data
arise; the criterion measures the average lack of fit.

How do we minimize (3.2)? Denote by X the N × (p + 1) matrix with
each row an input vector (with a 1 in the first position), and similarly let
y be the N -vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(β) = (y − Xβ)T (y − Xβ). (3.3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to β we obtain

∂RSS

∂β
= −2XT (y − Xβ)

∂2RSS

∂β∂βT
= 2XT X.

(3.4)

Assuming (for the moment) that X has full column rank, and hence XT X
is positive definite, we set the first derivative to zero

XT (y − Xβ) = 0 (3.5)

to obtain the unique solution

β̂ = (XT X)−1XT y. (3.6)

Find β which minimizes the
sum-of-squared residuals from Y .

• Training data:
(x1, y1), . . . , (xn, yn) each
xi ∈ Rp and yi ∈ R

• Estimate parameters:
Choose β which minimizes

RSS(β) =

n∑

i=1

(yi − f(xi))
2

=

n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2



Minimizing RSS(β)

• Re-write

RSS(β) =

n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2

in vector and matrix notation as

RSS(β) = (y −Xβ)t (y −Xβ)

where

β = (β0, β1, . . . , βp)
t, X =




1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
... . . .

...
1 xn1 xn2 . . . xnp




and y = (y1, . . . , yn)t.



Minimizing RSS(β)

• Want to find β which minimizes

RSS(β) = (y −Xβ)t (y −Xβ)

• Differentiate RSS(β) w.r.t. β to obtain

∂ RSS

∂β
= −2Xt (y −Xβ)

• Assume X has full column rank =⇒ is positive definite, set

∂ RSS

∂β
= −2Xt (y −Xβ) = 0

to obtain the unique solution

β̂ = (XtX)−1Xty
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Estimates using β̂

• Given an input x0 this model predicts its output as

ŷ0 = (1, xt0) β̂

• The fitted values at the training inputs are

ŷ = Xβ̂ = X(XtX)−1Xty

= H y

Hat matrix
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Geometric interpretation of the least squares estimate
46 3. Linear Methods for Regression
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FIGURE 3.2. The N-dimensional geometry of least squares regression with two
predictors. The outcome vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection ŷ represents the vector
of the least squares predictions

The predicted values at an input vector x0 are given by f̂(x0) = (1 : x0)
T β̂;

the fitted values at the training inputs are

ŷ = Xβ̂ = X(XT X)−1XT y, (3.7)

where ŷi = f̂(xi). The matrix H = X(XT X)−1XT appearing in equation
(3.7) is sometimes called the “hat” matrix because it puts the hat on y.

Figure 3.2 shows a different geometrical representation of the least squares
estimate, this time in IRN . We denote the column vectors of X by x0,x1, . . . ,xp,
with x0 ≡ 1. For much of what follows, this first column is treated like any
other. These vectors span a subspace of IRN , also referred to as the column
space of X. We minimize RSS(β) = ‖y − Xβ‖2 by choosing β̂ so that the
residual vector y − ŷ is orthogonal to this subspace. This orthogonality is
expressed in (3.5), and the resulting estimate ŷ is hence the orthogonal pro-
jection of y onto this subspace. The hat matrix H computes the orthogonal
projection, and hence it is also known as a projection matrix.

It might happen that the columns of X are not linearly independent, so
that X is not of full rank. This would occur, for example, if two of the
inputs were perfectly correlated, (e.g., x2 = 3x1). Then XT X is singular

and the least squares coefficients β̂ are not uniquely defined. However,
the fitted values ŷ = Xβ̂ are still the projection of y onto the column
space of X; there is just more than one way to express that projection
in terms of the column vectors of X. The non-full-rank case occurs most
often when one or more qualitative inputs are coded in a redundant fashion.
There is usually a natural way to resolve the non-unique representation,
by recoding and/or dropping redundant columns in X. Most regression
software packages detect these redundancies and automatically implement

• Let X be the input data matrix.

