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Focus on linear classification

e Want to learn a predictor G: RP — G ={1,..., K}

e ( divides input space into regions labelled according to their
classification.

e The boundaries between these regions are termed the
decision boundaries.

e When these decision boundaries are linear we term the

classification method as linear.
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An example when a linear decision boundaries arises

e Learn a discriminant function §;(x) for each class k and set

[G(w) = arg max 0 (z) ]

e This generates a linear decision boundary when 3 some
monotone transformation g of dx(z) which is linear.

e That is g is a monotone function s.t.

9(6k(7)) = ko + Vi
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Examples of discriminant functions

e Example 1: Fit a linear regression model to the class
indicator variables. Then the discriminant functions are

k() = Bro + Bia

e Example 2: Use the posterior probabilities P(G = k| X = z)
as the discriminant functions dy(x)
o A popular model when there are two classes is:
exp(Bo + Btx)
PG=1X=x2)=
( | -T) 1 +eXp(ﬁo —l-ﬁtl‘)

1
PG = 20X =) = T (o + Pa)

e g(p) =log(p/(1 — p)) can be applied as a monotonic function
to dx(x) = P(G = 1|X = x) to make it linear.
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Can directly learn the linear decision boundary

e For a two class problem with p-dimensional inputs this =
modelling the decision boundary as a hyperplane.

e This chapter looks at two methods which explicitly look for
the separating hyperplane. These are

e Perceptron model and algorithm of Rosenblatt,
e SVM model and algorithm of Vapnik

e In the forms quoted both these algorithms find separating
hyperplanes if they exist and fail of the points are not linearly
separable.

e There are fixes for the non-separable case but we will not
consider these today.



Linear decision boundaries can be made non-linear

e Can expand the variable set X1, X»,..., X, by including their
squares and cross-products X12,X22, . ,Xg,X]_XQ,X]_XQ, .




Linear decision boundaries can be made non-linear

e Can expand the variable set X1, X»,..., X, by including their
squares and cross-products X12,X22, . ,Xg,X]_XQ,X]_XQ, .

e This adds p(p + 1)/2 additional variables.




Linear decision boundaries can be made non-linear

e Can expand the variable set X1, X»,..., X, by including their
squares and cross-products X12,X22, . ,Xg,X]_XQ,X]_XQ, .

e This adds p(p + 1)/2 additional variables.

e Linear decision boundaries in the augmented space
corresponds to quadratic decision boundaries in the original
space.




Linear Regression of an Indicator Matrix



Use linear regression to find discriminant functions

e Have training data {(z;, g;)};; where each z; € R? and
gi € {1,...,K}.



Use linear regression to find discriminant functions

e Have training data {(z;, g;)};; where each z; € R? and
gi € {1,...,K}.

e For each k construct a linear discriminant dx(x) via:



Use linear regression to find discriminant functions

e Have training data {(z;, g;)};; where each z; € R? and
gi € {1,...,K}.

e For each k construct a linear discriminant dx(x) via:

@ Fori=1,...,nset

o 0 ifgi#k}
i = 1 Ifgz:k



Use linear regression to find discriminant functions

e Have training data {(z;, g;)};; where each z; € R? and
gi € {1,...,K}.

e For each k construct a linear discriminant dx(x) via:
@ Fori=1,...,nset

o 0 ifgi#k}
i = 1 Ifgz:k

@® Compute (Bor, 1) = arg gliﬁn S (yi — Bo — Biw)?
0Pk



Use linear regression to find discriminant functions

e Have training data {(z;, g;)};; where each z; € R? and
gi € {1,...,K}.

e For each k construct a linear discriminant dx(x) via:
@ Fori=1,...,nset

o 0 ifgi#k}
i = 1 Ifgz:k

@® Compute (Bor, 1) = arg gliﬁn S (yi — Bo — Biw)?
0Pk

© Define

[5k($) = Bor + Bx ]




Use linear regression to find discriminant functions

e Have training data {(z;, g;)};; where each z; € R? and
gi € {1,...,K}.

