Some Course Admin

For those wanting to do some programming?

- Assignment 1 By Monday the 2nd of April send me \sim 1 page describing a problem related to your research you would like to tackle with the methods introduced so far in the course.
- In this description include some of the methods/algorithms you would will use and why.
- Assignment 2 Will obviously be implementing this plan!

Deadline for the homework exercises

- **Deadline for homework sets 1, 2,3** Monday the 2nd of April.
- Note this deadline is only to ensure you get the homework corrected in a timely fashion!

Chapter 3: Linear Methods for Regression

DD3364

March 16, 2012

• Simple and Interpretable

$$E[Y \mid X] = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p \tag{1}$$

Can outperform non-linear methods when one has

- a small number of training examples
- low signal-to-noise ratio
- sparse data
- Can be made non-linear by applying a non-linear transformation to the data.

• Simple and Interpretable

$$E[Y \mid X] = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p \tag{1}$$

- · Can outperform non-linear methods when one has
 - a small number of training examples
 - low signal-to-noise ratio
 - sparse data
- Can be made non-linear by applying a non-linear transformation to the data.

• Simple and Interpretable

$$E[Y \mid X] = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p \tag{1}$$

- · Can outperform non-linear methods when one has
 - a small number of training examples
 - low signal-to-noise ratio
 - sparse data
- Can be made non-linear by applying a non-linear transformation to the data.

Linear Regression Models and Least Squares

- Have an input vector $X = (X_1, X_2, \dots, X_p)^t$.
- Want to predict a real-valued output Y.
- The linear regression has the form

$$f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

How to estimate β :

- Training data: $(x_1, y_1), \ldots, (x_n, y_n)$ each $x_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$
- Estimate parameters: Choose β which minimizes

$$RSS(\beta) = \sum_{i=1}^{n} (y_i - f(x_i))^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$$

Linear Regression Models and Least Squares

- Have an input vector $X = (X_1, X_2, \dots, X_p)^t$.
- Want to predict a real-valued output Y.
- The linear regression has the form

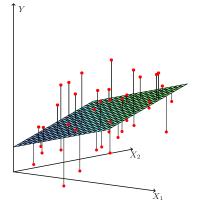
$$f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

How to estimate β :

- Training data: $(x_1, y_1), \ldots, (x_n, y_n)$ each $x_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$
- Estimate parameters: Choose β which minimizes

$$\operatorname{RSS}(\beta) = \sum_{i=1}^{n} (y_i - f(x_i))^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$$
residual sum-of-squares

Linear least squares fitting



Find β which minimizes the sum-of-squared residuals from Y.

• Training data:

 $(x_1, y_1), \dots, (x_n, y_n)$ each $x_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$

• Estimate parameters: Choose β which minimizes

$$RSS(\beta) = \sum_{i=1}^{n} (y_i - f(x_i))^2$$
$$= \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$$

Minimizing $RSS(\beta)$

• Re-write

$$\operatorname{RSS}(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$$

in vector and matrix notation as

$$RSS(\beta) = (y - \mathbf{X}\beta)^t (y - \mathbf{X}\beta)$$

where

$$\beta = (\beta_0, \beta_1, \dots, \beta_p)^t, \quad \mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}$$

and $y = (y_1, ..., y_n)^t$.

Minimizing $RSS(\beta)$

• Want to find β which minimizes

$$RSS(\beta) = (y - \mathbf{X}\beta)^t (y - \mathbf{X}\beta)$$

• Differentiate $RSS(\beta)$ w.r.t. β to obtain

$$\frac{\partial \operatorname{RSS}}{\partial \beta} = -2\mathbf{X}^{t} \left(y - \mathbf{X} \beta \right)$$

- Assume ${\bf X}$ has full column rank \implies is positive definite, set

$$\frac{\partial \operatorname{RSS}}{\partial \beta} = -2\mathbf{X}^t \left(y - \mathbf{X} \,\beta \right) = 0$$

to obtain the unique solution

$$\hat{\beta} = (X^t X)^{-1} X^t y$$

Minimizing $RSS(\beta)$

• Want to find β which minimizes

$$RSS(\beta) = (y - \mathbf{X}\beta)^t (y - \mathbf{X}\beta)$$

• Differentiate $\operatorname{RSS}(\beta)$ w.r.t. β to obtain

$$\frac{\partial \operatorname{RSS}}{\partial \beta} = -2\mathbf{X}^{t} \left(y - \mathbf{X} \beta \right)$$

- Assume ${\bf X}$ has full column rank \implies is positive definite, set

$$\frac{\partial \operatorname{RSS}}{\partial \beta} = -2\mathbf{X}^t \left(y - \mathbf{X} \,\beta \right) = 0$$

to obtain the unique solution

$$\hat{\beta} = (X^t X)^{-1} X^t y$$

• Want to find β which minimizes

$$RSS(\beta) = (y - \mathbf{X}\beta)^t (y - \mathbf{X}\beta)$$

• Differentiate $\operatorname{RSS}(\beta)$ w.r.t. β to obtain

$$\frac{\partial \operatorname{RSS}}{\partial \beta} = -2\mathbf{X}^{t} \left(y - \mathbf{X} \beta \right)$$

- Assume ${\bf X}$ has full column rank \implies is positive definite, set

$$\frac{\partial\operatorname{RSS}}{\partial\beta} = -2\mathbf{X}^{t}\left(y - \mathbf{X}\,\beta\right) = 0$$

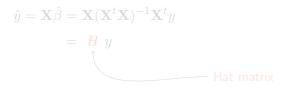
to obtain the unique solution

$$\hat{\beta} = (X^t X)^{-1} X^t y$$

• Given an input x_0 this model predicts its output as

$$\hat{y}_0 = (1, x_0^t) \,\hat{\beta}$$

• The fitted values at the training inputs are



• Given an input x_0 this model predicts its output as

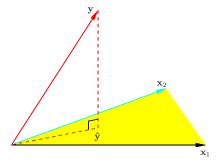
$$\hat{y}_0 = (1, x_0^t)\,\hat{\beta}$$

• The fitted values at the training inputs are

$$\hat{y} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^ty$$

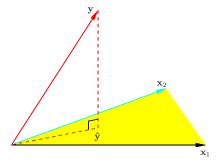
= $H y$
 \bigwedge Hat matrix

Geometric interpretation of the least squares estimate



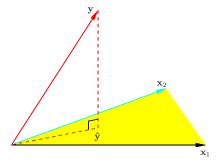
- Let X be the input data matrix.
- Let $x_{.i}$ be the *i*th column of \mathbf{X}
- In the figure the vector of outputs y is orthogonally projected onto the hyperplane spanned by the vectors $x_{.1}$ and $x_{.2}$.
- The projection \hat{y} represents the least squares estimate.
- The hat matrix *H* computes the orthogonal projection.

Geometric interpretation of the least squares estimate



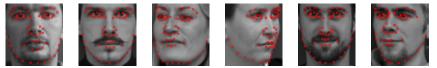
- Let X be the input data matrix.
- Let $x_{.i}$ be the *i*th column of **X**
- In the figure the vector of outputs y is orthogonally projected onto the hyperplane spanned by the vectors $x_{.1}$ and $x_{.2}$.
- The projection \hat{y} represents the least squares estimate.
- The hat matrix H computes the orthogonal projection.

Geometric interpretation of the least squares estimate



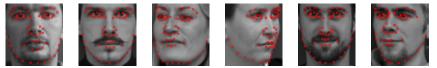
- Let X be the input data matrix.
- Let $x_{.i}$ be the *i*th column of **X**
- In the figure the vector of outputs y is orthogonally projected onto the hyperplane spanned by the vectors $x_{.1}$ and $x_{.2}$.
- The projection \hat{y} represents the least squares estimate.
- The hat matrix H computes the orthogonal projection.

An example



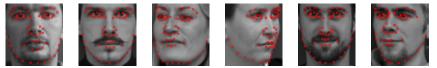
Example of training data

- Have training data in the following format.
 - Input: image of fixed size of a face ($W \times H$ matrix of pixel intensities = vector of length WH)
 - **Output:** coordinates of *F* facial features of the face
- Want to learn F linear regression functions f_i
- f_i maps the image vector to x-coord of the *i*th facial feature.
- Learn also F regression fns g_i for the y-coord.



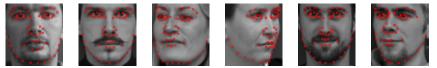
Example of training data

- Have training data in the following format.
 - Input: image of fixed size of a face ($W \times H$ matrix of pixel intensities = vector of length WH)
 - Output: coordinates of F facial features of the face
- Want to learn F linear regression functions f_i
- f_i maps the image vector to x-coord of the *i*th facial feature.
- Learn also F regression fns g_i for the y-coord.



Example of training data

- Have training data in the following format.
 - Input: image of fixed size of a face ($W \times H$ matrix of pixel intensities = vector of length WH)
 - **Output:** coordinates of F facial features of the face
- Want to learn F linear regression functions f_i
- f_i maps the image vector to x-coord of the *i*th facial feature.
- Learn also F regression fns g_i for the y-coord.



Example of training data

- Have training data in the following format.
 - Input: image of fixed size of a face ($W \times H$ matrix of pixel intensities = vector of length WH)
 - **Output:** coordinates of F facial features of the face
- Want to learn F linear regression functions f_i
- f_i maps the image vector to x-coord of the *i*th facial feature.
- Learn also F regression fns g_i for the y-coord.