• Let x.i be the ith column of X

• In the figure the vector of outputs y is orthogonally projected onto
the hyperplane spanned by the vectors x.1 and x.2.

• The projection ŷ represents the least squares estimate.

• The hat matrix H computes the orthogonal projection.
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ŷ = Xβ̂ = X(XT X)−1XT y, (3.7)
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An example



Regression Example: Face Landmark Estimation

Example of training data

• Have training data in the following format.

• Input: image of fixed size of a face (W ×H matrix of pixel
intensities = vector of length WH)

• Output: coordinates of F facial features of the face

• Want to learn F linear regression functions fi

• fi maps the image vector to x-coord of the ith facial feature.

• Learn also F regression fns gi for the y-coord.
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Regression Example: Face Landmark Estimation

f14, g14−→

Input Output

• Given a test image want to predict each of its facial landmark
points.

• How well can ordinary least squares regression do on this
problem?
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Landmark estimation using ols regression

β̂x,14 |β̂x,14| β̂y,14 |β̂y,14| Estimated Landmark
on novel image

These are not promising weight vectors! Estimate not
even in image

• This problem is too hard for ols regression and it fails
miserably.

• p is too large and many of the xi are highly correlated.
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Singular XtX



When X is not full rank?

• Not all the columns of X are linearly independent.

• In this case XtX is singular =⇒ β̂ not uniquely defined.

• The fitted values ŷ = Xβ̂ are still the projection of y onto the
column space of X but ∃ γ 6= β̂ such that

ŷ = Xβ̂ = Xγ

• Non-full-rank case occurs when

• one or more of the qualitative inputs are encoded redundantly,

• when the number of inputs p > n the number of training
examples.
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ŷ = Xβ̂ = Xγ

• Non-full-rank case occurs when

• one or more of the qualitative inputs are encoded redundantly,

• when the number of inputs p > n the number of training
examples.



What can we say about the distribution of β̂?



Analysis of the distribution of β̂.

• This requires making some assumptions. These are

• the observations yi are uncorrelated

• yi have constant variance σ2 and

• xi are fixed (non-random) ← this make analysis easier

• The covariance matrix of β̂ is then

Var(β̂) = Var((XtX)−1Xty) = (XtX)−1Xt Var(y)X(XtX)−1

= (XtX)−1σ2

• Usually one estimates the variance σ2 with

σ̂2 =
1

n− p− 1

n∑

i=1

(yi − ŷi)2



Analysis of the distribution of β̂.

• This requires making some assumptions. These are

• the observations yi are uncorrelated

• yi have constant variance σ2 and

• xi are fixed (non-random) ← this make analysis easier

• The covariance matrix of β̂ is then

Var(β̂) = Var((XtX)−1Xty) = (XtX)−1Xt Var(y)X(XtX)−1

= (XtX)−1σ2

• Usually one estimates the variance σ2 with

σ̂2 =
1

n− p− 1

n∑

i=1

(yi − ŷi)2
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Analysis of the distribution of β̂

• To say more we need to make more assumptions. Therefore
assume

Y = E(Y |X1, X2, . . . , Xp) + ε

= β0 +

p∑

i=1

Xjβj + ε

where ε ∼ N(0, σ2)

• Then it’s easy to show that (assuming non-random xi)

β̂ ∼ N(β, (XtX)−1σ2)



Given this additive model generate β̂

0 2 4
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yi
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T1 Tntrial

• T is a training set {(xi, yi)}ni=1

• β = (1, 1)t, n = 40, σ = .6

• In this simulation the xi’s differ across trials.



The distribution of β̂
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β̂0

β̂1

Each Ti results in a different estimate of β̂. Have plotted these β̂’s
for ntrial = 500.
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• In this simulation the xi’s are fixed across trials.
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Which βj’s are probably zero?

• To interpret the weights estimated by least squares it would
be nice to say which ones are probably zero.

• The associated predictors can then be removed from the
model.

