Some Course Admin

For those wanting to do some programming?

- Assignment 1 By Monday the 2nd of April send me ~ 1 page describing a problem related to your research you would like to tackle with the methods introduced so far in the course.
- In this description include some of the methods/algorithms you would will use and why.
- Assignment 2 Will obviously be implementing this plan!

Deadline for the homework exercises

- Deadline for homework sets $\mathbf{1 , 2 , 3}$ Monday the 2nd of April.
- Note this deadline is only to ensure you get the homework corrected in a timely fashion!

Chapter 3: Linear Methods for Regression

DD3364

March 16, 2012

Introduction: Why focus on these models?

- Simple and Interpretable

$$
\begin{equation*}
E[Y \mid X]=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p} \tag{1}
\end{equation*}
$$

- Can outperform non-linear methods when one has
- a small number of training examples
- low signal-to-noise ratio
- sparse data
- Can be made non-linear by applying a non-linear transformation to the data.

Introduction: Why focus on these models?

- Simple and Interpretable

$$
\begin{equation*}
E[Y \mid X]=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p} \tag{1}
\end{equation*}
$$

- Can outperform non-linear methods when one has
- a small number of training examples
- low signal-to-noise ratio
- sparse data
- Can be made non-linear by applying a non-linear transformation to the data.

Introduction: Why focus on these models?

- Simple and Interpretable

$$
\begin{equation*}
E[Y \mid X]=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p} \tag{1}
\end{equation*}
$$

- Can outperform non-linear methods when one has
- a small number of training examples
- low signal-to-noise ratio
- sparse data
- Can be made non-linear by applying a non-linear transformation to the data.

Linear Regression Models and Least Squares

- Have an input vector $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)^{t}$.
- Want to predict a real-valued output Y.
- The linear regression has the form

$$
f(X)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}
$$

How to estimate β :

- Training data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ each $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in \mathbb{R}$
- Estimate parameters: Choose β which minimizes

Linear Regression Models and Least Squares

- Have an input vector $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)^{t}$.
- Want to predict a real-valued output Y.
- The linear regression has the form

$$
f(X)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}
$$

How to estimate β :

- Training data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ each $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in \mathbb{R}$
- Estimate parameters: Choose β which minimizes

$$
\operatorname{RSS}(\beta)=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}
$$

Linear least squares fitting

Find β which minimizes the sum-of-squared residuals from Y.

- Training data:
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ each $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in \mathbb{R}$
- Estimate parameters: Choose β which minimizes

$$
\begin{aligned}
\operatorname{RSS}(\beta) & =\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}
\end{aligned}
$$

Minimizing RSS(β)

- Re-write

$$
\operatorname{RSS}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}
$$

in vector and matrix notation as

$$
\operatorname{RSS}(\beta)=(y-\mathbf{X} \beta)^{t}(y-\mathbf{X} \beta)
$$

where

$$
\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{t}, \quad \mathbf{X}=\left(\begin{array}{ccccc}
1 & x_{11} & x_{12} & \ldots & x_{1 p} \\
1 & x_{21} & x_{22} & \ldots & x_{2 p} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & x_{n 1} & x_{n 2} & \ldots & x_{n p}
\end{array}\right)
$$

and $y=\left(y_{1}, \ldots, y_{n}\right)^{t}$.

Minimizing RSS (β)

- Want to find β which minimizes

$$
\operatorname{RSS}(\beta)=(y-\mathbf{X} \beta)^{t}(y-\mathbf{X} \beta)
$$

- Differentiate RSS(β) w.r.t. β to obtain

- Assume \mathbf{X} has full column rank \Longrightarrow is positive definite, set

$$
\frac{\partial \operatorname{PSS}}{\partial \beta}=-2 \mathbf{X}^{t}(y-\mathbf{X} \beta)=0
$$

to obtain the unique solution

Minimizing RSS (β)

- Want to find β which minimizes

$$
\operatorname{RSS}(\beta)=(y-\mathbf{X} \beta)^{t}(y-\mathbf{X} \beta)
$$

- Differentiate $\operatorname{RSS}(\beta)$ w.r.t. β to obtain

$$
\frac{\partial \mathrm{RSS}}{\partial \beta}=-2 \mathbf{X}^{t}(y-\mathbf{X} \beta)
$$

- Assume \mathbf{X} has full column rank \Longrightarrow is positive definite, set

to obtain the unique solution

Minimizing $\operatorname{RSS}(\beta)$

- Want to find β which minimizes

$$
\operatorname{RSS}(\beta)=(y-\mathbf{X} \beta)^{t}(y-\mathbf{X} \beta)
$$

- Differentiate $\operatorname{RSS}(\beta)$ w.r.t. β to obtain

$$
\frac{\partial \mathrm{RSS}}{\partial \beta}=-2 \mathbf{X}^{t}(y-\mathbf{X} \beta)
$$

- Assume \mathbf{X} has full column rank \Longrightarrow is positive definite, set

$$
\frac{\partial \operatorname{RSS}}{\partial \beta}=-2 \mathbf{X}^{t}(y-\mathbf{X} \beta)=0
$$

to obtain the unique solution

$$
\hat{\beta}=\left(X^{t} X\right)^{-1} X^{t} y
$$

Estimates using $\hat{\beta}$

- Given an input x_{0} this model predicts its output as

$$
\hat{y}_{0}=\left(1, x_{0}^{t}\right) \hat{\beta}
$$

- The fitted values at the training inputs are

Estimates using $\hat{\beta}$

- Given an input x_{0} this model predicts its output as

$$
\hat{y}_{0}=\left(1, x_{0}^{t}\right) \hat{\beta}
$$

- The fitted values at the training inputs are

$$
\begin{aligned}
& \hat{y}=\mathbf{X} \hat{\beta}=\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} y \\
&=\underbrace{H y} \\
& \text { Hat matrix }
\end{aligned}
$$

Geometric interpretation of the least squares estimate

- Let \mathbf{X} be the input data matrix.
- Let $x_{. i}$ be the i th column of \mathbf{X}
- In the figure the vector of outputs y is orthogonally projected onto the hyperplane spanned by the vectors $x_{.1}$ and $x_{.2}$.
- The projection \hat{y} represents the least squares estimate.
- The hat matrix H computes the orthogonal projection.

Geometric interpretation of the least squares estimate

- Let \mathbf{X} be the input data matrix.
- Let $x_{. i}$ be the i th column of \mathbf{X}
- In the figure the vector of outputs y is orthogonally projected onto the hyperplane spanned by the vectors $x_{.1}$ and $x_{.2}$.
- The projection \hat{y} represents the least squares estimate.
- The hat matrix H computes the orthogonal projection.

Geometric interpretation of the least squares estimate

- Let \mathbf{X} be the input data matrix.
- Let $x_{. i}$ be the i th column of \mathbf{X}
- In the figure the vector of outputs y is orthogonally projected onto the hyperplane spanned by the vectors $x_{.1}$ and $x_{.2}$.
- The projection \hat{y} represents the least squares estimate.
- The hat matrix H computes the orthogonal projection.

An example

Regression Example: Face Landmark Estimation

Example of training data

- Have training data in the following format.
- Input: image of fixed size of a face ($W \times H$ matrix of pixel intensities $=$ vector of length $W H$)
- Output: coordinates of F facial features of the face
- Want to learn F linear regression functions f_{i}
- f_{i} maps the image vector to x-coord of the i th facial feature
- Learn also F regression fns g_{i} for the y-coord

Regression Example: Face Landmark Estimation

Example of training data

- Have training data in the following format.
- Input: image of fixed size of a face ($W \times H$ matrix of pixel intensities $=$ vector of length $W H$)
- Output: coordinates of F facial features of the face
- Want to learn F linear regression functions f_{i}
- f_{i} maps the image vector to x-coord of the i th facial feature
- Learn also F regression fns g_{i} for the y-coord

Regression Example: Face Landmark Estimation

Example of training data

- Have training data in the following format.
- Input: image of fixed size of a face ($W \times H$ matrix of pixel intensities $=$ vector of length $W H$)
- Output: coordinates of F facial features of the face
- Want to learn F linear regression functions f_{i}
- f_{i} maps the image vector to x-coord of the i th facial feature.
- Learn also F regression fns g_{i} for the y-coord

Regression Example: Face Landmark Estimation

Example of training data

- Have training data in the following format.
- Input: image of fixed size of a face ($W \times H$ matrix of pixel intensities $=$ vector of length $W H$)
- Output: coordinates of F facial features of the face
- Want to learn F linear regression functions f_{i}
- f_{i} maps the image vector to x-coord of the i th facial feature.
- Learn also F regression fns g_{i} for the y-coord.

Regression Example: Face Landmark Estimation

Input

Output

- Given a test image want to predict each of its facial landmark points.
- How well can ordinary least squares regression do on this problem?

Regression Example: Face Landmark Estimation

Input

Output

- Given a test image want to predict each of its facial landmark points.
- How well can ordinary least squares regression do on this problem?