Input

Output

- Given a test image want to predict each of its facial landmark points.
- How well can ordinary least squares regression do on this problem?

 f_{14}, g_{14}

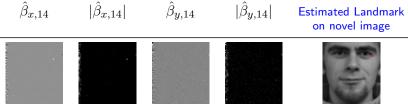
Input

Output

- Given a test image want to predict each of its facial landmark points.
- How well can ordinary least squares regression do on this problem?

 f_{14}, g_{14}

Landmark estimation using ols regression

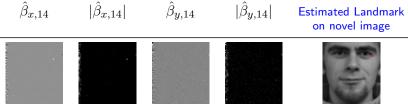


These are not promising weight vectors!

Estimate not even in image

- This problem is too hard for ols regression and it fails miserably.
- p is too large and many of the x_i are highly correlated.

Landmark estimation using ols regression



These are not promising weight vectors!

Estimate not even in image

- This problem is too hard for ols regression and it fails miserably.
- p is too large and many of the x_i are highly correlated.

Singular $\mathbf{X}^t\mathbf{X}$

- Not all the columns of X are linearly independent.
- In this case $\mathbf{X}^t \mathbf{X}$ is singular $\implies \hat{\beta}$ not uniquely defined.
- The fitted values $\hat{y} = \mathbf{X}\hat{\beta}$ are still the projection of y onto the column space of \mathbf{X} but $\exists \gamma \neq \hat{\beta}$ such that

$$\hat{y} = \mathbf{X}\hat{\beta} = \mathbf{X}\gamma$$

- Non-full-rank case occurs when
 - one or more of the qualitative inputs are encoded redundantly,
 - when the number of inputs p > n the number of training examples.

- Not all the columns of X are linearly independent.
- In this case $\mathbf{X}^t \mathbf{X}$ is singular $\implies \hat{\beta}$ not uniquely defined.
- The fitted values ŷ = Xβ̂ are still the projection of y onto the column space of X but ∃γ ≠ β̂ such that

$$\hat{y} = \mathbf{X}\hat{\beta} = \mathbf{X}\gamma$$

- Non-full-rank case occurs when
 - one or more of the qualitative inputs are encoded redundantly,
 - when the number of inputs p > n the number of training examples.

- Not all the columns of X are linearly independent.
- In this case $\mathbf{X}^t \mathbf{X}$ is singular $\implies \hat{\beta}$ not uniquely defined.
- The fitted values $\hat{y} = \mathbf{X}\hat{\beta}$ are still the projection of y onto the column space of \mathbf{X} but $\exists \gamma \neq \hat{\beta}$ such that

$$\hat{y} = \mathbf{X}\hat{\beta} = \mathbf{X}\gamma$$

- Non-full-rank case occurs when
 - one or more of the qualitative inputs are encoded redundantly,
 - when the number of inputs p > n the number of training examples.

- Not all the columns of X are linearly independent.
- In this case $\mathbf{X}^t \mathbf{X}$ is singular $\implies \hat{\beta}$ not uniquely defined.
- The fitted values $\hat{y} = \mathbf{X}\hat{\beta}$ are still the projection of y onto the column space of \mathbf{X} but $\exists \gamma \neq \hat{\beta}$ such that

$$\hat{y} = \mathbf{X}\hat{\beta} = \mathbf{X}\gamma$$

- Non-full-rank case occurs when
 - one or more of the qualitative inputs are encoded redundantly,
 - when the number of inputs p > n the number of training examples.

What can we say about the distribution of $\hat{\beta}$?

Analysis of the distribution of $\hat{\beta}$.

- This requires making some assumptions. These are
 - the observations y_i are uncorrelated
 - y_i have constant variance σ^2 and
 - x_i are fixed (non-random) \leftarrow this make analysis easier
- The covariance matrix of \hat{eta} is then

 $\operatorname{Var}(\hat{\beta}) = \operatorname{Var}((\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}y) = (\mathbf{X}^{t}\mathbf{X})^{-1}X^{t}\operatorname{Var}(y)X(\mathbf{X}^{t}\mathbf{X})^{-1}$ $= (\mathbf{X}^{t}\mathbf{X})^{-1}\sigma^{2}$

• Usually one estimates the variance σ^2 with

$$\hat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Analysis of the distribution of $\hat{\beta}$.

- This requires making some assumptions. These are
 - the observations y_i are uncorrelated
 - y_i have constant variance σ^2 and
 - x_i are fixed (non-random) \leftarrow this make analysis easier
- The covariance matrix of $\hat{\beta}$ is then

 $\begin{aligned} \operatorname{Var}(\hat{\beta}) &= \operatorname{Var}((\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t y) = (\mathbf{X}^t \mathbf{X})^{-1} X^t \operatorname{Var}(y) X (\mathbf{X}^t \mathbf{X})^{-1} \\ &= (\mathbf{X}^t \mathbf{X})^{-1} \sigma^2 \end{aligned}$

• Usually one estimates the variance σ^2 with

$$\hat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Analysis of the distribution of $\hat{\beta}$.

- This requires making some assumptions. These are
 - the observations y_i are uncorrelated
 - y_i have constant variance σ^2 and
 - x_i are fixed (non-random) \leftarrow this make analysis easier
- The covariance matrix of $\hat{\beta}$ is then

$$\operatorname{Var}(\hat{\beta}) = \operatorname{Var}((\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}y) = (\mathbf{X}^{t}\mathbf{X})^{-1}X^{t}\operatorname{Var}(y)X(\mathbf{X}^{t}\mathbf{X})^{-1}$$
$$= (\mathbf{X}^{t}\mathbf{X})^{-1}\sigma^{2}$$

• Usually one estimates the variance σ^2 with

$$\hat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• To say more we need to make more assumptions. Therefore assume

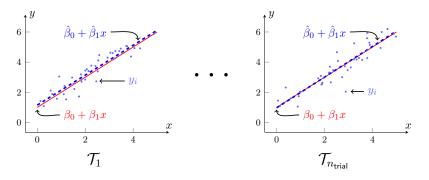
$$Y = \mathcal{E}(Y \mid X_1, X_2, \dots, X_p) + \epsilon$$
$$= \beta_0 + \sum_{i=1}^p X_j \beta_j + \epsilon$$

where $\epsilon \sim N(0,\sigma^2)$

• Then it's easy to show that (assuming non-random x_i)

$$\hat{\beta} \sim N(\beta, (\mathbf{X}^t \mathbf{X})^{-1} \sigma^2)$$

Given this additive model generate \hat{eta}

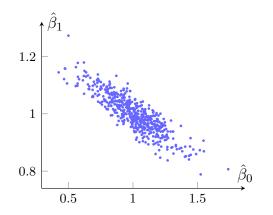


• \mathcal{T} is a training set $\{(x_i, y_i)\}_{i=1}^n$

•
$$\beta = (1,1)^t, n = 40, \sigma = .6$$

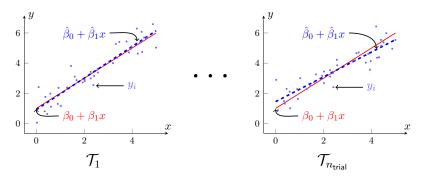
• In this simulation the x_i 's differ across trials.

The distribution of $\hat{\beta}$



Each \mathcal{T}_i results in a different estimate of $\hat{\beta}$. Have plotted these $\hat{\beta}$'s for $n_{\text{trial}} = 500$.

Given this additive model generate \hat{eta}

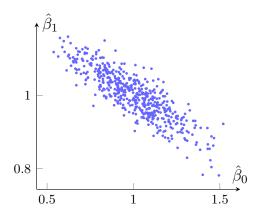


• \mathcal{T} is a training set $\{(x_i, y_i)\}_{i=1}^n$

•
$$\beta = (1,1)^t, n = 40, \sigma = .6$$

• In this simulation the x_i 's are fixed across trials.

The distribution of $\hat{\beta}$



Each \mathcal{T}_i results in a different estimate of $\hat{\beta}$. Have plotted these $\hat{\beta}$'s for $n_{\text{trial}} = 500$.

- To interpret the weights estimated by least squares it would be nice to say which ones are probably zero.
- The associated predictors can then be removed from the model.
- If $\beta_j = 0$ then $\hat{\beta} \sim N(0, \sigma^2 v_{jj})$ where v_{jj} is the *j*th diagonal element of $(\mathbf{X}^t \mathbf{X})^{-1}$.
- Then if the actual value computed for $\hat{\beta}_j$ is larger than $\sigma^2 v_{jj}$ then it is highly improbable that $\beta_j = 0$.
- Statisticians have exact tests based on suitable distributions. In this case compute

$$z_j = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{v_{jj}}}$$

- To interpret the weights estimated by least squares it would be nice to say which ones are probably zero.
- The associated predictors can then be removed from the model.
- If $\beta_j = 0$ then $\hat{\beta} \sim N(0, \sigma^2 v_{jj})$ where v_{jj} is the *j*th diagonal element of $(\mathbf{X}^t \mathbf{X})^{-1}$.
- Then if the actual value computed for $\hat{\beta}_j$ is larger than $\sigma^2 v_{jj}$ then it is highly improbable that $\beta_j = 0$.
- Statisticians have exact tests based on suitable distributions. In this case compute

$$z_j = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{v_{jj}}}$$

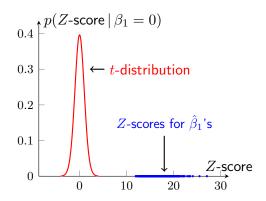
- To interpret the weights estimated by least squares it would be nice to say which ones are probably zero.
- The associated predictors can then be removed from the model.
- If $\beta_j = 0$ then $\hat{\beta} \sim N(0, \sigma^2 v_{jj})$ where v_{jj} is the *j*th diagonal element of $(\mathbf{X}^t \mathbf{X})^{-1}$.
- Then if the actual value computed for $\hat{\beta}_j$ is larger than $\sigma^2 v_{jj}$ then it is highly improbable that $\beta_j = 0$.
- Statisticians have exact tests based on suitable distributions. In this case compute

$$z_j = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{v_{jj}}}$$

- To interpret the weights estimated by least squares it would be nice to say which ones are probably zero.
- The associated predictors can then be removed from the model.
- If $\beta_j = 0$ then $\hat{\beta} \sim N(0, \sigma^2 v_{jj})$ where v_{jj} is the *j*th diagonal element of $(\mathbf{X}^t \mathbf{X})^{-1}$.
- Then if the actual value computed for $\hat{\beta}_j$ is larger than $\sigma^2 v_{jj}$ then it is highly improbable that $\beta_j = 0$.
- Statisticians have exact tests based on suitable distributions. In this case compute