e For each k construct a linear discriminant dx(x) via:
@ Fori=1,...,nset

o 0 ifgi#k}
i = 1 Ifgz:k

@® Compute (Bor, 1) = arg éniﬁn S (yi — Bo — Biw)?
0Pk

© Define

[5k($) = Bor + Bx ]

e Classify a new point x with
[G(:L’) = arg max O(x) ]




3 class example

Use linear regression of an indicator matrix to find the discriminant
functions for the above 3-classes.
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For each k construct the response vectors from the class labels




Construct K discriminant functions

For each k construct the response vectors from the class labels




The decision boundary defined by these discriminant fns




This approach will fail in this case

The training data from 3 classes
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The resulting decision boundary
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The resulting decision boundary
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The resulting decision boundary

e In this last example masking has occurred.

e This occurs because of the rigid nature of the linear
discriminant functions.

e This example is extreme but for large K and small p such
maskings occur naturally.

e The other methods in this chapter are based on linear decision
functions of z, but they are learnt in a smarter why...
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Optimal classification requires the posterior

e To perform optimal classification need to know P(G | X). Let
e fi(z) represent the class-conditional P(X |G = k) and

e T be the prior probability of class k£ with Zle T =1

e A simple application of Bayes Rule gives

fr(@)m,
leil filz)m

P(G=k|X=2)=

e Therefore for classification having fi(z) is almost equivalent
to having P(G =k | X = z).
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How to model the class densities

e Many methods are based on specific models of fi(x)

e linear and quadratic discriminant functions use Gaussian
distributions,

e mixture of Gaussian distributions produce non-linear decision
boundaries,

e non-parametric density estimates which allow the most
flexibility,

o Naive Bayes where f.(X) = [Tj_, fx;(X;).



Multivariate Gaussian class densities

e Model each fi(x) as a multivariate Gaussian

[mx) - mexp{—ﬁ(x—uk)t e (2 — ) ]
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Multivariate Gaussian class densities

e Model each fi(x) as a multivariate Gaussian

[fk(x) = m exp{—.5(z — ) T ' (z — )} ]

e Linear Discriminant Analysis (LDA) arises in the special
case when

[EszforaII k ]
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class distributions decision boundary

One gets linear decision boundaries.



e Can see this as
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e Can see this as
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Jx(x)
fi(z)

= log 7;—]; — 5 S e 4 5 E_lul

log = log + log L
™

P(G=1X =)

+ 25 (i — )

=z'a+b <— a linear function

e The equal covariance matrices allow the mtElzla: and z!%
terms to cancel out.

l
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e Can see this as
P(G=k|X =2x)

= log

log Jx(x)
l

fi(z)
= log 7;—]; — 5 S e 4 5 E_lul

+ lo L
PG=1X=2) &

+ 25 (i — )
=z'a+b <— a linear function

e The equal covariance matrices allow the mtElzlaz and :L'tEl Ly
terms to cancel out.

e From the log-odds function we see that the linear discriminant
functions

[5k(37) = &' Sy — 5 g Sy + log g ]

are an equivalent description of the decision rule with

G(z) = arg max ok ()



LDA: Some practicalities

In practice don't know the parameters of the Gaussian distributions
and estimate these from the training data.
Let ny; be the number of class k observations then

L ﬁ'k = nk/n

k=D gk Ti/ Tk

o S =30 Yy (@i — i) (@i — i)t/ (n — K)




When X;'s are not all equal

e If the X} are not assumed to be equal then the quadratic
terms remain and we get quadratic discriminant functions

(QDA)
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When X;'s are not all equal

e If the X} are not assumed to be equal then the quadratic
terms remain and we get quadratic discriminant functions

(QDA)
(B(2) = —50g [l = 5 (& — ) S (@ — o) +log e |

e In this case the decision boundary between classes are
described by a quadratic equation {z : dx(x) = &;(z)}.

class distributions decision boundaries



Best way to compute a quadratic discriminant function?

Left plot shows the quadratic decision boundaries found using
LDA in the five dimensional space Xl,Xg,XIQ,X%,Xng.

Right plot shows the quadratic decision boundaries found by QDA.