Landmark estimation using ols regression

$\hat{\beta}_{x, 14} \quad\left|\hat{\beta}_{x, 14}\right| \quad \hat{\beta}_{y, 14} \quad\left|\hat{\beta}_{y, 14}\right| \quad$ Estimated Landmark on novel image

These are not promising weight vectors!

Estimate not even in image

- This problem is too hard for ols regression and it fails miserably.
- p is too large and many of the x_{i} are highly correlated

Landmark estimation using ols regression

$\hat{\beta}_{x, 14} \quad\left|\hat{\beta}_{x, 14}\right| \quad \hat{\beta}_{y, 14} \quad\left|\hat{\beta}_{y, 14}\right| \quad$ Estimated Landmark on novel image

These are not promising weight vectors!

Estimate not even in image

- This problem is too hard for ols regression and it fails miserably.
- p is too large and many of the x_{i} are highly correlated.

Singular $\mathbf{X}^{t} \mathbf{X}$

When \mathbf{X} is not full rank?

- Not all the columns of \mathbf{X} are linearly independent.
- In this case $\mathbf{X}^{t} \mathbf{X}$ is singular $\Longrightarrow \hat{\beta}$ not uniquely defined.
- The fitted values $\hat{y}=\mathbf{X} \hat{\beta}$ are still the projection of y onto the column space of \mathbf{X} but $\exists \gamma \neq \hat{\beta}$ such that

- Non-full-rank case occurs when
- one or more of the qualitative inputs are encoded redundantly,
- when the number of inputs $p>n$ the number of training examples.

When \mathbf{X} is not full rank?

- Not all the columns of \mathbf{X} are linearly independent.
- In this case $\mathbf{X}^{t} \mathbf{X}$ is singular $\Longrightarrow \hat{\beta}$ not uniquely defined.
- The fitted values $\hat{y}=\mathbf{X} \beta$ are still the projection of y onto the column space of \mathbf{X} but $\exists \gamma \neq \hat{\beta}$ such that
- Non-full-rank case occurs when
- one or more of the qualitative inputs are encoded redundantly,
- when the number of inputs $p>n$ the number of training examples.

When \mathbf{X} is not full rank?

- Not all the columns of \mathbf{X} are linearly independent.
- In this case $\mathbf{X}^{t} \mathbf{X}$ is singular $\Longrightarrow \hat{\beta}$ not uniquely defined.
- The fitted values $\hat{y}=\mathbf{X} \hat{\beta}$ are still the projection of y onto the column space of \mathbf{X} but $\exists \gamma \neq \hat{\beta}$ such that

$$
\hat{y}=\mathbf{X} \hat{\beta}=\mathbf{X} \gamma
$$

- Non-full-rank case occurs when
- one or more of the qualitative inputs are encoded redundantly,
- When the number of inputs $p>n$ the number of training examples

When \mathbf{X} is not full rank?

- Not all the columns of \mathbf{X} are linearly independent.
- In this case $\mathbf{X}^{t} \mathbf{X}$ is singular $\Longrightarrow \hat{\beta}$ not uniquely defined.
- The fitted values $\hat{y}=\mathbf{X} \hat{\beta}$ are still the projection of y onto the column space of \mathbf{X} but $\exists \gamma \neq \hat{\beta}$ such that

$$
\hat{y}=\mathbf{X} \hat{\beta}=\mathbf{X} \gamma
$$

- Non-full-rank case occurs when
- one or more of the qualitative inputs are encoded redundantly,
- when the number of inputs $p>n$ the number of training examples.

What can we say about the distribution of $\hat{\beta}$?

Analysis of the distribution of $\hat{\beta}$.

- This requires making some assumptions. These are
- the observations y_{i} are uncorrelated
- y_{i} have constant variance σ^{2} and
- x_{i} are fixed (non-random) \leftarrow this make analysis easier
- The covariance matrix of $\hat{\beta}$ is then
- Usually one estimates the variance σ^{2} with

Analysis of the distribution of $\hat{\beta}$.

- This requires making some assumptions. These are
- the observations y_{i} are uncorrelated
- y_{i} have constant variance σ^{2} and
- x_{i} are fixed (non-random) \leftarrow this make analysis easier
- The covariance matrix of $\hat{\beta}$ is then

$$
\begin{aligned}
\operatorname{Var}(\hat{\beta})=\operatorname{Var}\left(\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} y\right) & =\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} X^{t} \operatorname{Var}(y) X\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \sigma^{2}
\end{aligned}
$$

- Usually one estimates the variance σ^{2} with

Analysis of the distribution of $\hat{\beta}$.

- This requires making some assumptions. These are
- the observations y_{i} are uncorrelated
- y_{i} have constant variance σ^{2} and
- x_{i} are fixed (non-random) \leftarrow this make analysis easier
- The covariance matrix of $\hat{\beta}$ is then

$$
\begin{aligned}
\operatorname{Var}(\hat{\beta})=\operatorname{Var}\left(\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} y\right) & =\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} X^{t} \operatorname{Var}(y) X\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \sigma^{2}
\end{aligned}
$$

- Usually one estimates the variance σ^{2} with

$$
\hat{\sigma}^{2}=\frac{1}{n-p-1} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

Analysis of the distribution of $\hat{\beta}$

- To say more we need to make more assumptions. Therefore assume

$$
\begin{aligned}
Y & =\mathrm{E}\left(Y \mid X_{1}, X_{2}, \ldots, X_{p}\right)+\epsilon \\
& =\beta_{0}+\sum_{i=1}^{p} X_{j} \beta_{j}+\epsilon
\end{aligned}
$$

where $\epsilon \sim N\left(0, \sigma^{2}\right)$

- Then it's easy to show that (assuming non-random x_{i})

$$
\hat{\beta} \sim N\left(\beta,\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \sigma^{2}\right)
$$

Given this additive model generate $\hat{\beta}$

- \mathcal{T} is a training set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
- $\beta=(1,1)^{t}, n=40, \sigma=.6$
- In this simulation the x_{i} 's differ across trials.

The distribution of $\hat{\beta}$

Each \mathcal{T}_{i} results in a different estimate of $\hat{\beta}$. Have plotted these $\hat{\beta}$'s for $n_{\text {trial }}=500$.

Given this additive model generate $\hat{\beta}$

- \mathcal{T} is a training set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
- $\beta=(1,1)^{t}, n=40, \sigma=.6$
- In this simulation the x_{i} 's are fixed across trials.

The distribution of $\hat{\beta}$

Each \mathcal{T}_{i} results in a different estimate of $\hat{\beta}$. Have plotted these $\hat{\beta}$'s for $n_{\text {trial }}=500$.

Which β_{j} 's are probably zero?

- To interpret the weights estimated by least squares it would be nice to say which ones are probably zero.
- The associated predictors can then be removed from the model.
- If $\beta_{j}=0$ then $\hat{\beta} \sim N\left(0, \sigma^{2} v_{j j}\right)$ where $v_{j j}$ is the j th diagonal element of $\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}$
- Then if the actual value computed for $\hat{\beta}_{j}$ is larger than $\sigma^{2} v_{j j}$ then it is highly improbable that $\beta_{j}=0$.
- Statisticians have exact tests based on suitable distributions. In this case compute

Which β_{j} 's are probably zero?

- To interpret the weights estimated by least squares it would be nice to say which ones are probably zero.
- The associated predictors can then be removed from the model.
- If $\beta_{j}=0$ then $\hat{\beta} \sim N\left(0, \sigma^{2} v_{j j}\right)$ where $v_{j j}$ is the j th diagonal element of $\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}$.
- Then if the actual value computed for β_{j} is larger than $\sigma^{2} v_{j j}$ then it is highly improbable that $\beta_{j}=0$.
- Statisticians have exact tests based on suitable distributions In this case compute

Which β_{j} 's are probably zero?

- To interpret the weights estimated by least squares it would be nice to say which ones are probably zero.
- The associated predictors can then be removed from the model.
- If $\beta_{j}=0$ then $\hat{\beta} \sim N\left(0, \sigma^{2} v_{j j}\right)$ where $v_{j j}$ is the j th diagonal element of $\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}$.
- Then if the actual value computed for $\hat{\beta}_{j}$ is larger than $\sigma^{2} v_{j j}$ then it is highly improbable that $\beta_{j}=0$.
- Statisticians have exact tests based on suitable distributions. In this case compute

Which β_{j} 's are probably zero?

- To interpret the weights estimated by least squares it would be nice to say which ones are probably zero.
- The associated predictors can then be removed from the model.
- If $\beta_{j}=0$ then $\hat{\beta} \sim N\left(0, \sigma^{2} v_{j j}\right)$ where $v_{j j}$ is the j th diagonal element of $\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}$.
- Then if the actual value computed for $\hat{\beta}_{j}$ is larger than $\sigma^{2} v_{j j}$ then it is highly improbable that $\beta_{j}=0$.
- Statisticians have exact tests based on suitable distributions. In this case compute

$$
z_{j}=\frac{\hat{\beta}_{j}}{\hat{\sigma} \sqrt{v_{j j}}}
$$

and if $\beta_{j}=0$ then z_{j} has a t-distribution with $n-p-1$ dof.