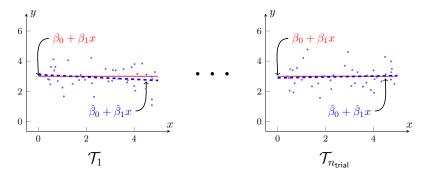
$$z_j = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{v_{jj}}}$$

Is β_1 zero?



- For the example we had with $\beta = (1, 1)^t$, n = 40 and $\sigma = .6$ then the *t*-distribution of z_1 is shown if $\beta_j = 0$.
- The z_1 computed from each $\hat{\beta}$ estimated with \mathcal{T}_i is shown.
- Obviously even if we didn't know $\hat{\beta}$ and only saw one \mathcal{T}_i we would not think $\beta_j \neq 0$.

Look at an example when $\beta_1 = 0$

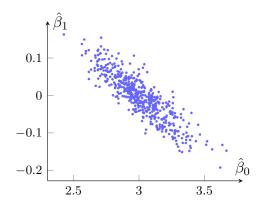


• \mathcal{T} is a training set $\{(x_i, y_i)\}_{i=1}^n$

•
$$\beta = (3,0)^t, n = 40, \sigma = .6$$

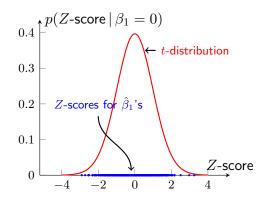
• In this simulation the x_i 's are fixed across trials.

The distribution of $\hat{\beta}$



Each \mathcal{T}_i results in a different estimate of $\hat{\beta}$. Have plotted these $\hat{\beta}$'s for $n_{\text{trial}} = 500$.

Is β_1 zero?



- For this example we have $\beta = (3,0)^t$, n = 40 and $\sigma = .6$ then the *t*-distribution of z_1 is shown if $\beta_j = 0$
- The z_1 's computed from the \hat{eta} estimated with \mathcal{T}_i are shown.
- Obviously even if we didn't know β̂ and only saw one T_i we would conclude in most trials that β_j ≠ 0.

We will not look into these but you can

- test for the significance of groups of coefficients simultaneously
- get confidence bounds for β_j centred at $\hat{\beta}_j$.

Gauss-Markov Theorem

• A famous result in statistics

The least squares estimate $\hat{\beta}^{ls}$ of the parameters β has the smallest variance among all linear unbiased estimates.

- To explain a simple case of the theorem. Let $\theta = a^t \beta$.
- The least squares estimate of $a^t\beta$ is

$$\hat{\theta} = a^t \hat{\beta}^{\mathsf{ls}} = a^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t y$$

If **X** is fixed this is a linear function, $c_0^t y$, of the response vector y.

• If we assume $E[y] = X\beta$ then $a^t \hat{\beta}^{ls}$ is unbiased $E[a^t \hat{\beta}^{ls}] = E[a^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t y] = a^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{X}\beta = a^t \beta = \theta$

Gauss-Markov Theorem: Simple example

- Gauss-Markov Theorem states any other linear estimator $\tilde{\theta} = c^t y$ that is unbiased for $a^t \beta$ has

 $\operatorname{Var}[a^t \hat{\beta}^{\mathsf{ls}}] \leq \operatorname{Var}[c^t y]$

- Have only stated the result for the estimation of one parameter $a^t\beta$ but can state it in terms of the entire parameter vector β .
- However, having an unbiased estimator is not always crucial.

Gauss-Markov Theorem: Simple example

- Gauss-Markov Theorem states any other linear estimator $\tilde{\theta} = c^t y$ that is unbiased for $a^t \beta$ has

$$\operatorname{Var}[a^t \hat{\beta}^{\mathsf{ls}}] \leq \operatorname{Var}[c^t y]$$

- Have only stated the result for the estimation of one parameter $a^t\beta$ but can state it in terms of the entire parameter vector β .
- However, having an unbiased estimator is not always crucial.

Gauss-Markov Theorem: Simple example

- Gauss-Markov Theorem states any other linear estimator $\tilde{\theta} = c^t y$ that is unbiased for $a^t \beta$ has

$$\operatorname{Var}[a^t \hat{\beta}^{\mathsf{ls}}] \leq \operatorname{Var}[c^t y]$$

- Have only stated the result for the estimation of one parameter $a^t\beta$ but can state it in terms of the entire parameter vector β .
- However, having an unbiased estimator is not always crucial.

The Bias - Variance Trade-off (once again!)

• Consider the mean-squared error of an estimator $\bar{\theta}$ in estimating θ

$$MSE(\tilde{\theta}) = E((\tilde{\theta} - \theta)^{2})$$
$$= Var(\tilde{\theta}) + (E(\tilde{\theta}) - \theta)^{2}$$
$$\uparrow$$
$$\downarrow$$
variance bias

- Gauss-Markov says the least square estimator has the smallest MSE for all linear estimators with zero bias.
- But there may be biased estimates with smaller MSE.
- In these cases have traded an increase in squared bias for a reduction in variance.

The Bias - Variance Trade-off (once again!)

• Consider the mean-squared error of an estimator $\bar{\theta}$ in estimating θ

$$MSE(\tilde{\theta}) = E((\tilde{\theta} - \theta)^{2})$$
$$= Var(\tilde{\theta}) + (E(\tilde{\theta}) - \theta)^{2}$$
$$\uparrow$$
$$\downarrow$$
variance bias

- Gauss-Markov says the least square estimator has the smallest MSE for all linear estimators with zero bias.
- But there may be biased estimates with smaller MSE.
- In these cases have traded an increase in squared bias for a reduction in variance.

The Bias - Variance Trade-off (once again!)

• Consider the mean-squared error of an estimator $\bar{\theta}$ in estimating θ

$$MSE(\tilde{\theta}) = E((\tilde{\theta} - \theta)^{2})$$
$$= Var(\tilde{\theta}) + (E(\tilde{\theta}) - \theta)^{2}$$
$$\uparrow$$
$$\downarrow$$
variance bias

- Gauss-Markov says the least square estimator has the smallest MSE for all linear estimators with zero bias.
- But there may be biased estimates with smaller MSE.
- In these cases have traded an increase in squared bias for a reduction in variance.

Simple Univariate Regression and Gram-Schmidt

· Suppose we have univariate model with no intercept

$$Y = X\beta + \epsilon$$

• The least square estimate is

$$\hat{\beta} = \frac{\langle x, y \rangle}{\langle x, x \rangle}$$

where $x = (x_1, x_2, ..., x_n)^t$ and $y = (y_1, y_2, ..., y_n)$.

• The residuals are given by

$$r = y - x^t \hat{\beta}$$

• Say $x_i \in \mathbb{R}^p$ and the columns of $\mathbf X$ are orthogonal then

$$\hat{\beta}_j = \frac{\langle x_{.j}, y \rangle}{\langle x_{.j}, x_{.j} \rangle},$$

where $x_{.j}$ is *j*th column of **X**

· Suppose we have univariate model with no intercept

$$Y = X\beta + \epsilon$$

• The least square estimate is

$$\hat{\beta} = \frac{\langle x, y \rangle}{\langle x, x \rangle}$$

where $x = (x_1, x_2, ..., x_n)^t$ and $y = (y_1, y_2, ..., y_n)$.

• The residuals are given by

$$r = y - x^t \hat{\beta}$$

• Say $x_i \in \mathbb{R}^p$ and the columns of $\mathbf X$ are orthogonal then

$$\hat{\beta}_j = \frac{\langle x_{.j}, y \rangle}{\langle x_{.j}, x_{.j} \rangle},$$

where $x_{.j}$ is *j*th column of **X**

· Suppose we have univariate model with no intercept

$$Y = X\beta + \epsilon$$

• The least square estimate is

$$\hat{\beta} = \frac{\langle x, y \rangle}{\langle x, x \rangle}$$

where $x = (x_1, x_2, ..., x_n)^t$ and $y = (y_1, y_2, ..., y_n)$.