LDA and QDA summary

e These methods can be surprisingly effective.

e Can explain this



Reduced-Rank Linear Discriminant Analysis
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Affine subspace defined by centroids of the classes

e Have K centroids in a p-dimensional input space: u1,...,ux

e These centroids define an K — 1 dimensional affine subspace
Hy 1 where if u € Hg_q then

w=p1+ar(pe —p1) +az(ps —p1) + -+ ax—1(px — )
=pmt+ardi+asde+---+ax-1dx—1

e If z € R? then it can be written as
t=p14+ydi+y2do+- +yx_1dx_1 +x", where " € Hjc_;.

e If z has been whitened with respect to the common covariance
matrix then the Mahalhobnis distance to centroid p;

Iz — psll = llpn + v da +y2da 4+ yx—1dr1 + 2 — |
=2um+vdi+--+ (-1 —1)dj—1+ - +yx-1dr—1 +IEL||

e 2 does not change with 11}, therefore to locate the closest
centroid can ignore it.



To summarize

e K centroids in p-dimensional input space lie in an affine
subspace of dimension < K — 1.

e If p > K this is a big drop in dimension.

e To locate the closest centroid can ignore the directions
orthogonal to this subspace if the data has been sphered.

e Therefore can just project X* onto this centroid-spanning
subspace Hi_1 and make comparisons there.

e LDA thus performs dimensionality reduction and one need
only consider the data in a subspace of dimension at most
K —-1.
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What about a subspace of dimension L < K — 17

e If K > 3 can ask the question:
Which subspace of dimensional L < K — 1 should we project
onto for optimality w.r.t. LDA?

e Fisher defined optimal as the projected centroids are spread
out as much as possible in terms of variance.

e Find the principal component subspace of the centroids.

e |n this example have 11
classes with 10 dimensional
input vectors.

Coordinate 2 for Training Data

e The bold dots correspond
to the centroids projected
onto the top 2 principal
directions.

Coordinate 1 for Training Data



The optimal sequence of subspaces

e To find the sequences of optimal subspaces for LDA:

@ Compute the K x p matrix of class centroids M and the
common covariance matrix W - the within-class variance.

® Compute M* = MW~z using the eigen-decomposition of W

©® Compute B* the covariance matrix of M™ - the between-class
variance.

® B*'s eigen-decomposition is B* = V*DgV. The columns of
v} of V™ define basis of the optimal subspace.



The optimal sequence of subspaces

e To find the sequences of optimal subspaces for LDA:

@ Compute the K x p matrix of class centroids M and the
common covariance matrix W - the within-class variance.

® Compute M* = MW~z using the eigen-decomposition of W

©® Compute B* the covariance matrix of M™ - the between-class
variance.

® B*'s eigen-decomposition is B* = V*DgV. The columns of
v} of V™ define basis of the optimal subspace.

e The [th discriminant variable is given by Z; = UZ*W*%X



Coordinate 3

Coordinate 7

Note as the rank of the canonical variates increase the projected

centroids become
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LDA via the Fisher criterion

Fisher arrived at this decomposition via a different route. He
posed the problem

Find the linear combination Z = aX such that the
between-class variance is maximized relative to the
within-class variance.
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Fisher arrived at this decomposition via a different route. He
posed the problem

Find the linear combination Z = aX such that the
between-class variance is maximized relative to the
within-class variance.

Why this criterion makes sense
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e W is the common covariance matrix of the original data X.
e B is the covariance matrix of the centroid matrix M

e Then for the projected data Z

@ The between-class variance of Z is a'Ba

@ The within-class variance of Z is a!Wa

e Fisher's problem amounts to maximizing the Raleigh quotient
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The Fisher criterion

e Fisher's problem amounts to maximizing the Raleigh quotient

[al — argmax a' Ba subject to o' Wa=1 ]
a

This is a generalized eigenvalue problem with a given by the
largest eigenvalue of W™!B.

) _1 . )
Can be shown that a; is equal to W™ 2v] defined earlier.

Can find the next direction as

¢
a'Ba )
[ag = argmax — subject to a'! Wa; =0 ]
a a'Wa

1
. —= %
Once again ag = W™ 2v;.

In a similar fashion can find as, a4, . ..



Classification in the reduced subspace

e The q;'s are referred to as discriminant coordinates or
canonical variates.