- For the example we had with $\beta=(1,1)^{t}, n=40$ and $\sigma=.6$ then the t-distribution of z_{1} is shown if $\beta_{j}=0$.
- The z_{1} computed from each $\hat{\beta}$ estimated with \mathcal{T}_{i} is shown.
- Obviously even if we didn't know $\hat{\beta}$ and only saw one \mathcal{T}_{i} we would not think $\beta_{j} \neq 0$.

Look at an example when $\beta_{1}=0$

- \mathcal{T} is a training set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$
- $\beta=(3,0)^{t}, n=40, \sigma=.6$
- In this simulation the x_{i} 's are fixed across trials.

The distribution of $\hat{\beta}$

Each \mathcal{T}_{i} results in a different estimate of $\hat{\beta}$. Have plotted these $\hat{\beta}$'s for $n_{\text {trial }}=500$.

- For this example we have $\beta=(3,0)^{t}, n=40$ and $\sigma=.6$ then the t-distribution of z_{1} is shown if $\beta_{j}=0$
- The z_{1} 's computed from the $\hat{\beta}$ estimated with \mathcal{T}_{i} are shown.
- Obviously even if we didn't know $\hat{\beta}$ and only saw one \mathcal{T}_{i} we would conclude in most trials that $\beta_{j} \neq 0$.

Other tests can be performed

We will not look into these but you can

- test for the significance of groups of coefficients simultaneously
- get confidence bounds for β_{j} centred at $\hat{\beta}_{j}$.

Gauss-Markov Theorem

Gauss-Markov Theorem

- A famous result in statistics

The least squares estimate $\hat{\beta}^{1 s}$ of the parameters β has the smallest variance among all linear unbiased estimates.

- To explain a simple case of the theorem. Let $\theta=a^{t} \beta$.
- The least squares estimate of $a^{t} \beta$ is

$$
\hat{\theta}=a^{t} \hat{\beta}^{l \mathbf{s}}=a^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} y
$$

If \mathbf{X} is fixed this is a linear function, $c_{0}^{t} y$, of the response vector y.

- If we assume $\mathrm{E}[y]=X \beta$ then $a^{t} \hat{\beta}^{\text {ls }}$ is unbiased

$$
\mathrm{E}\left[a^{t} \hat{\beta}^{1 \mathbf{s}}\right]=\mathrm{E}\left[a^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} y\right]=a^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{X} \beta=a^{t} \beta=\theta
$$

Gauss-Markov Theorem: Simple example

- Gauss-Markov Theorem states any other linear estimator $\tilde{\theta}=c^{t} y$ that is unbiased for $a^{t} \beta$ has

$$
\operatorname{Var}\left[a^{t} \hat{\beta}^{\mathbf{l s}}\right] \leq \operatorname{Var}\left[c^{t} y\right]
$$

- Have only stated the result for the estimation of one parameter $a^{t} \beta$ but can state it in terms of the entire parameter vector β.
- However, having an unbiased estimator is not always crucial.

Gauss-Markov Theorem: Simple example

- Gauss-Markov Theorem states any other linear estimator $\tilde{\theta}=c^{t} y$ that is unbiased for $a^{t} \beta$ has

$$
\operatorname{Var}\left[a^{t} \hat{\beta}^{\mathbf{l s}}\right] \leq \operatorname{Var}\left[c^{t} y\right]
$$

- Have only stated the result for the estimation of one parameter $a^{t} \beta$ but can state it in terms of the entire parameter vector β.
- However, having an unbiased estimator is not always crucial.

Gauss-Markov Theorem: Simple example

- Gauss-Markov Theorem states any other linear estimator $\tilde{\theta}=c^{t} y$ that is unbiased for $a^{t} \beta$ has

$$
\operatorname{Var}\left[a^{t} \hat{\beta}^{\mathbf{l s}}\right] \leq \operatorname{Var}\left[c^{t} y\right]
$$

- Have only stated the result for the estimation of one parameter $a^{t} \beta$ but can state it in terms of the entire parameter vector β.
- However, having an unbiased estimator is not always crucial.

The Bias - Variance Trade-off (once again!)

- Consider the mean-squared error of an estimator $\tilde{\theta}$ in estimating θ

$$
\begin{aligned}
\operatorname{MSE}(\tilde{\theta}) & =\mathrm{E}\left((\tilde{\theta}-\theta)^{2}\right) \\
& =\operatorname{Var}(\tilde{\theta})+(\mathrm{E}(\tilde{\theta})-\theta)^{2} \\
\text { variance } &
\end{aligned}
$$

- Gauss-Markov says the least square estimator has the smallest MSE for all linear estimators with zero bias.
- But there may be biased estimates with smaller MSE.
- In these cases have traded an increase in squared bias for a reduction in variance.

The Bias - Variance Trade-off (once again!)

- Consider the mean-squared error of an estimator $\tilde{\theta}$ in estimating θ

$$
\begin{aligned}
\operatorname{MSE}(\tilde{\theta}) & =\mathrm{E}\left((\tilde{\theta}-\theta)^{2}\right) \\
& =\operatorname{Var}(\tilde{\theta})+(\mathrm{E}(\tilde{\theta})-\theta)^{2} \\
\text { variance } &
\end{aligned}
$$

- Gauss-Markov says the least square estimator has the smallest MSE for all linear estimators with zero bias.
- But there may be biased estimates with smaller MSE.
- In these cases have traded an increase in squared bias for a reduction in variance.

The Bias - Variance Trade-off (once again!)

- Consider the mean-squared error of an estimator $\tilde{\theta}$ in estimating θ

$$
\begin{aligned}
\operatorname{MSE}(\tilde{\theta}) & =\mathrm{E}\left((\tilde{\theta}-\theta)^{2}\right) \\
& =\operatorname{Var}(\tilde{\theta})+(\mathrm{E}(\tilde{\theta})-\theta)^{2} \\
\text { variance } &
\end{aligned}
$$

- Gauss-Markov says the least square estimator has the smallest MSE for all linear estimators with zero bias.
- But there may be biased estimates with smaller MSE.
- In these cases have traded an increase in squared bias for a reduction in variance.

Simple Univariate Regression and Gram-Schmidt

Multiple regression from simple univariate regression

- Suppose we have univariate model with no intercept

$$
Y=X \beta+\epsilon
$$

- The least square estimate is
where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
- The residuals are given by
- Say $x_{i} \in \mathbb{R}^{p}$ and the columns of \mathbf{X} are orthogonal then

Multiple regression from simple univariate regression

- Suppose we have univariate model with no intercept

$$
Y=X \beta+\epsilon
$$

- The least square estimate is

$$
\hat{\beta}=\frac{\langle x, y\rangle}{\langle x, x\rangle}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

- The residuals are given by
- Say $x_{i} \in \mathbb{R}^{p}$ and the columns of \mathbf{X} are orthogonal then

Multiple regression from simple univariate regression

- Suppose we have univariate model with no intercept

$$
Y=X \beta+\epsilon
$$

- The least square estimate is

$$
\hat{\beta}=\frac{\langle x, y\rangle}{\langle x, x\rangle}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

- The residuals are given by

$$
r=y-x^{t} \hat{\beta}
$$

- Say $x_{i} \in \mathbb{R}^{p}$ and the columns of \mathbf{X} are orthogonal then

Multiple regression from simple univariate regression

- Suppose we have univariate model with no intercept

$$
Y=X \beta+\epsilon
$$

- The least square estimate is

$$
\hat{\beta}=\frac{\langle x, y\rangle}{\langle x, x\rangle}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

- The residuals are given by

$$
r=y-x^{t} \hat{\beta}
$$

- Say $x_{i} \in \mathbb{R}^{p}$ and the columns of \mathbf{X} are orthogonal then

$$
\hat{\beta}_{j}=\frac{\left\langle x_{. j}, y\right\rangle}{\left\langle x_{. j}, x_{. j}\right\rangle}, \quad \text { where } x_{. j} \text { is } j \text { th column of } \mathbf{X}
$$

OLS via successive orthogonalization

- X acquired from observations are rarely orthogonal.
- Hence they have to be orthogonalized to take advantage the previous insight.
- $x_{.0}$ be the 0 th column of $\mathbf{X} \in \mathbb{R}^{n \times 2}$ (vector of ones) then

- Regress y on z then $\hat{\beta}_{1}=\frac{\left(x_{.1}, z\right\rangle}{\left\langle x_{.1}, x_{.1}\right\rangle}$

The solution is same as if one had directly calculated $\hat{\beta}^{\text {ls }}$. Have just used an orthogonal basis for the col. space of \mathbf{X}

- Note Step 1 orthogonalized $x .1$ w.r.t. x_{0}
- Step 2 is simple univariate regression using the orthogonal predictors $x_{.0}$ and z