• The residuals are given by

$$r = y - x^t \hat{\beta}$$

• Say $x_i \in \mathbb{R}^p$ and the columns of \mathbf{X} are orthogonal then

$$\hat{\beta}_j = \frac{\langle x_{.j}, y \rangle}{\langle x_{.j}, x_{.j} \rangle},$$

where $x_{.j}$ is *j*th column of **X**

· Suppose we have univariate model with no intercept

$$Y = X\beta + \epsilon$$

• The least square estimate is

$$\hat{\beta} = \frac{\langle x, y \rangle}{\langle x, x \rangle}$$

where
$$x = (x_1, x_2, ..., x_n)^t$$
 and $y = (y_1, y_2, ..., y_n)$.

• The residuals are given by

$$r = y - x^t \hat{\beta}$$

• Say $x_i \in \mathbb{R}^p$ and the columns of \mathbf{X} are orthogonal then

$$\hat{eta}_j = rac{\langle x_{.j}, y
angle}{\langle x_{.j}, x_{.j}
angle}, \qquad$$
 where $x_{.j}$ is j th column of ${f X}$

OLS via successive orthogonalization

- X acquired from observations are rarely orthogonal.
- Hence they have to be orthogonalized to take advantage the previous insight.
- $x_{.0}$ be the 0th column of $\mathbf{X} \in \mathbb{R}^{n \times 2}$ (vector of ones) then

• Regress $x_{.1}$ on $x_{.0}$ that is $\hat{\gamma} = \frac{\langle x_{.0}, x_{.1} \rangle}{\langle x_{.0}, x_{.0} \rangle}$ and let $z = x_{.1} - \hat{\gamma} x_{.0}$

• Regress
$$y$$
 on z then $\hat{\beta}_1 = \frac{\langle x_{.1}, z \rangle}{\langle x_{.1}, x_{.1} \rangle}$

- Then $y \approx \hat{\beta}_1 z = \hat{\beta}_1 (x_{.1} \hat{\gamma} x_{.0}) = \mathbf{X} \hat{\beta}$ where $\hat{\beta} = (\hat{\beta}_1, -\hat{\beta}_1 \hat{\gamma})^t$. The solution is same as if one had directly calculated $\hat{\beta}^{ls}$. Have just used an orthogonal basis for the col. space of \mathbf{X}
- Note Step 1 orthogonalized $x_{.1}$ w.r.t. $x_{.0}$.
- Step 2 is simple univariate regression using the orthogonal predictors $x_{.0}$ and z.

- X acquired from observations are rarely orthogonal.
- Hence they have to be orthogonalized to take advantage the previous insight.
- $x_{.0}$ be the 0th column of $\mathbf{X} \in \mathbb{R}^{n imes 2}$ (vector of ones) then
 - Regress $x_{.1}$ on $x_{.0}$ that is $\hat{\gamma} = \frac{\langle x_{.0}, x_{.1} \rangle}{\langle x_{.0}, x_{.0} \rangle}$ and let $z = x_{.1} \hat{\gamma} x_{.0}$

• Regress
$$y$$
 on z then $\hat{\beta}_1 = \frac{\langle x_{.1}, z \rangle}{\langle x_{.1}, x_{.1} \rangle}$

- Then $y \approx \hat{\beta}_1 z = \hat{\beta}_1 (x_{.1} \hat{\gamma} x_{.0}) = \mathbf{X} \hat{\beta}$ where $\hat{\beta} = (\hat{\beta}_1, -\hat{\beta}_1 \hat{\gamma})^t$. The solution is same as if one had directly calculated $\hat{\beta}^{\text{ls}}$. Have just used an orthogonal basis for the col. space of \mathbf{X}
- Note Step 1 orthogonalized $x_{.1}$ w.r.t. $x_{.0}$.
- Step 2 is simple univariate regression using the orthogonal predictors $x_{.0}$ and z.

- X acquired from observations are rarely orthogonal.
- Hence they have to be orthogonalized to take advantage the previous insight.
- $x_{.0}$ be the 0th column of $\mathbf{X} \in \mathbb{R}^{n imes 2}$ (vector of ones) then
 - Regress $x_{.1}$ on $x_{.0}$ that is $\hat{\gamma} = \frac{\langle x_{.0}, x_{.1} \rangle}{\langle x_{.0}, x_{.0} \rangle}$ and let $z = x_{.1} \hat{\gamma} x_{.0}$

• Regress
$$y$$
 on z then $\hat{\beta}_1 = \frac{\langle x_{.1}, z \rangle}{\langle x_{.1}, x_{.1} \rangle}$

- Then $y \approx \hat{\beta}_1 z = \hat{\beta}_1 (x_{.1} \hat{\gamma} x_{.0}) = \mathbf{X} \hat{\beta}$ where $\hat{\beta} = (\hat{\beta}_1, -\hat{\beta}_1 \hat{\gamma})^t$. The solution is same as if one had directly calculated $\hat{\beta}^{\text{ls}}$. Have just used an orthogonal basis for the col. space of \mathbf{X}
- Note Step 1 orthogonalized $x_{.1}$ w.r.t. $x_{.0}$.
- Step 2 is simple univariate regression using the orthogonal predictors $x_{.0}$ and z.

- X acquired from observations are rarely orthogonal.
- Hence they have to be orthogonalized to take advantage the previous insight.
- $x_{.0}$ be the 0th column of $\mathbf{X} \in \mathbb{R}^{n imes 2}$ (vector of ones) then
 - Regress $x_{.1}$ on $x_{.0}$ that is $\hat{\gamma} = \frac{\langle x_{.0}, x_{.1} \rangle}{\langle x_{.0}, x_{.0} \rangle}$ and let $z = x_{.1} \hat{\gamma} x_{.0}$

• Regress
$$y$$
 on z then $\hat{\beta}_1 = \frac{\langle x_{.1}, z \rangle}{\langle x_{.1}, x_{.1} \rangle}$

- Then $y \approx \hat{\beta}_1 z = \hat{\beta}_1 (x_{.1} \hat{\gamma} x_{.0}) = \mathbf{X} \hat{\beta}$ where $\hat{\beta} = (\hat{\beta}_1, -\hat{\beta}_1 \hat{\gamma})^t$. The solution is same as if one had directly calculated $\hat{\beta}^{\text{ls}}$. Have just used an orthogonal basis for the col. space of \mathbf{X}
- Note Step 1 orthogonalized $x_{.1}$ w.r.t. $x_{.0}$.
- Step 2 is simple univariate regression using the orthogonal predictors $x_{.0}$ and z.

OLS via successive orthogonalization

- Can extend the process to when x_i 's are *p*-dimensional.
- See Algorithm 3.1 in the book.
- At each iteration *j* a multiple least squares regression problem with *j*th orthogonal inputs is solved.
- And after this a new residual is formed which is orthogonal to all these current directions.
- This process is the Gram-Schmidt regression procedure.

OLS via successive orthogonalization

- Can extend the process to when x_i 's are *p*-dimensional.
- See Algorithm 3.1 in the book.
- At each iteration *j* a multiple least squares regression problem with *j*th orthogonal inputs is solved.
- And after this a new residual is formed which is orthogonal to all these current directions.
- This process is the **Gram-Schmidt** regression procedure.

Subset Selection

Inadequacies of least squares estimates

• Prediction Accuracy

Least squares estimates often have

- Low bias and high variance
- This can affect prediction accuracy
- Frequently better to set some of the β_j 's to zero.
- This increases the bias but reduces the variance and in turn improve prediction accuracy.

Interpretation

For p large, it may be difficult to decipher the important factors.

• Therefore would like to determine a smaller subset of predictors which are most informative. May sacrifice *small detail* for the *big picture*.

• Prediction Accuracy

Least squares estimates often have

- Low bias and high variance
- This can affect prediction accuracy
- Frequently better to set some of the β_j 's to zero.
- This increases the bias but reduces the variance and in turn improve prediction accuracy.

Interpretation

For p large, it may be difficult to decipher the important factors.

• Therefore would like to determine a smaller subset of predictors which are most informative. May sacrifice *small detail* for the *big picture*.

• Prediction Accuracy

Least squares estimates often have

- Low bias and high variance
- This can affect prediction accuracy
- Frequently better to set some of the β_j 's to zero.
- This increases the bias but reduces the variance and in turn improve prediction accuracy.

Interpretation

For p large, it may be difficult to decipher the important factors.

 Therefore would like to determine a smaller subset of predictors which are most informative.
 May sacrifice *small detail* for the *big picture*.

• Prediction Accuracy

Least squares estimates often have

- Low bias and high variance
- This can affect prediction accuracy
- Frequently better to set some of the β_j 's to zero.
- This increases the bias but reduces the variance and in turn improve prediction accuracy.

Interpretation

For p large, it may be difficult to decipher the important factors.

 Therefore would like to determine a smaller subset of predictors which are most informative.
 May sacrifice *small detail* for the *big picture*.

• Prediction Accuracy

Least squares estimates often have

- Low bias and high variance
- This can affect prediction accuracy
- Frequently better to set some of the β_j 's to zero.
- This increases the bias but reduces the variance and in turn improve prediction accuracy.

Interpretation

For p large, it may be difficult to decipher the important factors.

 Therefore would like to determine a smaller subset of predictors which are most informative.
 May sacrifice *small detail* for the *big picture*.

• Best subset regression finds for $k \in \{0, 1, 2, ..., p\}$ the $j_1, j_2, ..., j_k$ with each $j_l \in \{1, 2, ..., p\}$ s.t.

$$RSS(j_1, j_2, \dots, j_k) = \min_{\beta_0, \beta_{j_1}, \dots, \beta_{j_l}} \sum_{i=1}^n (y_i - \beta_0 - \sum_{l=1}^k \beta_{j_l} x_{i,j_l})^2$$

- There are $\begin{pmatrix} p \\ k \end{pmatrix}$ different subsets to try for a given k.
- If $p \le 40$ there exist computational feasible algorithms for finding these best subsets of size k.
- Question still remains of how to choose best value of k.
- Once again it is a trade-off between bias and variance....