® In this example have 11
classes with 10
dimensional input
vectors.

e The decision boundaries
based on using basic
linear discrimination in
the low dimensional
space given by the first
2 canonical variates.

Canonical Coordinate 2

Canonical Coordinate 1



Logistic Regression
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Logistic regression

e Avrises from trying to model the posterior probabilities of the
K classes using linear functions in x while ensuring they sum
to one.

e The simple model used isfor k=1,..., K —1

exp(Bro + Biz)

=k — —
PG X =2) 1+ leizl exp(Bio + Bix)

and k=K

1

P(G=K|X =
( | ®) = l—i-Zl 0 exp(ﬂlo—i-ﬂltx)

e These posterior probabilities clearly sum to one.



Logistic regression

e Thismodel: k=1,... ., K -1

P(G=k|X =2)= e);f_(lﬁko + Bix) :
L+ 335" exp(Bo + Bfx)

and k=K

PG=K|X=gz)= !
T 1+ S exp(Bo + Bo)

induces linear decision boundaries between classes as
{zr: P(G=klX=2)=P(G=1|X =x)}
is the same as

{z: (Bro — Buwo) + (Be — B)'z = 0}
fori1<k<Kand1<I< K.



Fitting Logistic regression models

e To simplify notation let

0 0 = {BlOaﬂia 5203 ﬁéa .. } and
® P(G =k[X =) = p(x;0)

e Given training data {(z;, g;) };; one usually fits the logistic
regression model by maximum likelihood.

e The log-likelihood for the n observations is

£(0) = log (H Pg; (i; 9)) = " log(py, (z:;0))
=1 =1

in my opinion this is an abuse of terminology as the posterior
probabilities are being used...



Fitting Logistic regression models: The two class case

X t
i) = 2 POZ S and paaiB) = 1~ pi(ai )

Let B =6 = (P10, 4%) and assume z;'s include the constant term 1.
A convenient way to write the likelihood for one sample (z;, g;) is:

o Code the two-class g; as a {0, 1} response y; where

1 ifg=1
YT 0 ifg=2

e Then one can write

(Poc(ais ) = i (@.8) + (1= 9)(1 - mi (@5 8)) |




Fitting Logistic regression models:

Similarly

[logpgi (24 8) = yi log p1(z:; 8) + (1 — yi) log(1 — p1(wi; ﬁ))]

The log-likelihood of the data becomes

n

(B) = [yi logp(wi; B) + (1 — yi) log(1 — pi (4 8))]

=1

n
> [yzﬂtxi — i log(1 + €7%) — (1 — y;) log(1 + ™)
i=1

I
NE

[y,ﬂtxi —log(1 + &7'@4)
1

-
Il



Fitting Logistic regression models: The two class case

n

UB) =3 [yiB'ws — log(1 + )]

i=1

e To maximize the log-likelihood set its derivatives to zero to get

2(B) & exp(f )

I
\Yi 1+ exp(Btz;)

=1

M- 11

zi(yi —p1(xi;8)) =0

i=1

e These are (p + 1) equations non-linear equations in f.

e Must solve iteratively and in the book they use the
Newton-Raphson algorithm.



The two class case: lterative optimization

Newton-Raphson requires both the gradient

[ sz Yi pl L5 ))]

and Hessian matrix

th = szx p1(xi; 8)(1 = pa(as; B))

Starting with 3%, a single Newton update step is

[ B = - (22 )‘1 ou(5) ]

0popt op

where the derivatives are calculated at 3°“.



lterative optimization in matrix notation

Write the Hessian and gradient in matrix notation. Let

e X be the N x (p + 1) matrix with (1,z%) on each row,

o p=(pi(e1; %), pr(22; B), ... pa(an; 5))

e W is n x n diagonal matrix with ¢th diagonal element
pi(21; %) (1 = pr(21; 7).
Then

and




Iterative optimization as iterative weighted s

The Newton step is then

g = B+ (X'WX) ' Xy — p)
= (X'WX) ' X'W (X + W (y —p))
= (X'WX)1X'W2

Have re-expressed the Newton step as a weighted least squares step

[B”e‘” = arg mﬂin (z — XB)'W(z — Xﬂ)]

with response

[c=x8*+W'(y-p))

known as the adjusted response. Note at iteration each W, p and
z change.
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e Two class problem with 2 dimensional input vectors.