OLS via successive orthogonalization

- \mathbf{X} acquired from observations are rarely orthogonal.
- Hence they have to be orthogonalized to take advantage the previous insight.
- $x_{.0}$ be the 0 th column of $\mathbf{X} \in \mathbb{R}^{n \times 2}$ (vector of ones) then
- Regress $x_{.1}$ on $x_{.0}$ that is $\hat{\gamma}=\frac{\left\langle x_{.0}, x_{.1}\right\rangle}{\left\langle x_{.0}, x_{.0}\right\rangle}$ and let $z=x_{.1}-\hat{\gamma} x_{.0}$
- Regress y on z then $\hat{\beta}_{1}=\frac{\left\langle x_{.1}, z\right\rangle}{\left\langle x_{.1}, x_{.1}\right\rangle}$
- Then $y \approx \hat{\beta}_{1} z=\hat{\beta}_{1}\left(x_{.1}-\hat{\gamma} x_{.0}\right)=\mathbf{X} \hat{\beta}$ where $\hat{\beta}=\left(\hat{\beta}_{1},-\hat{\beta}_{1} \hat{\gamma}\right)^{t}$. The solution is same as if one had directly calculated $\hat{\beta}^{\text {ls }}$. Have just used an orthogonal basis for the col. space of \mathbf{X}
- Note Step 1 orthogonalized $x .1$ w.r.t. $x .0$.
- Step 2 is simple univariate regression using the orthogonal predictors $x_{.0}$ and z

OLS via successive orthogonalization

- \mathbf{X} acquired from observations are rarely orthogonal.
- Hence they have to be orthogonalized to take advantage the previous insight.
- $x_{.0}$ be the 0 th column of $\mathbf{X} \in \mathbb{R}^{n \times 2}$ (vector of ones) then
- Regress $x_{.1}$ on $x_{.0}$ that is $\hat{\gamma}=\frac{\left\langle x_{.0}, x_{.1}\right\rangle}{\left\langle x_{.0}, x_{.0}\right\rangle}$ and let $z=x_{.1}-\hat{\gamma} x_{.0}$
- Regress y on z then $\hat{\beta}_{1}=\frac{\left\langle x_{.1}, z\right\rangle}{\left\langle x_{.1}, x_{.1}\right\rangle}$
- Then $y \approx \hat{\beta}_{1} z=\hat{\beta}_{1}\left(x_{.1}-\hat{\gamma} x_{.0}\right)=\mathbf{X} \hat{\beta}$ where $\hat{\beta}=\left(\hat{\beta}_{1},-\hat{\beta}_{1} \hat{\gamma}\right)^{t}$. The solution is same as if one had directly calculated $\hat{\beta}^{\text {ls }}$. Have just used an orthogonal basis for the col. space of \mathbf{X}
- Note Step 1 orthogonalized $x_{.1}$ w.r.t. $x_{.0}$.
- Step 2 is simple univariate regression using the orthogonal predictors $x_{.0}$ and

OLS via successive orthogonalization

- \mathbf{X} acquired from observations are rarely orthogonal.
- Hence they have to be orthogonalized to take advantage the previous insight.
- $x_{.0}$ be the 0 th column of $\mathbf{X} \in \mathbb{R}^{n \times 2}$ (vector of ones) then
- Regress $x_{.1}$ on $x_{.0}$ that is $\hat{\gamma}=\frac{\left\langle x_{.0}, x_{.1}\right\rangle}{\left\langle x_{.0}, x_{.0}\right\rangle}$ and let $z=x_{.1}-\hat{\gamma} x_{.0}$
- Regress y on z then $\hat{\beta}_{1}=\frac{\left\langle x_{.1}, z\right\rangle}{\left\langle x_{.1}, x_{.1}\right\rangle}$
- Then $y \approx \hat{\beta}_{1} z=\hat{\beta}_{1}\left(x_{.1}-\hat{\gamma} x_{.0}\right)=\mathbf{X} \hat{\beta}$ where $\hat{\beta}=\left(\hat{\beta}_{1},-\hat{\beta}_{1} \hat{\gamma}\right)^{t}$. The solution is same as if one had directly calculated $\hat{\beta}^{\text {ls }}$. Have just used an orthogonal basis for the col. space of \mathbf{X}
- Note Step 1 orthogonalized $x_{.1}$ w.r.t. $x_{.0}$.
- Step 2 is simple univariate regression using the orthogonal predictors $x .0$ and z.

OLS via successive orthogonalization

- Can extend the process to when x_{i} 's are p-dimensional.
- See Algorithm 3.1 in the book.
- At each iteration j a multiple least squares regression problem with j th orthogonal inputs is solved.
- And after this a new residual is formed which is orthogonal to all these current directions.
- This process is the Gram-Schmidt regression procedure.

OLS via successive orthogonalization

- Can extend the process to when x_{i} 's are p-dimensional.
- See Algorithm 3.1 in the book.
- At each iteration j a multiple least squares regression problem with j th orthogonal inputs is solved.
- And after this a new residual is formed which is orthogonal to all these current directions.
- This process is the Gram-Schmidt regression procedure.

Subset Selection

Inadequacies of least squares estimates

- Prediction Accuracy

Least squares estimates often have

- Low bias and high variance
- This can affect prediction accuracy
- Frequently better to set some of the β_{j} 's to zero.
- This increases the bias but reduces the variance and in turn improve prediction accuracy.
- Interpretation

For p large, it may be difficult to decipher the important factors.

- Therefore would like to determine a smaller subset of predictors which are most informative.
May sacrifice small detail for the big picture.

Inadequacies of least squares estimates

- Prediction Accuracy

Least squares estimates often have

- Low bias and high variance
- This can affect prediction accuracy
- Frequently better to set some of the β_{j} 's to zero.
- This increases the bias but reduces the variance and in turn improve prediction accuracy.
- Interpretation

For p large, it may be difficult to decipher the important factors.

- Therefore would like to determine a smaller subset of predictors which are most informative.
May sacrifice small detail for the big picture.

Inadequacies of least squares estimates

- Prediction Accuracy

Least squares estimates often have

- Low bias and high variance
- This can affect prediction accuracy
- Frequently better to set some of the β_{j} 's to zero.
- This increases the bias but reduces the variance and in turn improve prediction accuracy.
- Interpretation

For p large, it may be difficult to decipher the important factors.

- Therefore would like to determine a smaller subset of predictors which are most informative. May sacrifice small detail for the big picture.

Inadequacies of least squares estimates

- Prediction Accuracy

Least squares estimates often have

- Low bias and high variance
- This can affect prediction accuracy
- Frequently better to set some of the β_{j} 's to zero.
- This increases the bias but reduces the variance and in turn improve prediction accuracy.
- Interpretation

For p large, it may be difficult to decipher the important factors.

- Therefore would like to determine a smaller subset of predictors which are most informative. May sacrifice small detail for the big picture.

Inadequacies of least squares estimates

- Prediction Accuracy

Least squares estimates often have

- Low bias and high variance
- This can affect prediction accuracy
- Frequently better to set some of the β_{j} 's to zero.
- This increases the bias but reduces the variance and in turn improve prediction accuracy.
- Interpretation

For p large, it may be difficult to decipher the important factors.

- Therefore would like to determine a smaller subset of predictors which are most informative. May sacrifice small detail for the big picture.

Best-Subset Selection

- Best subset regression finds for $k \in\{0,1,2, \ldots, p\}$ the $j_{1}, j_{2}, \ldots, j_{k}$ with each $j_{l} \in\{1,2, \ldots, p\}$ s.t.

$$
\operatorname{RSS}\left(j_{1}, j_{2}, \ldots, j_{k}\right)=\min _{\beta_{0}, \beta_{j_{1}}, \ldots, \beta_{j_{l}}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{l=1}^{k} \beta_{j_{l}} x_{i, j_{l}}\right)^{2}
$$

is smallest.

- There are
different subsets to try for a given k.
- If $p \leq 40$ there exist computational feasible algorithms for finding these best subsets of size k
- Question still remains of how to choose best value of k.
- Once again it is a trade-off between bias and variance...

Best-Subset Selection

- Best subset regression finds for $k \in\{0,1,2, \ldots, p\}$ the $j_{1}, j_{2}, \ldots, j_{k}$ with each $j_{l} \in\{1,2, \ldots, p\}$ s.t.

$$
\operatorname{RSS}\left(j_{1}, j_{2}, \ldots, j_{k}\right)=\min _{\beta_{0}, \beta_{j_{1}}, \ldots, \beta_{j_{l}}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{l=1}^{k} \beta_{j_{l}} x_{i, j_{l}}\right)^{2}
$$

is smallest.

- There are $\binom{p}{k}$ different subsets to try for a given k.
- If $p \leq 40$ there exist computational feasible algorithms for finding these best subsets of size k.
- Question still remains of how to choose best value of k.
- Once again it is a trade-off between bias and variance...

Best-Subset Selection

- Best subset regression finds for $k \in\{0,1,2, \ldots, p\}$ the $j_{1}, j_{2}, \ldots, j_{k}$ with each $j_{l} \in\{1,2, \ldots, p\}$ s.t.

$$
\operatorname{RSS}\left(j_{1}, j_{2}, \ldots, j_{k}\right)=\min _{\beta_{0}, \beta_{j_{1}}, \ldots, \beta_{j_{l}}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{l=1}^{k} \beta_{j_{l}} x_{i, j_{l}}\right)^{2}
$$

is smallest.