• Best subset regression finds for $k \in \{0, 1, 2, ..., p\}$ the $j_1, j_2, ..., j_k$ with each $j_l \in \{1, 2, ..., p\}$ s.t.

$$RSS(j_1, j_2, \dots, j_k) = \min_{\beta_0, \beta_{j_1}, \dots, \beta_{j_l}} \sum_{i=1}^n (y_i - \beta_0 - \sum_{l=1}^k \beta_{j_l} x_{i,j_l})^2$$

- There are $\begin{pmatrix} p \\ k \end{pmatrix}$ different subsets to try for a given k.
- If $p \le 40$ there exist computational feasible algorithms for finding these best subsets of size k.
- Question still remains of how to choose best value of k.
- Once again it is a trade-off between bias and variance....

• Best subset regression finds for $k \in \{0, 1, 2, ..., p\}$ the $j_1, j_2, ..., j_k$ with each $j_l \in \{1, 2, ..., p\}$ s.t.

$$RSS(j_1, j_2, \dots, j_k) = \min_{\beta_0, \beta_{j_1}, \dots, \beta_{j_l}} \sum_{i=1}^n (y_i - \beta_0 - \sum_{l=1}^k \beta_{j_l} x_{i,j_l})^2$$

• There are
$$egin{pmatrix}p\\k\end{pmatrix}$$
 different subsets to try for a given k .

- If $p \le 40$ there exist computational feasible algorithms for finding these best subsets of size k.
- Question still remains of how to choose best value of k.
- Once again it is a trade-off between bias and variance....

• Best subset regression finds for $k \in \{0, 1, 2, ..., p\}$ the $j_1, j_2, ..., j_k$ with each $j_l \in \{1, 2, ..., p\}$ s.t.

$$RSS(j_1, j_2, \dots, j_k) = \min_{\beta_0, \beta_{j_1}, \dots, \beta_{j_l}} \sum_{i=1}^n (y_i - \beta_0 - \sum_{l=1}^k \beta_{j_l} x_{i,j_l})^2$$

• There are
$$egin{pmatrix}p\\k\end{pmatrix}$$
 different subsets to try for a given k .

- If $p \le 40$ there exist computational feasible algorithms for finding these best subsets of size k.
- Question still remains of how to choose best value of k.
- Once again it is a trade-off between bias and variance....

• Best subset regression finds for $k \in \{0, 1, 2, ..., p\}$ the $j_1, j_2, ..., j_k$ with each $j_l \in \{1, 2, ..., p\}$ s.t.

$$RSS(j_1, j_2, \dots, j_k) = \min_{\beta_0, \beta_{j_1}, \dots, \beta_{j_l}} \sum_{i=1}^n (y_i - \beta_0 - \sum_{l=1}^k \beta_{j_l} x_{i,j_l})^2$$

• There are
$$egin{pmatrix}p\\k\end{pmatrix}$$
 different subsets to try for a given k

- If $p \le 40$ there exist computational feasible algorithms for finding these best subsets of size k.
- Question still remains of how to choose best value of k.
- Once again it is a trade-off between bias and variance....

Forward-Stepwise Selection

- Instead of searching all possible subsets (infeasible for large p) can take a greedy approach.
- The steps of Forward-Stepwise Selection are

• Set
$$\mathcal{I} = \{1, \dots, p\}$$

• For $l = 1, \ldots, k$ choose j_l according to

$$j_{l} = \arg\min_{j \in \mathcal{I}} \min_{\beta_{0}, \beta_{j_{1}}, \dots, \beta_{j_{l-1}}, \beta_{j}} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \sum_{s=1}^{l-1} \beta_{j_{s}} x_{ij_{s}} - \beta_{j} x_{ij})^{2}$$

and
$$\mathcal{I} = \mathcal{I} \setminus \{j_{l}\}$$

Forward-Stepwise Selection

- Instead of searching all possible subsets (infeasible for large *p*) can take a greedy approach.
- The steps of Forward-Stepwise Selection are

• Set
$$\mathcal{I} = \{1, \dots, p\}$$

• For $l = 1, \ldots, k$ choose j_l according to

$$j_{l} = \arg\min_{j \in \mathcal{I}} \min_{\beta_{0}, \beta_{j_{1}}, \dots, \beta_{j_{l-1}}, \beta_{j}} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \sum_{s=1}^{l-1} \beta_{j_{s}} x_{ij_{s}} - \beta_{j} x_{ij})^{2}$$

and

 $\mathcal{I}=\mathcal{I}\backslash\{j_l\}$

- Forward-Stepwise may be sub-optimal compared to the best subset selection but may be preferred because
 - It is computational feasible for large $p \gg n.$ Not true for best subset selection.
 - best subset selection may overfit.
 - Forward stepwise will probably produce a function with lower variance but perhaps more bias.

- Forward-Stepwise may be sub-optimal compared to the best subset selection but may be preferred because
 - It is computational feasible for large $p \gg n.$ Not true for best subset selection.
 - best subset selection may overfit.
 - Forward stepwise will probably produce a function with lower variance but perhaps more bias.

- Forward-Stepwise may be sub-optimal compared to the best subset selection but may be preferred because
 - It is computational feasible for large $p \gg n.$ Not true for best subset selection.
 - best subset selection may overfit.
 - Forward stepwise will probably produce a function with lower variance but perhaps more bias.

- Forward-Stepwise may be sub-optimal compared to the best subset selection but may be preferred because
 - It is computational feasible for large $p \gg n.$ Not true for best subset selection.
 - best subset selection may overfit.
 - Forward stepwise will probably produce a function with lower variance but perhaps more bias.

Forward-Stagewise Regression

• The steps of Forward-Stagewise Regression are

• Set
$$\hat{\beta}_0 = \frac{1}{n} \sum_{i=1}^n y_i$$

• Set
$$\hat{\beta}_1 = \hat{\beta}_2 = \cdots = \hat{\beta}_p = 0$$

• At each iteration

$$\begin{split} r_i &= y_i - \hat{\beta}_0 - \sum_{j=1}^p \hat{\beta}_j x_{ij}, \quad \text{compute residual for each example} \\ j^* &= \arg \max_{j \in \mathcal{I}} |\langle x_{.j}, r \rangle| \quad \text{find } X_j \text{ most correlated with } r \\ \hat{\beta}_{j^*} \leftarrow \hat{\beta}_{j^*} + \delta \operatorname{sign}(\langle x_{.j^*}, r \rangle) \end{split}$$

• Stop iterations when the residuals are uncorrelated with all the predictors.

Forward-Stagewise Regression: What to note...

- Only one $\hat{\beta}_j$ is updated at each iteration.
- A $\hat{\beta}_j$ can be updated at several different iterations.
- It can be slow to reach the least squares fit.
- But slow fitting may not be such a bad thing in high dimensional problems.

Forward-Stagewise Regression: What to note...

- Only one $\hat{\beta}_j$ is updated at each iteration.
- A $\hat{\beta}_j$ can be updated at several different iterations.
- It can be slow to reach the least squares fit.
- But slow fitting may not be such a bad thing in high dimensional problems.

Forward-Stagewise Regression: What to note...

- Only one $\hat{\beta}_j$ is updated at each iteration.
- A $\hat{\beta}_j$ can be updated at several different iterations.
- It can be slow to reach the least squares fit.
- But slow fitting may not be such a bad thing in high dimensional problems.

Forward-Stagewise Regression: What to note..

- Only one $\hat{\beta}_j$ is updated at each iteration.
- A $\hat{\beta}_j$ can be updated at several different iterations.
- It can be slow to reach the least squares fit.
- But slow fitting may not be such a bad thing in high dimensional problems.

Shrinkage methods

Why shrinkage methods?

- Selecting a subset of predictors produces a model that is interpretable and probably has lower prediction error than the full model.
- However it is a discrete process ⇒ introduces variation into learning the model.
- Shrinkage methods are more continuous and have a lower variance.

Why shrinkage methods?

- Selecting a subset of predictors produces a model that is interpretable and probably has lower prediction error than the full model.
- However it is a discrete process ⇒ introduces variation into learning the model.
- Shrinkage methods are more continuous and have a lower variance.

Why shrinkage methods?

- Selecting a subset of predictors produces a model that is interpretable and probably has lower prediction error than the full model.
- However it is a discrete process ⇒ introduces variation into learning the model.
- Shrinkage methods are more continuous and have a lower variance.

Ridge Regression

Shrinkage Method 1: Ridge Regression

- Ridge regression shrinks β_j 's by imposing a penalty on their size.
- The ridge coefficients minimize a penalized RSS non-negative complexity pa

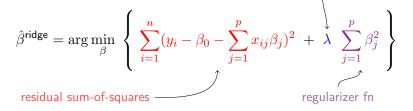
$$\hat{\beta}^{\mathsf{ridge}} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$
residual sum-of-squares regularizer fn

The larger λ ≥ 0 the greater of the amount of shrinkage. This implies β_j's are shrunk toward zero (except β₀).

Shrinkage Method 1: Ridge Regression

- Ridge regression shrinks β_j's by imposing a penalty on their size.
- The ridge coefficients minimize a penalized RSS

non-negative complexity parameter



The larger λ ≥ 0 the greater of the amount of shrinkage. This implies β_j's are shrunk toward zero (except β₀).