• If βj = 0 then β̂ ∼ N(0, σ2vjj) where vjj is the jth diagonal
element of (XtX)−1.

• Then if the actual value computed for β̂j is larger than σ2vjj
then it is highly improbable that βj = 0.

• Statisticians have exact tests based on suitable distributions.
In this case compute

zj =
β̂j

σ̂
√
vjj

and if βj = 0 then zj has a t-distribution with n− p− 1 dof.
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Is β1 zero?

0 10 20 30
0

0.1

0.2

0.3

0.4

t-distribution

Z-scores for β̂1’s

Z-score

p(Z-score |β1 = 0)

• For the example we had with β = (1, 1)t, n = 40 and σ = .6
then the t-distribution of z1 is shown if βj = 0.

• The z1 computed from each β̂ estimated with Ti is shown.

• Obviously even if we didn’t know β̂ and only saw one Ti we
would not think βj 6= 0.



Look at an example when β1 = 0
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• T is a training set {(xi, yi)}ni=1

• β = (3, 0)t, n = 40, σ = .6

• In this simulation the xi’s are fixed across trials.



The distribution of β̂
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Each Ti results in a different estimate of β̂. Have plotted these β̂’s
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Is β1 zero?

−4 −2 0 2 4
0
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Z-score

p(Z-score |β1 = 0)

• For this example we have β = (3, 0)t, n = 40 and σ = .6 then
the t-distribution of z1 is shown if βj = 0

• The z1’s computed from the β̂ estimated with Ti are shown.

• Obviously even if we didn’t know β̂ and only saw one Ti we
would conclude in most trials that βj 6= 0.



Other tests can be performed

We will not look into these but you can

• test for the significance of groups of coefficients
simultaneously

• get confidence bounds for βj centred at β̂j .



Gauss-Markov Theorem



Gauss-Markov Theorem

• A famous result in statistics

The least squares estimate β̂ls of the parameters β
has the smallest variance among all linear unbiased
estimates.

• To explain a simple case of the theorem. Let θ = atβ.

• The least squares estimate of atβ is

θ̂ = atβ̂ls = at(XtX)−1Xty

If X is fixed this is a linear function, ct0y, of the response
vector y.

• If we assume E[y] = Xβ then atβ̂ls is unbiased

E[atβ̂ls] = E[at(XtX)−1Xty] = at(XtX)−1XtXβ = atβ = θ



Gauss-Markov Theorem: Simple example

• Gauss-Markov Theorem states any other linear estimator
θ̃ = cty that is unbiased for atβ has

Var[atβ̂ls ] ≤ Var[cty]

• Have only stated the result for the estimation of one
parameter atβ but can state it in terms of the entire
parameter vector β.

• However, having an unbiased estimator is not always crucial.
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The Bias - Variance Trade-off (once again!)

• Consider the mean-squared error of an estimator θ̃ in
estimating θ

MSE(θ̃) = E((θ̃ − θ)2)

= Var(θ̃) + ( E(θ̃)− θ )2

variance bias

• Gauss-Markov says the least square estimator has the
smallest MSE for all linear estimators with zero bias.

• But there may be biased estimates with smaller MSE.

• In these cases have traded an increase in squared bias for a
reduction in variance.



The Bias - Variance Trade-off (once again!)

• Consider the mean-squared error of an estimator θ̃ in
estimating θ

MSE(θ̃) = E((θ̃ − θ)2)

= Var(θ̃) + ( E(θ̃)− θ )2

variance bias

• Gauss-Markov says the least square estimator has the
smallest MSE for all linear estimators with zero bias.

• But there may be biased estimates with smaller MSE.

• In these cases have traded an increase in squared bias for a
reduction in variance.



The Bias - Variance Trade-off (once again!)

• Consider the mean-squared error of an estimator θ̃ in
estimating θ

MSE(θ̃) = E((θ̃ − θ)2)

= Var(θ̃) + ( E(θ̃)− θ )2

variance bias

• Gauss-Markov says the least square estimator has the
smallest MSE for all linear estimators with zero bias.