- There are $\binom{p}{k}$ different subsets to try for a given k.
- If $p \leq 40$ there exist computational feasible algorithms for finding these best subsets of size k.
- Question still remains of how to choose best value of k.
- Once again it is a trade-off between bias and variance.

Best-Subset Selection

- Best subset regression finds for $k \in\{0,1,2, \ldots, p\}$ the $j_{1}, j_{2}, \ldots, j_{k}$ with each $j_{l} \in\{1,2, \ldots, p\}$ s.t.

$$
\operatorname{RSS}\left(j_{1}, j_{2}, \ldots, j_{k}\right)=\min _{\beta_{0}, \beta_{j_{1}}, \ldots, \beta_{j_{l}}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{l=1}^{k} \beta_{j_{l}} x_{i, j_{l}}\right)^{2}
$$

is smallest.

- There are $\binom{p}{k}$ different subsets to try for a given k.
- If $p \leq 40$ there exist computational feasible algorithms for finding these best subsets of size k.
- Question still remains of how to choose best value of k.
- Once again it is a trade-off between bias and variance..

Best-Subset Selection

- Best subset regression finds for $k \in\{0,1,2, \ldots, p\}$ the $j_{1}, j_{2}, \ldots, j_{k}$ with each $j_{l} \in\{1,2, \ldots, p\}$ s.t.

$$
\operatorname{RSS}\left(j_{1}, j_{2}, \ldots, j_{k}\right)=\min _{\beta_{0}, \beta_{j_{1}}, \ldots, \beta_{j_{l}}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{l=1}^{k} \beta_{j_{l}} x_{i, j_{l}}\right)^{2}
$$

is smallest.

- There are $\binom{p}{k}$ different subsets to try for a given k.
- If $p \leq 40$ there exist computational feasible algorithms for finding these best subsets of size k.
- Question still remains of how to choose best value of k.
- Once again it is a trade-off between bias and variance....

Forward-Stepwise Selection

- Instead of searching all possible subsets (infeasible for large p) can take a greedy approach.
- The steps of Forward-Stepwise Selection are
- Set $\mathcal{I}=\{1, \ldots, p\}$
- For $l=1, \ldots, k$ choose j_{l} according to

and
$I=I \backslash\{j i\}$

Forward-Stepwise Selection

- Instead of searching all possible subsets (infeasible for large p) can take a greedy approach.
- The steps of Forward-Stepwise Selection are
- Set $\mathcal{I}=\{1, \ldots, p\}$
- For $l=1, \ldots, k$ choose j_{l} according to

$$
j_{l}=\arg \min _{j \in \mathcal{I}} \min _{\beta_{0}, \beta_{j_{1}}, \ldots, \beta_{j_{l-1}}, \beta_{j}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{s=1}^{l-1} \beta_{j_{s}} x_{i j_{s}}-\beta_{j} x_{i j}\right)^{2}
$$

and

$$
\mathcal{I}=\mathcal{I} \backslash\left\{j_{l}\right\}
$$

Forward-Stepwise Vs Best Subset Selection

- Forward-Stepwise may be sub-optimal compared to the best subset selection but may be preferred because
- It is computational feasible for large $p \gg n$. Not true for best subset selection.
- best subset selection may overfit.
- Forward stepwise will probably produce a function with lower variance but perhaps more bias.

Forward-Stepwise Vs Best Subset Selection

- Forward-Stepwise may be sub-optimal compared to the best subset selection but may be preferred because
- It is computational feasible for large $p \gg n$. Not true for best subset selection.
- best subset selection may overfit.
- Forward stepwise will probably produce a function with lower variance but perhaps more bias.

Forward-Stepwise Vs Best Subset Selection

- Forward-Stepwise may be sub-optimal compared to the best subset selection but may be preferred because
- It is computational feasible for large $p \gg n$. Not true for best subset selection.
- best subset selection may overfit.
- Forward stepwise will probably produce a function with lower variance but perhaps more bias.

Forward-Stepwise Vs Best Subset Selection

- Forward-Stepwise may be sub-optimal compared to the best subset selection but may be preferred because
- It is computational feasible for large $p \gg n$. Not true for best subset selection.
- best subset selection may overfit.
- Forward stepwise will probably produce a function with lower variance but perhaps more bias.

Forward-Stagewise Regression

- The steps of Forward-Stagewise Regression are
- Set $\hat{\beta}_{0}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$
- Set $\hat{\beta}_{1}=\hat{\beta}_{2}=\cdots=\hat{\beta}_{p}=0$
- At each iteration

$$
\begin{aligned}
r_{i} & =y_{i}-\hat{\beta}_{0}-\sum_{j=1}^{p} \hat{\beta}_{j} x_{i j}, \quad \text { compute residual for each example } \\
j^{*} & =\arg \max _{j \in \mathcal{I}}\left|\left\langle x_{. j}, r\right\rangle\right| \quad \text { find } X_{j} \text { most correlated with } r \\
\hat{\beta}_{j^{*}} & \leftarrow \hat{\beta}_{j^{*}}+\delta \operatorname{sign}\left(\left\langle x_{. j^{*}}, r\right\rangle\right)
\end{aligned}
$$

- Stop iterations when the residuals are uncorrelated with all the predictors.
- Only one $\hat{\beta}_{j}$ is updated at each iteration.
- $\mathrm{A} \hat{\beta}_{j}$ can be updated at several different iterations.
- It can be slow to reach the least squares fit.
- But slow fitting may not be such a bad thing in high dimensional problems.

Forward-Stagewise Regression: What to note..

- Only one $\hat{\beta}_{j}$ is updated at each iteration.
- $\mathrm{A} \hat{\beta}_{j}$ can be updated at several different iterations.
- It can be slow to reach the least squares fit.
- But slow fitting may not be such a bad thing in high dimensional problems.

Forward-Stagewise Regression: What to note..

- Only one $\hat{\beta}_{j}$ is updated at each iteration.
- A $\hat{\beta}_{j}$ can be updated at several different iterations.
- It can be slow to reach the least squares fit.
- But slow fitting may not be such a bad thing in high dimensional problems.

Forward-Stagewise Regression: What to note..

- Only one $\hat{\beta}_{j}$ is updated at each iteration.
- A $\hat{\beta}_{j}$ can be updated at several different iterations.
- It can be slow to reach the least squares fit.
- But slow fitting may not be such a bad thing in high dimensional problems.

Shrinkage methods

Why shrinkage methods?

- Selecting a subset of predictors produces a model that is interpretable and probably has lower prediction error than the full model.
- However it is a discrete process \Longrightarrow introduces variation into learning the model.
- Shrinkage methods are more continuous and have a lower variance.

Why shrinkage methods?

- Selecting a subset of predictors produces a model that is interpretable and probably has lower prediction error than the full model.
- However it is a discrete process \Longrightarrow introduces variation into learning the model.
- Shrinkage methods are more continuous and have a lower variance.

Why shrinkage methods?

- Selecting a subset of predictors produces a model that is interpretable and probably has lower prediction error than the full model.
- However it is a discrete process \Longrightarrow introduces variation into learning the model.
- Shrinkage methods are more continuous and have a lower variance.

Ridge Regression

Shrinkage Method 1: Ridge Regression

- Ridge regression shrinks β_{j} 's by imposing a penalty on their size.
- The ridge coefficients minimize a penalized RSS

- The larger $\lambda \geq 0$ the greater of the amount of shrinkage. This implies β_{j} 's are shrunk toward zero (except β_{0}).

Shrinkage Method 1: Ridge Regression

- Ridge regression shrinks β_{j} 's by imposing a penalty on their size.
- The ridge coefficients minimize a penalized RSS
non-negative complexity parameter

- The larger $\lambda \geq 0$ the greater of the amount of shrinkage. This implies β_{j} 's are shrunk toward zero (except β_{0}).

Shrinkage Method 1: Ridge Regression

- Ridge regression shrinks β_{j} 's by imposing a penalty on their size.
- The ridge coefficients minimize a penalized RSS
non-negative complexity parameter

- The larger $\lambda \geq 0$ the greater of the amount of shrinkage. This implies β_{j} 's are shrunk toward zero (except β_{0}).

An equivalent formulation of Ridge Regression

$\hat{\beta}^{\text {ridge }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \quad$ subject to $\sum_{j=1}^{p} \beta_{j}^{2} \leq t$

- This formulation puts an explicit constraint on the size of the β_{j} 's.
- There is a 1-1 correspondence between λ and t in the two formulations.
- Note the estimated $\hat{\beta}^{\text {ridge }}$ changes if the scaling of the inputs change.