Shrinkage Method 1: Ridge Regression

- Ridge regression shrinks β_j's by imposing a penalty on their size.
- The ridge coefficients minimize a penalized RSS

non-negative complexity parameter

$$\hat{\beta}^{\mathsf{ridge}} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$
residual sum-of-squares

The larger λ ≥ 0 the greater of the amount of shrinkage. This implies β_j's are shrunk toward zero (except β₀).

An equivalent formulation of Ridge Regression

$$\hat{\beta}^{\mathsf{ridge}} = \arg\min_{\beta} \; \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \quad \mathsf{subject to} \quad \sum_{j=1}^{p} \beta_j^2 \le t$$

- This formulation puts an explicit constraint on the size of the β_j 's.
- There is a 1-1 correspondence between λ and t in the two formulations.
- Note the estimated $\hat{\beta}^{\rm ridge}$ changes if the scaling of the inputs change.

• The centered version of the input data is

$$\tilde{x}_{ij} = x_{ij} - \sum_{s=1}^{n} x_{sj}$$

Then the ridge regression coefficients found using the centered data

$$\hat{\beta}^{c} = \arg\min_{\beta^{c}} \sum_{i=1}^{n} (y_{i} - \beta_{0}^{c} - \sum_{j=1}^{p} \tilde{x}_{ij} \beta_{j}^{c})^{2} + \lambda \sum_{j=1}^{p} (\beta_{j}^{c})^{2}$$

are related to the coefficients found using the original data via

$$\begin{split} \hat{\beta}_0^c &= \frac{1}{n} \sum_{i=1}^n y_i = \bar{y}, \qquad \hat{\beta}_0^{\mathsf{ridge}} = \bar{y} - \sum_{j=1}^p \bar{x}_{.j} \hat{\beta}_j^{\mathsf{ridge}} \\ \hat{\beta}_j^c &= \hat{\beta}_j^{\mathsf{ridge}} \quad \text{for } i = 1, \dots, p \end{split}$$

- If the y's have zero mean $\implies \hat{\beta}_0^c = 0$
- Can drop the intercept term from the linear model if the input data is centred.
- Then for ridge regression, given all the necessary centering, find the $\beta = (\beta_1, \dots, \beta_p)^t$ which minimizes

$$\hat{\beta} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$
$$= \arg\min_{\beta} \left\{ (y - \mathbf{X}\beta)^t (y - \mathbf{X}\beta) + \lambda \beta^t \beta \right\}$$

where $y = (y_1, \ldots, y_n)^t$ and

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \cdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

- If the y's have zero mean $\implies \hat{\beta}_0^c = 0$
- Can drop the intercept term from the linear model if the input data is centred.
- Then for ridge regression, given all the necessary centering, find the $\beta=(\beta_1,\ldots,\beta_p)^t$ which minimizes

$$\hat{\beta} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$
$$= \arg\min_{\beta} \left\{ (y - \mathbf{X}\beta)^t (y - \mathbf{X}\beta) + \lambda \beta^t \beta \right\}$$

where $y = (y_1, \ldots, y_n)^t$ and

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \cdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

- If the y's have zero mean $\implies \hat{\beta}_0^c = 0$
- Can drop the intercept term from the linear model if the input data is centred.
- Then for ridge regression, given all the necessary centering, find the $\beta=(\beta_1,\ldots,\beta_p)^t$ which minimizes

$$\hat{\beta} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$
$$= \arg\min_{\beta} \left\{ (y - \mathbf{X}\beta)^t (y - \mathbf{X}\beta) + \lambda \beta^t \beta \right\}$$

where $y = (y_1, \ldots, y_n)^t$ and

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \cdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

- For rest of lecture will assume centered input and output data.
- The ridge regression solution is given by

$$\hat{\beta}^{\mathsf{ridge}} = (\mathbf{X}^t \mathbf{X} + \lambda I_p)^{-1} \mathbf{X}^t y$$

 Note that the problem of inverting the potentially singular matrix X^tX is averted as (X^tX + λI_p) is full rank even if X^tX is not.

- For rest of lecture will assume centered input and output data.
- The ridge regression solution is given by

$$\hat{\beta}^{\mathsf{ridge}} = (\mathbf{X}^t \mathbf{X} + \lambda I_p)^{-1} \mathbf{X}^t y$$

 Note that the problem of inverting the potentially singular matrix X^tX is averted as (X^tX + λI_p) is full rank even if X^tX is not.

- For rest of lecture will assume centered input and output data.
- The ridge regression solution is given by

$$\hat{\beta}^{\mathsf{ridge}} = (\mathbf{X}^t \mathbf{X} + \lambda I_p)^{-1} \mathbf{X}^t y$$

 Note that the problem of inverting the potentially singular matrix X^tX is averted as (X^tX + λI_p) is full rank even if X^tX is not.

• Compute the SVD of the $n \times p$ input matrix $\mathbf X$ then

$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^t$

where

- U is an $n \times p$ orthogonal matrix
- V is a $p \times p$ orthogonal matrix
- D is a $p \times p$ diagonal matrix with $d_1 \ge d_2 \ge \cdots \ge d_p \ge 0$.
- Can write least squares fitted vector as

$$\mathbf{X}\hat{\beta}^{\mathsf{ls}} = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t y = \mathbf{U}\mathbf{U}^t y$$

which is the closest approximation to y in the subspace spanned by the columns of U (= column space of X).

$$\begin{split} \mathbf{X} \hat{\beta}^{\mathsf{ridge}} &= \mathbf{X} (\mathbf{X}^t \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^t y \\ &= \mathbf{U} \mathbf{D} (\mathbf{U} \mathbf{D}^2 + \lambda \mathbf{I}_p)^{-1} \mathbf{D} \mathbf{U}^t y \\ &= \sum_{j=1}^p u_j \frac{d_j^2}{d_j^2 + \lambda} u_j^t y, \quad \text{where } u_j \text{'s are columns of } \mathbf{U} \end{split}$$

- As $\lambda \geq 0 \implies d_j^2/(d_j^2 + \lambda) \leq 1$
- Ridge regression computes the coordinates of y wrt to the orthonormal basis of the columns of U.
- It then shrinks these coordinates by the factors $d_j^2/(d_j^2 + \lambda)$.
- More shrinkage applied to basis vectors with smaller d_j^2 .

$$\begin{split} \mathbf{X} \hat{\beta}^{\mathsf{ridge}} &= \mathbf{X} (\mathbf{X}^t \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^t y \\ &= \mathbf{U} \mathbf{D} (\mathbf{U} \mathbf{D}^2 + \lambda \mathbf{I}_p)^{-1} \mathbf{D} \mathbf{U}^t y \\ &= \sum_{j=1}^p u_j \frac{d_j^2}{d_j^2 + \lambda} u_j^t y, \quad \text{where } u_j \text{'s are columns of } \mathbf{U} \end{split}$$

- As $\lambda \geq 0 \implies d_j^2/(d_j^2 + \lambda) \leq 1$
- Ridge regression computes the coordinates of y wrt to the orthonormal basis of the columns of U.
- It then shrinks these coordinates by the factors $d_j^2/(d_j^2 + \lambda)$.
- More shrinkage applied to basis vectors with smaller d_j^2 .

$$\begin{split} \mathbf{X} \hat{\beta}^{\mathsf{ridge}} &= \mathbf{X} (\mathbf{X}^t \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^t y \\ &= \mathbf{U} \mathbf{D} (\mathbf{U} \mathbf{D}^2 + \lambda \mathbf{I}_p)^{-1} \mathbf{D} \mathbf{U}^t y \\ &= \sum_{j=1}^p u_j \frac{d_j^2}{d_j^2 + \lambda} u_j^t y, \quad \text{where } u_j \text{'s are columns of } \mathbf{U} \end{split}$$

- As $\lambda \ge 0 \implies d_j^2/(d_j^2 + \lambda) \le 1$
- Ridge regression computes the coordinates of y wrt to the orthonormal basis of the columns of U.
- It then shrinks these coordinates by the factors $d_j^2/(d_j^2 + \lambda)$.
- More shrinkage applied to basis vectors with smaller d²_i.

$$\begin{split} \mathbf{X} \hat{\beta}^{\mathsf{ridge}} &= \mathbf{X} (\mathbf{X}^t \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^t y \\ &= \mathbf{U} \mathbf{D} (\mathbf{U} \mathbf{D}^2 + \lambda \mathbf{I}_p)^{-1} \mathbf{D} \mathbf{U}^t y \\ &= \sum_{j=1}^p u_j \frac{d_j^2}{d_j^2 + \lambda} u_j^t y, \quad \text{where } u_j \text{'s are columns of } \mathbf{U} \end{split}$$

- As $\lambda \ge 0 \implies d_j^2/(d_j^2 + \lambda) \le 1$
- Ridge regression computes the coordinates of y wrt to the orthonormal basis of the columns of U.
- It then shrinks these coordinates by the factors $d_j^2/(d_j^2 + \lambda)$.
- More shrinkage applied to basis vectors with smaller d²_i.

$$\begin{split} \mathbf{X} \hat{\beta}^{\mathsf{ridge}} &= \mathbf{X} (\mathbf{X}^t \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^t y \\ &= \mathbf{U} \mathbf{D} (\mathbf{U} \mathbf{D}^2 + \lambda \mathbf{I}_p)^{-1} \mathbf{D} \mathbf{U}^t y \\ &= \sum_{j=1}^p u_j \frac{d_j^2}{d_j^2 + \lambda} u_j^t y, \quad \text{where } u_j \text{'s are columns of } \mathbf{U} \end{split}$$

- As $\lambda \ge 0 \implies d_j^2/(d_j^2 + \lambda) \le 1$
- Ridge regression computes the coordinates of y wrt to the orthonormal basis of the columns of U.
- It then shrinks these coordinates by the factors $d_j^2/(d_j^2 + \lambda)$.
- More shrinkage applied to basis vectors with smaller d_j^2 .