• But there may be biased estimates with smaller MSE.

• In these cases have traded an increase in squared bias for a
reduction in variance.



Simple Univariate Regression and
Gram-Schmidt



Multiple regression from simple univariate regression

• Suppose we have univariate model with no intercept

Y = Xβ + ε

• The least square estimate is

β̂ =
〈x, y〉
〈x, x〉

where x = (x1, x2, . . . , xn)t and y = (y1, y2, . . . , yn).

• The residuals are given by

r = y − xtβ̂

• Say xi ∈ Rp and the columns of X are orthogonal then

β̂j =
〈x.j , y〉
〈x.j , x.j〉

, where x.j is jth column of X
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OLS via successive orthogonalization

• X acquired from observations are rarely orthogonal.

• Hence they have to be orthogonalized to take advantage the
previous insight.

• x.0 be the 0th column of X ∈ Rn×2 (vector of ones) then

• Regress x.1 on x.0 that is γ̂ =
〈x.0, x.1〉
〈x.0, x.0〉

and let z = x.1− γ̂ x.0

• Regress y on z then β̂1 =
〈x.1, z〉
〈x.1, x.1〉

• Then y ≈ β̂1z = β̂1(x.1 − γ̂x.0) = Xβ̂ where β̂ = (β̂1,−β̂1γ̂)t.

The solution is same as if one had directly calculated β̂ls. Have
just used an orthogonal basis for the col. space of X

• Note Step 1 orthogonalized x.1 w.r.t. x.0.

• Step 2 is simple univariate regression using the orthogonal
predictors x.0 and z.
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OLS via successive orthogonalization

• Can extend the process to when xi’s are p-dimensional.

• See Algorithm 3.1 in the book.

• At each iteration j a multiple least squares regression problem
with jth orthogonal inputs is solved.

• And after this a new residual is formed which is orthogonal to
all these current directions.

• This process is the Gram-Schmidt regression procedure.
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Subset Selection



Inadequacies of least squares estimates

• Prediction Accuracy
Least squares estimates often have

• Low bias and high variance

• This can affect prediction accuracy

• Frequently better to set some of the βj ’s to zero.

• This increases the bias but reduces the variance and in turn
improve prediction accuracy.

• Interpretation
For p large, it may be difficult to decipher the important
factors.

• Therefore would like to determine a smaller subset of
predictors which are most informative.
May sacrifice small detail for the big picture.
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Best-Subset Selection

• Best subset regression finds for k ∈ {0, 1, 2, . . . , p} the
j1, j2, . . . , jk with each jl ∈ {1, 2, . . . , p} s.t.

RSS(j1, j2, . . . , jk) = min
β0,βj1 ,...,βjl

n∑

i=1

(yi − β0 −
k∑

l=1

βjlxi,jl)
2

is smallest.

• There are

(
p

k

)
different subsets to try for a given k.

• If p ≤ 40 there exist computational feasible algorithms for
finding these best subsets of size k.

• Question still remains of how to choose best value of k.

• Once again it is a trade-off between bias and variance....
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Forward-Stepwise Selection

• Instead of searching all possible subsets (infeasible for large p)
can take a greedy approach.

• The steps of Forward-Stepwise Selection are

• Set I = {1, . . . , p}

• For l = 1, . . . , k choose jl according to

jl = arg min
j∈I

min
β0,βj1 ,...,βjl−1

,βj

n∑

i=1

(yi − β0 −
l−1∑

s=1

βjsxijs − βjxij)2

and

I = I\{jl}
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Forward-Stepwise Vs Best Subset Selection

• Forward-Stepwise may be sub-optimal compared to the best
subset selection but may be preferred because

• It is computational feasible for large p� n. Not true for best
subset selection.

• best subset selection may overfit.