e Use Logistic Regression to find a decision boundary
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e The current estimate B

e Logistic regression converges to this decision boundary.

cur




L, regularized logistic regression



L regularized logistic regression

The L1 penalty can be used for variable selection in logistic
regression by maximizing a penalized version of the log-likelihood

p
[yz o+ B'x;) — log(1 + efotF'as) } - )\Z 183

n

,30751 —

(2

Note:

e the intercept, (5, is not included in the penalty term,

e the predictors should be standardized to ensure the penalty is
meaningful,

e the above cost function is concave and a solution can be
found using non-linear programming methods.
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Directly estimating separating hyperplanes

e In this section describe separating hyperplane classifiers - will
only consider separable training data.

e Construct linear decision boundaries that explicitly try to
separate the data into different classes as well as possible.

e A hyperplane is defined as
{m:Bo+th:0}
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Review of some vector algebra

Bo+ BTz =0

Above is shown a hyperplane L defined by
fx)=PBo+B'xz=0

o Ifzy, 79 € Lthen (21 —x2) =0 = B* = 3/||3]| is normal to L
e If zy € L then Bizy = —py.
o The signed distance of point xto L is
*t
- +
(o = 20) = 8-+ 50) = ) S0
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Rosenblatt’s Perceptron Learning Algorithm

Perceptron learning algorithm tries to find a separating hyperplane
by minimizing the distance of misclassified points to the decision

boundary.
The Objective Function
¢ Have labelled training data {(x;, y;)} with z; € RP and
yi € {—1,1}.
e A point z; is misclassified if sign(8y + £'x;) # y;
e This can be re-stated as: a point x; is misclassified if
yi(Bo+ B'z;) <0

e The goal is to find By and 8 which minimize

D(B,50) =— Y vi(«iB+ Bo)

ieEM

where M is the index of the misclassified points.
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Perceptron Learning: The Objective Function

Want to find By and 8 which minimize

D(B,Bo) == Y _ wilalB+Bo) =— > yi a5 ()

iEM ieEM

e D(S,5p) is non-negative.

e D(5,5p) is proportional to the distance of the misclassified
points to the decision boundary defined by 5y + 'z = 0.

Questions:

e Is there a unique 3, By which minimizes D([, 5y) (disregarding
re-scaling of 3 and (o) ?

e Can we say anything about the form of D(3, 3)?



Perceptron Learning: Optimizing the Objective Function

e The gradient assuming a fixed M, is given by

5/3 (8. o)
Do S 6500 ==

ieEM ieEM
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Perceptron Learning: Optimizing the Objective Function

e The gradient, assuming a fixed M, is given by

W) Sy, DB,
ieEM 850

e Stochastic gradient descent is used to minimize D(/3, 5p)
so an update step is made after each observation is visited.

e |dentify a misclassified example wrt the current estimate of 3
and By and make the update

[B — B+ pyiw; and Bo < Bo +pyi]

where p is the learning rate.

e Repeat this step until no points are misclassified.



Perceptron Learning: An Example
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Want to find a separating hyperplane between the red and blue
points.



Perceptron Learning: One Iteration

Current estimate Point misclassified  Use gradient at point
B(O) by 5(0) to get 5(1)
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Perceptron Learning: Sequence of iterations

BaN
Is this the best separating hyperplane we could have found?
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Perceptron Learning Algorithm: Properties

Pros

e If the classes are linearly separable, the algorithm converges to
a separating hyperplane in a finite number of steps.

Cons

o All separating hyperplanes are considered equally valid.
e One found depends on the initial guess for 5 and .
e The finite number of steps can be very large.

e If the data is non-separable, the algorithm will not converge.
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Optimal Separating Hyperplane

e The optimal separating hyperplane separates the two
classes and maximizes the distance to the closes point from
either class [Vapnik 1996].

X2 o X N o

S
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Optimal Separating Hyperplane

e The optimal separating hyperplane separates the two
classes and maximizes the distance to the closes point from
either class [Vapnik 1996].

e This provides
e a unique definition of the separating hyperplane
X2 o X N o

~

N (@) ~. O
D D D D . /Maxir_T:Clm,
D D \\margQ
X4 ' X4
Which separating hyperplane? One which maximizes margin

e a decision boundary that generalizes well.