Ridge Regression and centering of data

- The centered version of the input data is

$$
\tilde{x}_{i j}=x_{i j}-\sum_{s=1}^{n} x_{s j}
$$

Then the ridge regression coefficients found using the centered data

$$
\hat{\beta}^{c}=\arg \min _{\beta^{c}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}^{c}-\sum_{j=1}^{p} \tilde{x}_{i j} \beta_{j}^{c}\right)^{2}+\lambda \sum_{j=1}^{p}\left(\beta_{j}^{c}\right)^{2}
$$

are related to the coefficients found using the original data via

$$
\begin{aligned}
& \hat{\beta}_{0}^{c}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\bar{y}, \quad \hat{\beta}_{0}^{\text {ridge }}=\bar{y}-\sum_{j=1}^{p} \bar{x}_{. j} \hat{\beta}_{j}^{\text {ridge }} \\
& \hat{\beta}_{j}^{c}=\hat{\beta}_{j}^{\text {ridge }} \text { for } i=1, \ldots, p
\end{aligned}
$$

Ridge Regression and centering of data

- If the y 's have zero mean $\Longrightarrow \hat{\beta}_{0}^{c}=0$
- Can drop the intercept term from the linear model if the input data is centred.
- Then for ridge regression, given all the necessary centering, find the $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)^{t}$ which minimizes

$$
=\arg \min _{\beta}\left\{(y-\mathbf{X} \beta)^{t}(y-\mathbf{X} \beta)+\lambda \beta^{t} \beta\right\}
$$

where $y=\left(y_{1}, \ldots, y_{n}\right)^{t}$ and

Ridge Regression and centering of data

- If the y 's have zero mean $\Longrightarrow \hat{\beta}_{0}^{c}=0$
- Can drop the intercept term from the linear model if the input data is centred.
- Then for ridge regression, given all the necessary centering,
find the $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)^{t}$ which minimizes

where $y=\left(y_{1}, \ldots, y_{n}\right)^{t}$ and

Ridge Regression and centering of data

- If the y 's have zero mean $\Longrightarrow \hat{\beta}_{0}^{c}=0$
- Can drop the intercept term from the linear model if the input data is centred.
- Then for ridge regression, given all the necessary centering, find the $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)^{t}$ which minimizes

$$
\begin{aligned}
\hat{\beta} & =\arg \min _{\beta}\left\{\sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2}\right\} \\
& =\arg \min _{\beta}\left\{(y-\mathbf{X} \beta)^{t}(y-\mathbf{X} \beta)+\lambda \beta^{t} \beta\right\}
\end{aligned}
$$

where $y=\left(y_{1}, \ldots, y_{n}\right)^{t}$ and

$$
\mathbf{X}=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & x_{22} & \cdots & x_{2 p} \\
\vdots & \vdots & \cdots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right)
$$

Ridge Regression and centering of data

- For rest of lecture will assume centered input and output data.
- The ridge regression solution is given by

- Note that the problem of inverting the potentially singular matrix $\mathbf{X}^{t} \mathbf{X}$ is averted as $\left(\mathbf{X}^{t} \mathbf{X}+\lambda \mathbf{I}_{p}\right)$ is full rank even if $\mathbf{X}^{t} \mathbf{X}$ is not.

Ridge Regression and centering of data

- For rest of lecture will assume centered input and output data.
- The ridge regression solution is given by

$$
\hat{\beta}^{\text {ridge }}=\left(\mathbf{X}^{t} \mathbf{X}+\lambda I_{p}\right)^{-1} \mathbf{X}^{t} y
$$

- Note that the problem of inverting the potentially singular matrix $\mathbf{X}^{t} \mathbf{X}$ is averted as $\left(\mathbf{X}^{t} \mathbf{X}+\lambda \mathbf{I}_{p}\right)$ is full rank even if

Ridge Regression and centering of data

- For rest of lecture will assume centered input and output data.
- The ridge regression solution is given by

$$
\hat{\beta}^{\text {ridge }}=\left(\mathbf{X}^{t} \mathbf{X}+\lambda I_{p}\right)^{-1} \mathbf{X}^{t} y
$$

- Note that the problem of inverting the potentially singular matrix $\mathbf{X}^{t} \mathbf{X}$ is averted as $\left(\mathbf{X}^{t} \mathbf{X}+\lambda \mathbf{I}_{p}\right)$ is full rank even if $\mathbf{X}^{t} \mathbf{X}$ is not.

Insight into ridge regression

Insight into Ridge Regression

- Compute the SVD of the $n \times p$ input matrix \mathbf{X} then

$$
\mathbf{X}=\mathbf{U D V}^{t}
$$

where

- \mathbf{U} is an $n \times p$ orthogonal matrix
- \mathbf{V} is a $p \times p$ orthogonal matrix
- \mathbf{D} is a $p \times p$ diagonal matrix with $d_{1} \geq d_{2} \geq \cdots \geq d_{p} \geq 0$.
- Can write least squares fitted vector as

$$
\mathbf{X} \hat{\beta}^{\mathrm{ls}}=\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} y=\mathbf{U U}^{t} y
$$

which is the closest approximation to y in the subspace spanned by the columns of $\mathbf{U}(=$ column space of $\mathbf{X})$.

Insight into Ridge Regression

- Can write ridge regression fitted vector as

$$
\begin{aligned}
\mathbf{X} \hat{\beta}^{\text {ridge }} & =\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{t} y \\
& =\mathbf{U D}\left(\mathbf{U D}^{2}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{D U}^{t} y \\
& =\sum_{j=1}^{p} u_{j} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda} u_{j}^{t} y, \quad \text { where } u_{j}^{\prime} \text { 's are columns of } \mathbf{U}
\end{aligned}
$$

- As $\lambda \geq 0 \Longrightarrow d_{j}^{2} /\left(d_{j}^{2}+\lambda\right) \leq 1$
- Ridge regression computes the coordinates of y wrt to the orthonormal basis of the columns of \mathbf{U}
- It then shrinks these coordinates by the factors $d_{j}^{2} /\left(d_{j}^{2}+\lambda\right)$.
- More shrinkage applied to basis vectors with smaller d_{j}^{2}

Insight into Ridge Regression

- Can write ridge regression fitted vector as

$$
\begin{aligned}
\mathbf{X} \hat{\beta}^{\text {ridge }} & =\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{t} y \\
& =\mathbf{U D}\left(\mathbf{U D}^{2}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{D U}^{t} y \\
& =\sum_{j=1}^{p} u_{j} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda} u_{j}^{t} y, \quad \text { where } u_{j}^{\prime} \text { 's are columns of } \mathbf{U}
\end{aligned}
$$

- As $\lambda \geq 0 \Longrightarrow d_{j}^{2} /\left(d_{j}^{2}+\lambda\right) \leq 1$
- Ridge regression computes the coordinates of y wrt to the orthonormal basis of the columns of \mathbf{U}
- It then shrinks these coordinates by the factors $d_{j}^{2} /\left(d_{j}^{2}+\lambda\right)$.
- More shrinkage applied to basis vectors with smaller d_{j}^{2}

Insight into Ridge Regression

- Can write ridge regression fitted vector as

$$
\begin{aligned}
\mathbf{X} \hat{\beta}^{\text {ridge }} & =\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{t} y \\
& =\mathbf{U D}\left(\mathbf{U D}^{2}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{D U}^{t} y \\
& =\sum_{j=1}^{p} u_{j} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda} u_{j}^{t} y, \quad \text { where } u_{j} \text { 's are columns of } \mathbf{U}
\end{aligned}
$$

- As $\lambda \geq 0 \Longrightarrow d_{j}^{2} /\left(d_{j}^{2}+\lambda\right) \leq 1$
- Ridge regression computes the coordinates of y wrt to the orthonormal basis of the columns of \mathbf{U}.
- It then shrinks these coordinates by the factors $d_{j}^{2} /\left(d_{j}^{2}+\lambda\right)$.
- More shrinkage applied to basis vectors with smaller d_{j}^{2}

Insight into Ridge Regression

- Can write ridge regression fitted vector as

$$
\begin{aligned}
\mathbf{X} \hat{\beta}^{\text {ridge }} & =\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{t} y \\
& =\mathbf{U D}\left(\mathbf{U D}^{2}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{D U}^{t} y \\
& =\sum_{j=1}^{p} u_{j} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda} u_{j}^{t} y, \quad \text { where } u_{j} \text { 's are columns of } \mathbf{U}
\end{aligned}
$$

- As $\lambda \geq 0 \Longrightarrow d_{j}^{2} /\left(d_{j}^{2}+\lambda\right) \leq 1$
- Ridge regression computes the coordinates of y wrt to the orthonormal basis of the columns of \mathbf{U}.
- It then shrinks these coordinates by the factors $d_{j}^{2} /\left(d_{j}^{2}+\lambda\right)$.
- More shrinkage applied to basis vectors with smaller d_{j}^{2}

Insight into Ridge Regression

- Can write ridge regression fitted vector as

$$
\begin{aligned}
\mathbf{X} \hat{\beta}^{\text {ridge }} & =\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{t} y \\
& =\mathbf{U D}\left(\mathbf{U D}^{2}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{D U}^{t} y \\
& =\sum_{j=1}^{p} u_{j} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda} u_{j}^{t} y, \quad \text { where } u_{j} \text { 's are columns of } \mathbf{U}
\end{aligned}
$$

- As $\lambda \geq 0 \Longrightarrow d_{j}^{2} /\left(d_{j}^{2}+\lambda\right) \leq 1$
- Ridge regression computes the coordinates of y wrt to the orthonormal basis of the columns of \mathbf{U}.
- It then shrinks these coordinates by the factors $d_{j}^{2} /\left(d_{j}^{2}+\lambda\right)$.
- More shrinkage applied to basis vectors with smaller d_{j}^{2}.