• Forward stepwise will probably produce a function with lower
variance but perhaps more bias.
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Forward-Stagewise Regression

• The steps of Forward-Stagewise Regression are

• Set β̂0 =
1

n

n∑

i=1

yi

• Set β̂1 = β̂2 = · · · = β̂p = 0

• At each iteration

ri = yi − β̂0 −
p∑

j=1

β̂jxij , compute residual for each example

j∗ = argmax
j∈I
|〈x.j , r〉| find Xj most correlated with r

β̂j∗ ← β̂j∗ + δ sign(〈x.j∗ , r〉)

• Stop iterations when the residuals are uncorrelated with all the
predictors.



Forward-Stagewise Regression: What to note..

• Only one β̂j is updated at each iteration.

• A β̂j can be updated at several different iterations.

• It can be slow to reach the least squares fit.

• But slow fitting may not be such a bad thing in high
dimensional problems.
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Shrinkage methods



Why shrinkage methods?

• Selecting a subset of predictors produces a model that is
interpretable and probably has lower prediction error than the
full model.

• However it is a discrete process =⇒ introduces variation
into learning the model.

• Shrinkage methods are more continuous and have a lower
variance.
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Ridge Regression



Shrinkage Method 1: Ridge Regression

• Ridge regression shrinks βj ’s by imposing a penalty on their
size.

• The ridge coefficients minimize a penalized RSS
non-negative complexity parameter

β̂ridge = arg min
β





n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

β2j





residual sum-of-squares regularizer fn

• The larger λ ≥ 0 the greater of the amount of shrinkage. This
implies βj ’s are shrunk toward zero (except β0).
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An equivalent formulation of Ridge Regression

β̂ridge = arg min
β

n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 subject to

p∑

j=1

β2
j ≤ t

• This formulation puts an explicit constraint on the size of the
βj ’s.

• There is a 1-1 correspondence between λ and t in the two
formulations.

• Note the estimated β̂ridge changes if the scaling of the inputs
change.



Ridge Regression and centering of data

• The centered version of the input data is

x̃ij = xij −
n∑

s=1

xsj

Then the ridge regression coefficients found using the
centered data

β̂c = arg min
βc

n∑

i=1

(yi − βc0 −
p∑

j=1

x̃ijβ
c
j )

2 + λ

p∑

j=1

(βcj )
2

are related to the coefficients found using the original data via

β̂c0 =
1

n

n∑

i=1

yi = ȳ, β̂ridge
0 = ȳ −

p∑

j=1

x̄.j β̂
ridge
j

β̂cj = β̂ridge
j for i = 1, . . . , p



Ridge Regression and centering of data

• If the y’s have zero mean =⇒ β̂c0 = 0

• Can drop the intercept term from the linear model if the input
data is centred.

• Then for ridge regression, given all the necessary centering,
find the β = (β1, . . . , βp)

t which minimizes

β̂ = arg min
β





n∑

i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

β2
j





= arg min
β

{
(y −Xβ)t(y −Xβ) + λβtβ

}

where y = (y1, . . . , yn)t and

X =




x11 x12 · · · x1p
x21 x22 · · · x2p

...
... · · ·

...
xn1 xn2 · · · xnp
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Ridge Regression and centering of data

• For rest of lecture will assume centered input and output data.

• The ridge regression solution is given by

β̂ridge = (XtX + λIp)
−1Xty

• Note that the problem of inverting the potentially singular
matrix XtX is averted as (XtX + λIp) is full rank even if
XtX is not.
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Insight into Ridge Regression

• Compute the SVD of the n× p input matrix X then

X = UDVt

where
• U is an n× p orthogonal matrix

• V is a p× p orthogonal matrix

• D is a p× p diagonal matrix with d1 ≥ d2 ≥ · · · ≥ dp ≥ 0.

• Can write least squares fitted vector as

Xβ̂ls = X(XtX)−1Xty = UUty

which is the closest approximation to y in the subspace
spanned by the columns of U (= column space of X).