• The sample covariance matrix of the data is given by

$$S = \frac{1}{n} \mathbf{X}^t \mathbf{X}$$

From the SVD of \mathbf{X} we know that

 $\mathbf{X}^t \mathbf{X} = \mathbf{V} \mathbf{D}^2 \mathbf{V}^t \quad \longleftarrow$ eigen-decomposition of $\mathbf{X}^t \mathbf{X}$

- The eigenvectors v_j columns of V are the principal component directions of X.
- Project the input of each training example onto the first principal component direction v₁ to get z_i⁽¹⁾ = v₁^tx_i. The variance of the z_i⁽¹⁾'s is given by (remember x_i's are centred)

$$\frac{1}{n}\sum_{i=1}^{n}(z_{i}^{(1)})^{2} = \frac{1}{n}\sum_{i=1}^{n}v_{1}^{t}x_{i}x_{i}^{t}v_{1} = \frac{1}{n}v_{1}^{t}X^{t}Xv_{1} = \frac{d_{1}^{2}}{n}$$

• The sample covariance matrix of the data is given by

$$S = \frac{1}{n} \mathbf{X}^t \mathbf{X}$$

From the SVD of \mathbf{X} we know that

 $\mathbf{X}^t \mathbf{X} = \mathbf{V} \mathbf{D}^2 \mathbf{V}^t \quad \longleftarrow$ eigen-decomposition of $\mathbf{X}^t \mathbf{X}$

- The eigenvectors v_j columns of V are the principal component directions of X.
- Project the input of each training example onto the first principal component direction v₁ to get z_i⁽¹⁾ = v₁^tx_i. The variance of the z_i⁽¹⁾'s is given by (remember x_i's are centred)

$$\frac{1}{n}\sum_{i=1}^{n}(z_{i}^{(1)})^{2} = \frac{1}{n}\sum_{i=1}^{n}v_{1}^{t}x_{i}x_{i}^{t}v_{1} = \frac{1}{n}v_{1}^{t}X^{t}Xv_{1} = \frac{d_{1}^{2}}{n}$$

• The sample covariance matrix of the data is given by

$$S = \frac{1}{n} \mathbf{X}^t \mathbf{X}$$

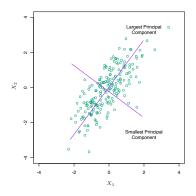
From the SVD of \mathbf{X} we know that

 $\mathbf{X}^t \mathbf{X} = \mathbf{V} \mathbf{D}^2 \mathbf{V}^t \quad \longleftarrow$ eigen-decomposition of $\mathbf{X}^t \mathbf{X}$

- The eigenvectors v_j columns of V are the principal component directions of X.
- Project the input of each training example onto the first principal component direction v₁ to get z_i⁽¹⁾ = v₁^tx_i. The variance of the z_i⁽¹⁾'s is given by (remember x_i's are centred)

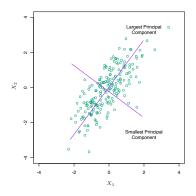
$$\frac{1}{n}\sum_{i=1}^{n}(z_{i}^{(1)})^{2} = \frac{1}{n}\sum_{i=1}^{n}v_{1}^{t}x_{i}x_{i}^{t}v_{1} = \frac{1}{n}v_{1}^{t}X^{t}Xv_{1} = \frac{d_{1}^{2}}{n}$$

• v_1 represents the direction (of unit length) which the projected points have largest variance.



• Subsequent principal components $z_i^{(j)}$ have maximum variance d_j^2/n subject to v_j being orthogonal to the earlier directions.

• v_1 represents the direction (of unit length) which the projected points have largest variance.



• Subsequent principal components $z_i^{(j)}$ have maximum variance d_j^2/n subject to v_j being orthogonal to the earlier directions.

- The last principal component has minimum variance.
- Hence the small d_j correspond to the directions of the column space of **X** having small variance.
- Ridge regression shrinks these directions the most !
- The estimated directions v_j 's with small d_j have more uncertainty associated with the estimate. (Using a narrow baseline to estimate a direction). Ridge regression protects against relying on these high variance directions.
- Ridge regression implicitly assumes that the output will vary most in the directions of the high variance of the inputs. A reasonable assumption but not always true.

- The last principal component has minimum variance.
- Hence the small d_j correspond to the directions of the column space of X having small variance.
- Ridge regression shrinks these directions the most !
- The estimated directions v_j 's with small d_j have more uncertainty associated with the estimate. (Using a narrow baseline to estimate a direction). Ridge regression protects against relying on these high variance directions.
- Ridge regression implicitly assumes that the output will vary most in the directions of the high variance of the inputs. A reasonable assumption but not always true.

- The last principal component has minimum variance.
- Hence the small d_j correspond to the directions of the column space of X having small variance.
- Ridge regression shrinks these directions the most !
- The estimated directions v_j 's with small d_j have more uncertainty associated with the estimate. (Using a narrow baseline to estimate a direction). Ridge regression protects against relying on these high variance directions.
- Ridge regression implicitly assumes that the output will vary most in the directions of the high variance of the inputs. A reasonable assumption but not always true.

- The last principal component has minimum variance.
- Hence the small d_j correspond to the directions of the column space of X having small variance.
- Ridge regression shrinks these directions the most !
- The estimated directions v_j 's with small d_j have more uncertainty associated with the estimate. (Using a narrow baseline to estimate a direction). Ridge regression protects against relying on these high variance directions.
- Ridge regression implicitly assumes that the output will vary most in the directions of the high variance of the inputs. A reasonable assumption but not always true.

- The last principal component has minimum variance.
- Hence the small d_j correspond to the directions of the column space of X having small variance.
- Ridge regression shrinks these directions the most !
- The estimated directions v_j 's with small d_j have more uncertainty associated with the estimate. (Using a narrow baseline to estimate a direction). Ridge regression protects against relying on these high variance directions.
- Ridge regression implicitly assumes that the output will vary most in the directions of the high variance of the inputs. A reasonable assumption but not always true.

• The book defines the **effective degrees of freedom** of the ridge regression fit as

$$\mathrm{df}_{\mathsf{ridge}}(\lambda) = \sum_{j=1}^{p} \frac{d_{j}^{2}}{d_{j}^{2} + \lambda}$$

we will derive this later on in the course.

- But it is interesting as
 - $df_{\mathsf{ridge}}(\lambda) \to p$ when $\lambda \to 0$ (ordinary least squares) and

•
$$df_{\mathsf{ridge}}(\lambda) \to 0$$
 when $\lambda \to \infty$

Back to our regression problem

Regression Example: Face Landmark Estimation

Input

Output

 Given a test image want to predict each of its facial landmark points.

 f_{14}, g_{14}

• How well can ridge regression do on this problem?

Regression Example: Face Landmark Estimation

Input

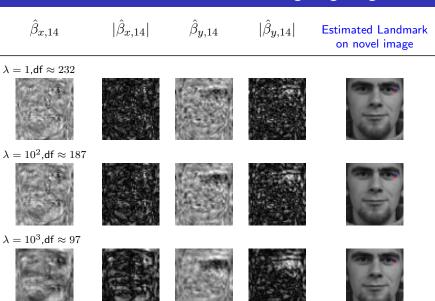
Output

 Given a test image want to predict each of its facial landmark points.

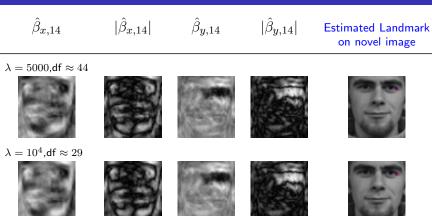
 f_{14}, g_{14}

• How well can ridge regression do on this problem?

Landmark estimation using ridge regression

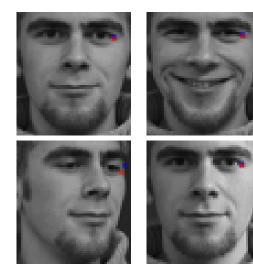


Landmark estimation using ridge regression

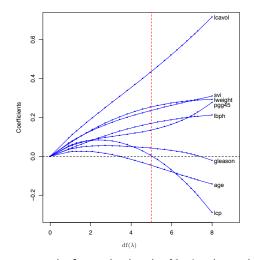


Landmark estimation using ridge regression

$\lambda = 1000, df \approx 97$, Ground truth point, Estimated point



How the coefficients vary with λ



This is an example from the book. Notice how the weights associated with each predictor vary with λ .

The Lasso

• The lasso estimate is defined by

$$\hat{\beta}^{\text{lasso}} = \arg\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \text{ subject to } \sum_{j=1}^{p} |\beta_j| \leq t$$
penalty is L_1 instead of L_2 norm

• Equivalent formulation of the lasso problem is

$$\hat{\beta}^{\mathsf{lasso}} = \arg\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

- The solution is non-linear in y_i 's and there is no closed form solution.
- It is convex and is, in fact, a quadratic programming problem.