Insight into Ridge Regression: What are the d_{j}^{2} 's ?

- The sample covariance matrix of the data is given by

$$
S=\frac{1}{n} \mathbf{X}^{t} \mathbf{X}
$$

From the SVD of \mathbf{X} we know that

$$
\mathbf{X}^{t} \mathbf{X}=\mathbf{V D}^{2} \mathbf{V}^{t} \quad \longleftarrow \text { eigen-decomposition of } \mathbf{X}^{t} \mathbf{X}
$$

- The eigenvectors v_{j} - columns of V are the principal component directions of \mathbf{X}.
- Project the input of each training example onto the first principal component direction v_{1} to get $z_{i}^{(1)}=v_{1}^{t} x_{i}$. The variance of the $z_{i}^{(1)}$'s is given by (remember x_{i} 's are centred)

Insight into Ridge Regression: What are the d_{j}^{2} 's ?

- The sample covariance matrix of the data is given by

$$
S=\frac{1}{n} \mathbf{X}^{t} \mathbf{X}
$$

From the SVD of \mathbf{X} we know that

$$
\mathbf{X}^{t} \mathbf{X}=\mathbf{V D}^{2} \mathbf{V}^{t} \quad \longleftarrow \text { eigen-decomposition of } \mathbf{X}^{t} \mathbf{X}
$$

- The eigenvectors v_{j} - columns of \mathbf{V} are the principal component directions of \mathbf{X}.
- Project the input of each training example onto the first principal component direction v_{1} to get $z_{i}^{(1)}=v_{1}^{t} x_{i}$. The variance of the $z_{i}^{(1)}$'s is given by (remember x_{i} 's are centred)

Insight into Ridge Regression: What are the d_{j}^{2} 's ?

- The sample covariance matrix of the data is given by

$$
S=\frac{1}{n} \mathbf{X}^{t} \mathbf{X}
$$

From the SVD of \mathbf{X} we know that

$$
\mathbf{X}^{t} \mathbf{X}=\mathbf{V D}^{2} \mathbf{V}^{t} \quad \longleftarrow \text { eigen-decomposition of } \mathbf{X}^{t} \mathbf{X}
$$

- The eigenvectors v_{j} - columns of \mathbf{V} are the principal component directions of \mathbf{X}.
- Project the input of each training example onto the first principal component direction v_{1} to get $z_{i}^{(1)}=v_{1}^{t} x_{i}$. The variance of the $z_{i}^{(1)}$'s is given by (remember x_{i} 's are centred)

$$
\frac{1}{n} \sum_{i=1}^{n}\left(z_{i}^{(1)}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} v_{1}^{t} x_{i} x_{i}^{t} v_{1}=\frac{1}{n} v_{1}^{t} X^{t} X v_{1}=\frac{d_{1}^{2}}{n}
$$

Insight into Ridge Regression: What are the d_{j}^{2} 's ?

- v_{1} represents the direction (of unit length) which the projected points have largest variance.

Insight into Ridge Regression: What are the d_{j}^{2} 's ?

- v_{1} represents the direction (of unit length) which the projected points have largest variance.

- Subsequent principal components $z_{i}^{(j)}$ have maximum variance d_{j}^{2} / n subject to v_{j} being orthogonal to the earlier directions.

Insight into Ridge Regression: What are the d_{j}^{2} 's ?

- The last principal component has minimum variance.
- Hence the small d_{j} correspond to the directions of the column space of \mathbf{X} having small variance.
- Ridge regression shrinks these directions the most !
- The estimated directions v_{j} 's with small d_{j} have more uncertainty associated with the estimate. (Using a narrow baseline to estimate a direction). Ridge regression protects against relying on these high variance directions.
- Ridge regression implicitly assumes that the output will vary most in the directions of the high variance of the inputs. A reasonable assumption but not always true.

Insight into Ridge Regression: What are the d_{j}^{2} 's ?

- The last principal component has minimum variance.
- Hence the small d_{j} correspond to the directions of the column space of \mathbf{X} having small variance.
- Ridge regression shrinks these directions the most !
- The estimated directions v_{j} 's with small d_{j} have more uncertainty associated with the estimate. (Using a narrow baseline to estimate a direction). Ridge regression protects against relying on these high variance directions.
- Ridge regression implicitly assumes that the output will vary most in the directions of the high variance of the inputs. A reasonable assumption but not always true

Insight into Ridge Regression: What are the d_{j}^{2} 's ?

- The last principal component has minimum variance.
- Hence the small d_{j} correspond to the directions of the column space of \mathbf{X} having small variance.
- Ridge regression shrinks these directions the most !
- The estimated directions v_{j} 's with small d_{j} have more uncertainty associated with the estimate. (Using a narrow baseline to estimate a direction). Ridge regression protects against relying on these high variance directions.
- Ridge regression implicitly assumes that the output will vary most in the directions of the high variance of the inputs. A reasonable assumption but not always true

Insight into Ridge Regression: What are the d_{j}^{2} 's ?

- The last principal component has minimum variance.
- Hence the small d_{j} correspond to the directions of the column space of \mathbf{X} having small variance.
- Ridge regression shrinks these directions the most !
- The estimated directions v_{j} 's with small d_{j} have more uncertainty associated with the estimate. (Using a narrow baseline to estimate a direction). Ridge regression protects against relying on these high variance directions.
- Ridge regression implicitly assumes that the output will vary most in the directions of the high variance of the innuts. A reasonable assumption but not aways true.

Insight into Ridge Regression: What are the d_{j}^{2} 's ?

- The last principal component has minimum variance.
- Hence the small d_{j} correspond to the directions of the column space of \mathbf{X} having small variance.
- Ridge regression shrinks these directions the most !
- The estimated directions v_{j} 's with small d_{j} have more uncertainty associated with the estimate. (Using a narrow baseline to estimate a direction). Ridge regression protects against relying on these high variance directions.
- Ridge regression implicitly assumes that the output will vary most in the directions of the high variance of the inputs. A reasonable assumption but not always true.

Insight into Ridge Regression: What are the d_{j}^{2} 's ?

- The book defines the effective degrees of freedom of the ridge regression fit as

$$
\operatorname{df}_{\text {ridge }}(\lambda)=\sum_{j=1}^{p} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda}
$$

we will derive this later on in the course.

- But it is interesting as
- $\mathrm{df}_{\text {ridge }}(\lambda) \rightarrow p$ when $\lambda \rightarrow 0$ (ordinary least squares) and
- $\operatorname{df}_{\text {ridge }}(\lambda) \rightarrow 0$ when $\lambda \rightarrow \infty$

Back to our regression problem

Regression Example: Face Landmark Estimation

Input

Output

- Given a test image want to predict each of its facial landmark points.
- How well can ridge regression do on this problem?

Regression Example: Face Landmark Estimation

Input

Output

- Given a test image want to predict each of its facial landmark points.
- How well can ridge regression do on this problem?

Landmark estimation using ridge regression

$$
\hat{\beta}_{x, 14} \quad\left|\hat{\beta}_{x, 14}\right| \quad \hat{\beta}_{y, 14} \quad\left|\hat{\beta}_{y, 14}\right|
$$

Estimated Landmark on novel image

$\lambda=10^{2}, \mathrm{df} \approx 187$

$\lambda=10^{3}, \mathrm{df} \approx 97$

Landmark estimation using ridge regression

$$
\hat{\beta}_{x, 14} \quad\left|\hat{\beta}_{x, 14}\right| \quad \hat{\beta}_{y, 14} \quad\left|\hat{\beta}_{y, 14}\right|
$$

Estimated Landmark on novel image

Landmark estimation using ridge regression

$\lambda=1000, \mathrm{df} \approx 97$, Ground truth point, Estimated point

How the coefficients vary with λ

This is an example from the book. Notice how the weights associated with each predictor vary with λ.

The Lasso

Shrinkage Method 2: The Lasso

- The lasso estimate is defined by

$$
\begin{gathered}
\hat{\beta}^{\text {lasso }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \text { subject to } \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t \\
\text { penalty is } L_{1} \text { instead of } L_{2} \text { norm }
\end{gathered}
$$

- Equivalent formulation of the lasso problem is

$$
\hat{\beta}^{\text {lasso }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|
$$

- The solution is non-linear in y_{i} 's and there is no closed form solution.

Shrinkage Method 2: The Lasso

- The lasso estimate is defined by

$$
\begin{gathered}
\hat{\beta}^{\text {lasso }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \text { subject to } \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t \\
\text { penalty is } L_{1} \text { instead of } L_{2} \text { norm }
\end{gathered}
$$

- Equivalent formulation of the lasso problem is

$$
\hat{\beta}^{\text {lasso }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|
$$

- The solution is non-linear in y_{i} 's and there is no closed form solution.