Insight into Ridge Regression

• Can write ridge regression fitted vector as

Xβ̂ridge = X(XtX + λIp)
−1Xty

= UD(UD2 + λIp)
−1DUty

=

p∑

j=1

uj
d2j

d2j + λ
utj y, where uj ’s are columns of U

• As λ ≥ 0 =⇒ d2j/(d
2
j + λ) ≤ 1

• Ridge regression computes the coordinates of y wrt to the
orthonormal basis of the columns of U.

• It then shrinks these coordinates by the factors d2j/(d
2
j + λ).

• More shrinkage applied to basis vectors with smaller d2j .
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Insight into Ridge Regression: What are the d2
j ’s ?

• The sample covariance matrix of the data is given by

S =
1

n
XtX

From the SVD of X we know that

XtX = VD2Vt ←− eigen-decomposition of XtX

• The eigenvectors vj - columns of V are the principal
component directions of X.

• Project the input of each training example onto the first

principal component direction v1 to get z
(1)
i = vt1xi. The

variance of the z
(1)
i ’s is given by (remember xi’s are centred)

1

n

n∑

i=1

(z
(1)
i )2 =

1

n

n∑

i=1

vt1xix
t
iv1 =

1

n
vt1X

tXv1 =
d21
n
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Insight into Ridge Regression: What are the d2
j ’s ?

• v1 represents the direction (of unit length) which the
projected points have largest variance.3.4 Shrinkage Methods 67
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FIGURE 3.9. Principal components of some input data points. The largest prin-
cipal component is the direction that maximizes the variance of the projected data,
and the smallest principal component minimizes that variance. Ridge regression
projects y onto these components, and then shrinks the coefficients of the low–
variance components more than the high-variance components.

component. Subsequent principal components zj have maximum variance
d2

j/N , subject to being orthogonal to the earlier ones. Conversely the last
principal component has minimum variance. Hence the small singular val-
ues dj correspond to directions in the column space of X having small
variance, and ridge regression shrinks these directions the most.

Figure 3.9 illustrates the principal components of some data points in
two dimensions. If we consider fitting a linear surface over this domain
(the Y -axis is sticking out of the page), the configuration of the data allow
us to determine its gradient more accurately in the long direction than
the short. Ridge regression protects against the potentially high variance
of gradients estimated in the short directions. The implicit assumption is
that the response will tend to vary most in the directions of high variance
of the inputs. This is often a reasonable assumption, since predictors are
often chosen for study because they vary with the response variable, but
need not hold in general.

• Subsequent principal components z
(j)
i have maximum variance

d2j/n subject to vj being orthogonal to the earlier directions.



Insight into Ridge Regression: What are the d2
j ’s ?

• v1 represents the direction (of unit length) which the
projected points have largest variance.3.4 Shrinkage Methods 67
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(the Y -axis is sticking out of the page), the configuration of the data allow
us to determine its gradient more accurately in the long direction than
the short. Ridge regression protects against the potentially high variance
of gradients estimated in the short directions. The implicit assumption is
that the response will tend to vary most in the directions of high variance
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often chosen for study because they vary with the response variable, but
need not hold in general.
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(j)
i have maximum variance

d2j/n subject to vj being orthogonal to the earlier directions.



Insight into Ridge Regression: What are the d2
j ’s ?

• The last principal component has minimum variance.

• Hence the small dj correspond to the directions of the column
space of X having small variance.

• Ridge regression shrinks these directions the most !

• The estimated directions vj ’s with small dj have more
uncertainty associated with the estimate. (Using a narrow
baseline to estimate a direction). Ridge regression protects
against relying on these high variance directions.

• Ridge regression implicitly assumes that the output will vary
most in the directions of the high variance of the inputs. A
reasonable assumption but not always true.
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Insight into Ridge Regression: What are the d2
j ’s ?

• The book defines the effective degrees of freedom of the
ridge regression fit as

dfridge(λ) =

p∑

j=1

d2j
d2j + λ

we will derive this later on in the course.