• The lasso estimate is defined by

$$\hat{\beta}^{\text{lasso}} = \arg\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \text{ subject to } \sum_{j=1}^{p} |\beta_j| \leq t$$
penalty is L_1 instead of L_2 norm

• Equivalent formulation of the lasso problem is

$$\hat{\beta}^{\mathsf{lasso}} = \arg\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

- The solution is non-linear in y_i 's and there is no closed form solution.
- It is convex and is, in fact, a quadratic programming problem.

The lasso estimate is defined by

$$\hat{\beta}^{\text{lasso}} = \arg\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \text{ subject to } \sum_{j=1}^{p} |\beta_j| \leq t$$
penalty is L_1 instead of L_2 norm

• Equivalent formulation of the lasso problem is

$$\hat{\beta}^{\mathsf{lasso}} = \arg\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

- The solution is non-linear in y_i 's and there is no closed form solution.
- It is convex and is, in fact, a quadratic programming problem.

$$\hat{\beta}^{\mathsf{lasso}} = \arg\min_{\beta} \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p x_{ij} \beta_j \right)^2 \text{ subject to } \sum_{j=1}^p |\beta_j| \le t$$

- Because of the L₁ constraint, making t small will force some of the β_j's to be exactly 0.
- Lasso does some kind of continuous subset selection.
- However the nature of the shrinkage is not so obvious.
- If $t \geq \sum_{j=1}^{p} |\hat{\beta}_{j}^{ls}|$ is sufficiently large, then $\hat{\beta}^{lasso} = \hat{\beta}^{ls}$.

$$\hat{\beta}^{\mathsf{lasso}} = \arg\min_{\beta} \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p x_{ij} \beta_j \right)^2 \text{ subject to } \sum_{j=1}^p |\beta_j| \le t$$

- Because of the L₁ constraint, making t small will force some of the β_j's to be exactly 0.
- Lasso does some kind of continuous subset selection.
- However the nature of the shrinkage is not so obvious.
- If $t \geq \sum_{j=1}^{p} |\hat{\beta}_{j}^{ls}|$ is sufficiently large, then $\hat{\beta}^{lasso} = \hat{\beta}^{ls}$.

$$\hat{\beta}^{\mathsf{lasso}} = \arg\min_{\beta} \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p x_{ij} \beta_j \right)^2 \text{ subject to } \sum_{j=1}^p |\beta_j| \le t$$

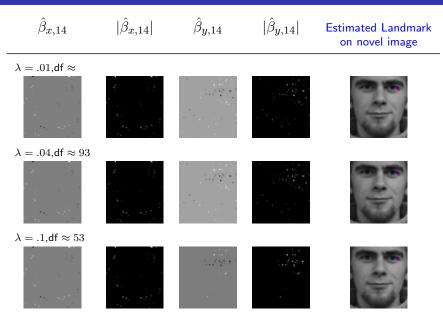
- Because of the L₁ constraint, making t small will force some of the β_j's to be exactly 0.
- Lasso does some kind of continuous subset selection.
- However the nature of the shrinkage is not so obvious.
- If $t \ge \sum_{j=1}^{p} |\hat{\beta}_{j}^{ls}|$ is sufficiently large, then $\hat{\beta}^{lasso} = \hat{\beta}^{ls}$.

$$\hat{\beta}^{\mathsf{lasso}} = \arg\min_{\beta} \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p x_{ij} \beta_j \right)^2 \text{ subject to } \sum_{j=1}^p |\beta_j| \le t$$

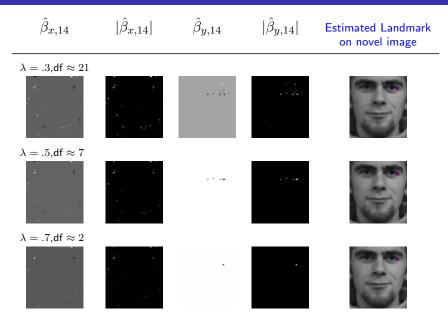
- Because of the L₁ constraint, making t small will force some of the β_j's to be exactly 0.
- Lasso does some kind of continuous subset selection.
- However the nature of the shrinkage is not so obvious.
- If $t \geq \sum_{j=1}^{p} |\hat{\beta}_{j}^{\text{ls}}|$ is sufficiently large, then $\hat{\beta}^{\text{lasso}} = \hat{\beta}^{\text{ls}}$.

Back to our regression problem

Landmark estimation using lasso



Landmark estimation using lasso



Landmark estimation using lasso regression

$\lambda = .04, df \approx 93$, Ground truth point, Estimated point

Subset Selection Vs Ridge Regression Vs Lasso

When ${\bf X}$ has orthonormal columns

- This implies $d_j = 1$ for $j = 1, \ldots, p$.
- In this case each method applies a simple transformation to $\hat{\beta}_{j}^{\rm ls}$:

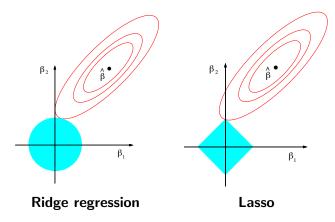
Estimator	Formula
Best subset (size M)	$\hat{\beta}_j^{ls} \cdot \mathrm{Ind}(\hat{\beta}_j^{ls} \geq \hat{\beta}_M^{ls})$
Ridge	$\hat{\beta}_j^{\rm ls}/(1+\lambda)$
Lasso	$\operatorname{sign}(\hat{\beta}_j^{ls}) \left(\hat{\beta}_j^{ls} - \lambda\right)_+$

where $\hat{\beta}_M^{\text{ls}}$ is the *M*th largest coefficient.

Ridge Regression Vs Lasso

When ${\bf X}$ does not have orthogonal columns

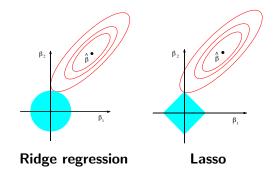
- Red elliptical contours show the iso-scores of $RSS(\beta)$.
- Cyan regions show the feasible regions $\beta_1^2 + \beta_2^2 \le t^2$ and $|\beta_1| + |\beta_2| \le t$ resp.



Ridge Regression Vs Lasso

When ${\bf X}$ does not have orthogonal columns

- Both methods choose the first point where the elliptical contours hit the constraint region.
- The Lasso region has corners, if then solution occurs at a corner then one β_j = 0.
- When p > 2 the diamond becomes a rhomboid with many corners and flat edges ⇒ many opportunities for β_i's to be 0.



Generalization of ridge and lasso regression

$$\hat{\beta} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

•
$$q = 0$$
 - Variable subset selection

- q = 1 Lasso
- q = 2 Ridge regression

Generalization of ridge and lasso regression

$$\hat{\beta} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

- Can try other values of q.
- When $q \ge 1$ still have a convex problem.
- When $0 \le q < 1$ do not have a convex problem.
- When $q \leq 1$ sparse solutions are explicitly encouraged.
- When q > 1 cannot set coefficients to zero.

A compromise between the ridge and lasso penalty is the **Elastic net** penalty:

$$\lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1-\alpha)|\beta_j|)$$

The elastic-net

- select variables like the lasso and
- shrinks together the coefficients of correlated predictors like ridge regression.

Effective degrees of freedom

- Traditionally the number of linearly independent parameters is what is meant by degrees of freedom.
- If we carry out a best subset selection to determine the optimal set of k predictors, then surely we have used more than k dofs.
- A more general definition for the **effective degrees of freedom** of adaptively fitted is

$$df(\hat{y}) = \frac{1}{\sigma^2} \sum_{i=1}^{n} Cov(\hat{y}_i, y_i)$$

where $Cov(\hat{y}_i, y_i)$ is the estimate of the

• Intuitively the harder we fit to the data, the larger the covariance and hence $\mathrm{df}(\hat{y})$

- Traditionally the number of linearly independent parameters is what is meant by degrees of freedom.
- If we carry out a best subset selection to determine the optimal set of k predictors, then surely we have used more than k dofs.
- A more general definition for the **effective degrees of freedom** of adaptively fitted is

$$df(\hat{y}) = \frac{1}{\sigma^2} \sum_{i=1}^{n} Cov(\hat{y}_i, y_i)$$

where $Cov(\hat{y}_i, y_i)$ is the estimate of the

• Intuitively the harder we fit to the data, the larger the covariance and hence $\mathrm{df}(\hat{y})$

- Traditionally the number of linearly independent parameters is what is meant by degrees of freedom.
- If we carry out a best subset selection to determine the optimal set of k predictors, then surely we have used more than k dofs.
- A more general definition for the effective degrees of freedom of adaptively fitted is

$$df(\hat{y}) = \frac{1}{\sigma^2} \sum_{i=1}^{n} Cov(\hat{y}_i, y_i)$$

where $Cov(\hat{y}_i, y_i)$ is the estimate of the

• Intuitively the harder we fit to the data, the larger the covariance and hence $\mathrm{df}(\hat{y})$

- Traditionally the number of linearly independent parameters is what is meant by degrees of freedom.
- If we carry out a best subset selection to determine the optimal set of k predictors, then surely we have used more than k dofs.
- A more general definition for the effective degrees of freedom of adaptively fitted is

$$df(\hat{y}) = \frac{1}{\sigma^2} \sum_{i=1}^{n} Cov(\hat{y}_i, y_i)$$

where $Cov(\hat{y}_i, y_i)$ is the estimate of the

- Intuitively the harder we fit to the data, the larger the covariance and hence $\mathrm{df}(\hat{y})$