Stating the optimization problem

e A first attempt

[M“ﬁ%’f M subject to y;(8'z; + fo) > M8, i = 1n]
, Bo, =1

e The conditions ensure all the training points are a signed
distance M from the decision boundary defined by 5 and fy.

e Want to find the largest such M and its associated 8 and 5.
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Stating the optimization problem

e Remove the constraint ||3|| = 1 by adjusting the constraints
on the training data as follows:

[%I%X 1 SUbjeCt to yz(ﬁth +/80) > M“B”? L= 17 s 7n]
s Bo

e For any 8 and [y fulfilling the above constraints then a8 and
afy with o > 0 also fulfills the constraints.

e Therefore can arbitrarily set ||5]| = 1/M.

e Then the above optimization problem is equivalent to

1
[Iﬁniﬁn §||/3||2 subject to y;(8'wi + o) > 1, i=1,... ,n]




Stating the optimization problem

e With this formulation of the problem

1
[2“%“5|l,e||2 subject to y;(B'z; + o) > 1, i= 1n]

e The margin has thickness 1/||3|| as shown in figure (notation
slightly difFerent).
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The solution to this constrained optimization problem

1
Igl%n §HIBH2 SUbjeCt to yl(ﬂth + 60) =1, i=1,...,n
» Bo

e This is a convex optimization problem - quadratic objective
function with linear inequality constraints.

e Its associated primal Lagrangian function is
1 n
Ly(8, Bo, ) = §||ﬁ||2 + Y aigi(1— Bl — Bo)
i=1

e 5% and [ is a minimum point of the cost function stated at
the top if...



The solution to this constrained optimization problem

1
Igl%n §HIBH2 SUbjeCt to yl(ﬂth + 60) =1, i=1,...,n
» Bo

The Karush-Kuhn-Tucker conditions state that 8] = (35, 8) is a
minimum of this cost function if 3 a unique o s.t.

® Vs, Ly(B1,a%) =0
@®@a;>0frj=1,...,n

© of(1—y;(B;+2i%)=0forj=1,...,n
© (1-y;(B5+ajB%) <0forj=1,....n

@ Plus positive definite constraints on Vg, g, L,(57, o)
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Lp(Bt, o ||ﬁ 124 " ar (1 —y;(B5 + 2487)).
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Let’'s check what the KKT conditions imply

Active constraints and Inactive constraints:
Let A be the set of indices with of; > 0 then

Ly(B}, " IIﬁ 12+ af (1 —y;(85 + 258%)).

JEA

e Condition KKT 1, Vg, £,(87,a%) =0, implies
g* = Za;ijj and 0= Z G yj
jeA JjeA
e Condition KKT 3, aj(1 —y; (85 +258%)) =0, implies
© y;(B;+ai") =1forallje A
@® if y; (35 +2!B8*) >1thena; =0andi ¢ A
© L,(51.a") = .5]6%%
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To summarize

e As we have a convex optimization problem it has one local
minimum.

e At this minimum (] there exist a unique a* s.t. 5] and a*
fulfill the KKT conditions.

e Let A be the set of indices with a; > (0 then

@ if i € A then y;(35 + 2!8*) = 1 and therefore z; lies on the
boundary of the margin.

x; is called a support vector.

® And if i ¢ A then y;(8; + z!8*) > 1 and z; lies outside of the
margin.

©® (7 is a linear combination of the support vectors

[6* — Z a;fyjl'j ]

JEA




To summarize

Support
Vectors (a>0)
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How do | calculate o*?

e You have seen that the optimal solution is a weighted sum of
the support vectors.

e But how can we calculate these weights?

e Most common approach is to solve the Dual Lagrange
problem as opposed to the Primal Lagrange problem. (The
solutions to these problems are the same because of the original quadratic

cost function and linear inequality constraints.)

e This Dual problem is an easier constrained optimization and is
also convex. It has the form

n n

" 1
max {E o= g E aiakyiykxﬁxk} subject to a; > 0 Vi
=1

i=1 k=1