• But it is interesting as

• dfridge(λ)→ p when λ→ 0 (ordinary least squares) and

• dfridge(λ)→ 0 when λ→∞



Back to our regression problem



Regression Example: Face Landmark Estimation

f14, g14−→

Input Output

• Given a test image want to predict each of its facial landmark
points.

• How well can ridge regression do on this problem?
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Landmark estimation using ridge regression

β̂x,14 |β̂x,14| β̂y,14 |β̂y,14| Estimated Landmark
on novel image

λ = 1,df ≈ 232

λ = 102,df ≈ 187

λ = 103,df ≈ 97



Landmark estimation using ridge regression

β̂x,14 |β̂x,14| β̂y,14 |β̂y,14| Estimated Landmark
on novel image

λ = 5000,df ≈ 44

λ = 104,df ≈ 29



Landmark estimation using ridge regression

λ = 1000,df ≈ 97, Ground truth point, Estimated point



How the coefficients vary with λ

3.4 Shrinkage Methods 65
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FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as
the tuning parameter λ is varied. Coefficients are plotted versus df(λ), the effective
degrees of freedom. A vertical line is drawn at df = 5.0, the value chosen by
cross-validation.

This is an example from the book. Notice how the weights
associated with each predictor vary with λ.



The Lasso



Shrinkage Method 2: The Lasso

• The lasso estimate is defined by

β̂lasso = arg min
β

n∑

i=1


yi − β0 −

p∑

j=1

xijβj




2

subject to

p∑

j=1

|βj | ≤ t

penalty is L1 instead of L2 norm

• Equivalent formulation of the lasso problem is

β̂lasso = arg min
β

n∑

i=1


yi − β0 −

p∑

j=1

xijβj




2

+ λ

p∑

j=1

|βj |

• The solution is non-linear in yi’s and there is no closed form
solution.

• It is convex and is, in fact, a quadratic programming problem.
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subject to

p∑

j=1

|βj | ≤ t

• Because of the L1 constraint, making t small will force some
of the βj ’s to be exactly 0.

• Lasso does some kind of continuous subset selection.

• However the nature of the shrinkage is not so obvious.

• If t ≥∑p
j=1 |β̂ls

j | is sufficiently large, then β̂lasso = β̂ls.
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Back to our regression problem



Landmark estimation using lasso

β̂x,14 |β̂x,14| β̂y,14 |β̂y,14| Estimated Landmark
on novel image

λ = .01,df ≈

λ = .04,df ≈ 93

λ = .1,df ≈ 53



Landmark estimation using lasso

β̂x,14 |β̂x,14| β̂y,14 |β̂y,14| Estimated Landmark
on novel image

λ = .3,df ≈ 21

λ = .5,df ≈ 7

λ = .7,df ≈ 2



Landmark estimation using lasso regression

λ = .04,df ≈ 93, Ground truth point, Estimated point



Subset Selection Vs Ridge Regression Vs Lasso

When X has orthonormal columns

• This implies dj = 1 for j = 1, . . . , p.

• In this case each method applies a simple transformation to
β̂ls
j :

Estimator Formula

Best subset (size M) β̂ls
j · Ind(|β̂ls

j | ≥ |β̂ls
M |)

Ridge β̂ls
j /(1 + λ)

Lasso sign(β̂ls
j ) (|β̂ls

j | − λ)+

where β̂ls
M is the M th largest coefficient.



Ridge Regression Vs Lasso

When X does not have orthogonal columns
• Red elliptical contours show the iso-scores of RSS(β).

• Cyan regions show the feasible regions β21 + β22 ≤ t2 and
|β1|+ |β2| ≤ t resp.

3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)
|β̂(M)|

λ

Best Subset Ridge Lasso

!̂ !̂2
. .!

1

! 2

!
1

!

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.
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Ridge Regression Vs Lasso

When X does not have orthogonal columns

• Both methods choose the first point where the elliptical contours hit
the constraint region.

• The Lasso region has corners, if then solution occurs at a corner
then one βj = 0.