Shrinkage Method 2: The Lasso

- The lasso estimate is defined by

$$
\begin{gathered}
\hat{\beta}^{\text {lasso }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \text { subject to } \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t \\
\text { penalty is } L_{1} \text { instead of } L_{2} \text { norm }
\end{gathered}
$$

- Equivalent formulation of the lasso problem is

$$
\hat{\beta}^{\text {lasso }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|
$$

- The solution is non-linear in y_{i} 's and there is no closed form solution.
- It is convex and is, in fact, a quadratic programming problem.

Shrinkage Method 2: The Lasso

$$
\hat{\beta}^{\text {lasso }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \text { subject to } \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t
$$

- Because of the L_{1} constraint, making t small will force some of the β_{j} 's to be exactly 0 .
- Lasso does some kind of continuous subset selection.
- However the nature of the shrinkage is not so obvious.
- If $t \geq \sum_{j=1}^{p}\left|\hat{\beta}_{j}^{\prime s}\right|$ is sufficiently large, then $\hat{\beta}^{\text {lasso }}=\hat{\beta}^{1 s}$.

Shrinkage Method 2: The Lasso

$$
\hat{\beta}^{\text {lasso }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \text { subject to } \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t
$$

- Because of the L_{1} constraint, making t small will force some of the β_{j} 's to be exactly 0 .
- Lasso does some kind of continuous subset selection.
- However the nature of the shrinkage is not so obvious.
- If $t \geq \sum_{j=1}^{p}\left|\hat{\rho}_{j}^{\mathbf{l}}\right|$ is sufficiently large, then $\hat{\rho}$ lasso $=\hat{\rho}$ ls

Shrinkage Method 2: The Lasso

$$
\hat{\beta}^{\text {lasso }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \text { subject to } \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t
$$

- Because of the L_{1} constraint, making t small will force some of the β_{j} 's to be exactly 0 .
- Lasso does some kind of continuous subset selection.
- However the nature of the shrinkage is not so obvious.
- If $t \geq \sum_{j=1}^{p}\left|\hat{\beta}_{j}^{\mid s}\right|$ is sufficiently large, then $\hat{\beta}^{\text {lasso }}=\hat{\beta}^{\text {ls }}$.

Shrinkage Method 2: The Lasso

$$
\hat{\beta}^{\text {lasso }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \text { subject to } \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t
$$

- Because of the L_{1} constraint, making t small will force some of the β_{j} 's to be exactly 0 .
- Lasso does some kind of continuous subset selection.
- However the nature of the shrinkage is not so obvious.
- If $t \geq \sum_{j=1}^{p}\left|\hat{\beta}_{j}^{\text {ls }}\right|$ is sufficiently large, then $\hat{\beta}^{\text {lasso }}=\hat{\beta}^{\text {ls }}$.

Back to our regression problem

Landmark estimation using lasso

$$
\hat{\beta}_{x, 14} \quad\left|\hat{\beta}_{x, 14}\right| \quad \hat{\beta}_{y, 14} \quad\left|\hat{\beta}_{y, 14}\right|
$$

Estimated Landmark on novel image

Landmark estimation using lasso

$$
\hat{\beta}_{x, 14} \quad\left|\hat{\beta}_{x, 14}\right| \quad \hat{\beta}_{y, 14} \quad\left|\hat{\beta}_{y, 14}\right|
$$

Estimated Landmark on novel image

$$
\lambda=.3, \mathrm{df} \approx 21
$$

$\lambda=.5, \mathrm{df} \approx 7$

$\lambda=.7, \mathrm{df} \approx 2$

Landmark estimation using lasso regression

$\lambda=.04, \mathrm{df} \approx 93$, Ground truth point, Estimated point

Subset Selection Vs Ridge Regression Vs Lasso

When X has orthonormal columns

- This implies $d_{j}=1$ for $j=1, \ldots, p$.
- In this case each method applies a simple transformation to $\hat{\beta}_{j}^{\mathrm{Is}}$:

Estimator	Formula
Best subset $($ size $M)$	$\hat{\beta}_{j}^{\text {ss }} \cdot \operatorname{Ind}\left(\left\|\hat{\beta}_{j}^{\text {s }}\right\| \geq\left\|\hat{\beta}_{M}^{\text {s }}\right\|\right)$
Ridge	$\hat{\beta}_{j}^{\text {ss }} /(1+\lambda)$
Lasso	$\operatorname{sign}\left(\hat{\beta}_{j}^{\text {ss }}\right)\left(\left\|\hat{\beta}_{j}^{\mid s}\right\|-\lambda\right)_{+}$

where $\hat{\beta}_{M}^{\mathrm{l}}$ is the M th largest coefficient.

Ridge Regression Vs Lasso

When X does not have orthogonal columns

- Red elliptical contours show the iso-scores of $\operatorname{RSS}(\beta)$.
- Cyan regions show the feasible regions $\beta_{1}^{2}+\beta_{2}^{2} \leq t^{2}$ and $\left|\beta_{1}\right|+\left|\beta_{2}\right| \leq t$ resp.

Ridge regression

Lasso

Ridge Regression Vs Lasso

When X does not have orthogonal columns

- Both methods choose the first point where the elliptical contours hit the constraint region.
- The Lasso region has corners, if then solution occurs at a corner then one $\beta_{j}=0$.
- When $p>2$ the diamond becomes a rhomboid with many corners and flat edges \Longrightarrow many opportunities for β_{j} 's to be 0 .

Ridge regression

Lasso

Generalization of ridge and lasso regression

$$
\hat{\beta}=\arg \min _{\beta}\left\{\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|^{q}\right\}
$$

- $q=0$ - Variable subset selection
- $q=1$ - Lasso
- $q=2$ - Ridge regression

Generalization of ridge and lasso regression

$$
\hat{\beta}=\arg \min _{\beta}\left\{\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|^{q}\right\}
$$

- Can try other values of q.
- When $q \geq 1$ still have a convex problem.
- When $0 \leq q<1$ do not have a convex problem.
- When $q \leq 1$ sparse solutions are explicitly encouraged.
- When $q>1$ cannot set coefficients to zero.

Elastic-net penalty

A compromise between the ridge and lasso penalty is the Elastic net penalty:

$$
\lambda \sum_{j=1}^{p}\left(\alpha \beta_{j}^{2}+(1-\alpha)\left|\beta_{j}\right|\right)
$$

The elastic-net

- select variables like the lasso and
- shrinks together the coefficients of correlated predictors like ridge regression.

Effective degrees of freedom

Definition of the effective degrees of freedom

- Traditionally the number of linearly independent parameters is what is meant by degrees of freedom.
- If we carry out a best subset selection to determine the optimal set of k predictors, then surely we have used more than k dofs.
- A more general definition for the effective degrees of freedom of adaptively fitted is

where $\operatorname{Cov}\left(\hat{y}_{i}, y_{i}\right)$ is the estimate of the
- Intuitively the harder we fit to the data, the larger the covariance and hence $\operatorname{df}(\hat{y})$

Definition of the effective degrees of freedom

- Traditionally the number of linearly independent parameters is what is meant by degrees of freedom.
- If we carry out a best subset selection to determine the optimal set of k predictors, then surely we have used more than k dofs.
- A more general definition for the effective degrees of freedom of adaptively fitted is

where $\operatorname{Cov}\left(\hat{y}_{i}, y_{i}\right)$ is the estimate of the
- Intuitively the harder we fit to the data, the larger the covariance and hence $\operatorname{df}(\hat{y})$

Definition of the effective degrees of freedom

- Traditionally the number of linearly independent parameters is what is meant by degrees of freedom.
- If we carry out a best subset selection to determine the optimal set of k predictors, then surely we have used more than k dofs.
- A more general definition for the effective degrees of freedom of adaptively fitted is

$$
\operatorname{df}(\hat{y})=\frac{1}{\sigma^{2}} \sum_{i=1}^{n} \operatorname{Cov}\left(\hat{y}_{i}, y_{i}\right)
$$

where $\operatorname{Cov}\left(\hat{y}_{i}, y_{i}\right)$ is the estimate of the

- Intuitively the harder we fit to the data, the larger the covariance and hence $\operatorname{df}(\hat{y})$

Definition of the effective degrees of freedom

- Traditionally the number of linearly independent parameters is what is meant by degrees of freedom.
- If we carry out a best subset selection to determine the optimal set of k predictors, then surely we have used more than k dofs.
- A more general definition for the effective degrees of freedom of adaptively fitted is

$$
\operatorname{df}(\hat{y})=\frac{1}{\sigma^{2}} \sum_{i=1}^{n} \operatorname{Cov}\left(\hat{y}_{i}, y_{i}\right)
$$

where $\operatorname{Cov}\left(\hat{y}_{i}, y_{i}\right)$ is the estimate of the

- Intuitively the harder we fit to the data, the larger the covariance and hence $\operatorname{df}(\hat{y})$