• When p > 2 the diamond becomes a rhomboid with many corners
and flat edges =⇒ many opportunities for βj ’s to be 0.
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Generalization of ridge and lasso regression

β̂ = arg min
β





n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

|βj |q




• q = 0 - Variable subset selection

• q = 1 - Lasso

• q = 2 - Ridge regression

72 3. Linear Methods for Regression

region for ridge regression is the disk β2
1 + β2

2 ≤ t, while that for lasso is
the diamond |β1| + |β2| ≤ t. Both methods find the first point where the
elliptical contours hit the constraint region. Unlike the disk, the diamond
has corners; if the solution occurs at a corner, then it has one parameter
βj equal to zero. When p > 2, the diamond becomes a rhomboid, and has
many corners, flat edges and faces; there are many more opportunities for
the estimated parameters to be zero.

We can generalize ridge regression and the lasso, and view them as Bayes
estimates. Consider the criterion

β̃ = argmin
β

{
N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj

)2
+ λ

p∑

j=1

|βj |q
}

(3.53)

for q ≥ 0. The contours of constant value of
∑

j |βj |q are shown in Fig-
ure 3.12, for the case of two inputs.

Thinking of |βj |q as the log-prior density for βj , these are also the equi-
contours of the prior distribution of the parameters. The value q = 0 corre-
sponds to variable subset selection, as the penalty simply counts the number
of nonzero parameters; q = 1 corresponds to the lasso, while q = 2 to ridge
regression. Notice that for q ≤ 1, the prior is not uniform in direction, but
concentrates more mass in the coordinate directions. The prior correspond-
ing to the q = 1 case is an independent double exponential (or Laplace)
distribution for each input, with density (1/2τ) exp(−|β|/τ) and τ = 1/λ.
The case q = 1 (lasso) is the smallest q such that the constraint region
is convex; non-convex constraint regions make the optimization problem
more difficult.

In this view, the lasso, ridge regression and best subset selection are
Bayes estimates with different priors. Note, however, that they are derived
as posterior modes, that is, maximizers of the posterior. It is more common
to use the mean of the posterior as the Bayes estimate. Ridge regression is
also the posterior mean, but the lasso and best subset selection are not.

Looking again at the criterion (3.53), we might try using other values
of q besides 0, 1, or 2. Although one might consider estimating q from
the data, our experience is that it is not worth the effort for the extra
variance incurred. Values of q ∈ (1, 2) suggest a compromise between the
lasso and ridge regression. Although this is the case, with q > 1, |βj |q is
differentiable at 0, and so does not share the ability of lasso (q = 1) for

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

FIGURE 3.12. Contours of constant value of
P

j |βj |q for given values of q.
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β̂ = arg min
β





n∑

i=1

(yi − β0 −
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j=1

xijβj)
2 + λ

p∑

j=1

|βj |q




• Can try other values of q.

• When q ≥ 1 still have a convex problem.

• When 0 ≤ q < 1 do not have a convex problem.

• When q ≤ 1 sparse solutions are explicitly encouraged.

• When q > 1 cannot set coefficients to zero.
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Elastic-net penalty

A compromise between the ridge and lasso penalty is the Elastic
net penalty:

λ

p∑

j=1

(αβ2j + (1− α)|βj |)

The elastic-net

• select variables like the lasso and

• shrinks together the coefficients of correlated predictors like
ridge regression.



Effective degrees of freedom



Definition of the effective degrees of freedom

• Traditionally the number of linearly independent parameters is
what is meant by degrees of freedom.

• If we carry out a best subset selection to determine the
optimal set of k predictors, then surely we have used more
than k dofs.

• A more general definition for the effective degrees of
freedom of adaptively fitted is

df(ŷ) =
1

σ2

n∑

i=1

Cov(ŷi, yi)

where Cov(ŷi, yi) is the estimate of the

• Intuitively the harder we fit to the data, the larger the
covariance and hence df(ŷ)
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