
Chapter 4: Linear Methods for Classification

DD3364

March 23, 2012

Introduction

Focus on linear classification

• Want to learn a predictor G : Rp → G = {1, . . . ,K}

• G divides input space into regions labelled according to their
classification.

• The boundaries between these regions are termed the
decision boundaries.

• When these decision boundaries are linear we term the
classification method as linear.

Focus on linear classification

• Want to learn a predictor G : Rp → G = {1, . . . ,K}

• G divides input space into regions labelled according to their
classification.

• The boundaries between these regions are termed the
decision boundaries.

• When these decision boundaries are linear we term the
classification method as linear.

Focus on linear classification

• Want to learn a predictor G : Rp → G = {1, . . . ,K}

• G divides input space into regions labelled according to their
classification.

• The boundaries between these regions are termed the
decision boundaries.

• When these decision boundaries are linear we term the
classification method as linear.

Focus on linear classification

• Want to learn a predictor G : Rp → G = {1, . . . ,K}

• G divides input space into regions labelled according to their
classification.

• The boundaries between these regions are termed the
decision boundaries.

• When these decision boundaries are linear we term the
classification method as linear.

An example when a linear decision boundaries arises

• Learn a discriminant function δk(x) for each class k and set

G(x) = arg max
k

δk(x)

• This generates a linear decision boundary when ∃ some
monotone transformation g of δk(x) which is linear.

• That is g is a monotone function s.t.

g(δk(x)) = γk0 + γtkx

An example when a linear decision boundaries arises

• Learn a discriminant function δk(x) for each class k and set

G(x) = arg max
k

δk(x)

• This generates a linear decision boundary when ∃ some
monotone transformation g of δk(x) which is linear.

• That is g is a monotone function s.t.

g(δk(x)) = γk0 + γtkx

An example when a linear decision boundaries arises

• Learn a discriminant function δk(x) for each class k and set

G(x) = arg max
k

δk(x)

• This generates a linear decision boundary when ∃ some
monotone transformation g of δk(x) which is linear.

• That is g is a monotone function s.t.

g(δk(x)) = γk0 + γtkx

Examples of discriminant functions

• Example 1: Fit a linear regression model to the class
indicator variables. Then the discriminant functions are

δk(x) = β̂k0 + β̂tkx

• Example 2: Use the posterior probabilities P (G = k |X = x)
as the discriminant functions δk(x)

• A popular model when there are two classes is:

P (G = 1|X = x) =
exp(β0 + βtx)

1 + exp(β0 + βtx)

P (G = 2|X = x) =
1

1 + exp(β0 + βtx)

• g(p) = log(p/(1− p)) can be applied as a monotonic function
to δk(x) = P (G = 1|X = x) to make it linear.

Examples of discriminant functions

• Example 1: Fit a linear regression model to the class
indicator variables. Then the discriminant functions are

δk(x) = β̂k0 + β̂tkx

• Example 2: Use the posterior probabilities P (G = k |X = x)
as the discriminant functions δk(x)

• A popular model when there are two classes is:

P (G = 1|X = x) =
exp(β0 + βtx)

1 + exp(β0 + βtx)

P (G = 2|X = x) =
1

1 + exp(β0 + βtx)

• g(p) = log(p/(1− p)) can be applied as a monotonic function
to δk(x) = P (G = 1|X = x) to make it linear.

Examples of discriminant functions

• Example 1: Fit a linear regression model to the class
indicator variables. Then the discriminant functions are

δk(x) = β̂k0 + β̂tkx

• Example 2: Use the posterior probabilities P (G = k |X = x)
as the discriminant functions δk(x)

• A popular model when there are two classes is:

P (G = 1|X = x) =
exp(β0 + βtx)

1 + exp(β0 + βtx)

P (G = 2|X = x) =
1

1 + exp(β0 + βtx)

• g(p) = log(p/(1− p)) can be applied as a monotonic function
to δk(x) = P (G = 1|X = x) to make it linear.

Can directly learn the linear decision boundary

• For a two class problem with p-dimensional inputs this =⇒
modelling the decision boundary as a hyperplane.

• This chapter looks at two methods which explicitly look for
the separating hyperplane. These are

• Perceptron model and algorithm of Rosenblatt,

• SVM model and algorithm of Vapnik

• In the forms quoted both these algorithms find separating
hyperplanes if they exist and fail of the points are not linearly
separable.

• There are fixes for the non-separable case but we will not
consider these today.

Can directly learn the linear decision boundary

• For a two class problem with p-dimensional inputs this =⇒
modelling the decision boundary as a hyperplane.

• This chapter looks at two methods which explicitly look for
the separating hyperplane. These are

• Perceptron model and algorithm of Rosenblatt,

• SVM model and algorithm of Vapnik

• In the forms quoted both these algorithms find separating
hyperplanes if they exist and fail of the points are not linearly
separable.

• There are fixes for the non-separable case but we will not
consider these today.

Can directly learn the linear decision boundary

• For a two class problem with p-dimensional inputs this =⇒
modelling the decision boundary as a hyperplane.

• This chapter looks at two methods which explicitly look for
the separating hyperplane. These are

• Perceptron model and algorithm of Rosenblatt,

• SVM model and algorithm of Vapnik

• In the forms quoted both these algorithms find separating
hyperplanes if they exist and fail of the points are not linearly
separable.

• There are fixes for the non-separable case but we will not
consider these today.

Can directly learn the linear decision boundary

• For a two class problem with p-dimensional inputs this =⇒
modelling the decision boundary as a hyperplane.

• This chapter looks at two methods which explicitly look for
the separating hyperplane. These are

• Perceptron model and algorithm of Rosenblatt,

• SVM model and algorithm of Vapnik

• In the forms quoted both these algorithms find separating
hyperplanes if they exist and fail of the points are not linearly
separable.

• There are fixes for the non-separable case but we will not
consider these today.

Can directly learn the linear decision boundary

• For a two class problem with p-dimensional inputs this =⇒
modelling the decision boundary as a hyperplane.

• This chapter looks at two methods which explicitly look for
the separating hyperplane. These are

• Perceptron model and algorithm of Rosenblatt,

• SVM model and algorithm of Vapnik

• In the forms quoted both these algorithms find separating
hyperplanes if they exist and fail of the points are not linearly
separable.

• There are fixes for the non-separable case but we will not
consider these today.

Can directly learn the linear decision boundary

• For a two class problem with p-dimensional inputs this =⇒
modelling the decision boundary as a hyperplane.

• This chapter looks at two methods which explicitly look for
the separating hyperplane. These are

• Perceptron model and algorithm of Rosenblatt,

• SVM model and algorithm of Vapnik

• In the forms quoted both these algorithms find separating
hyperplanes if they exist and fail of the points are not linearly
separable.

• There are fixes for the non-separable case but we will not
consider these today.

Linear decision boundaries can be made non-linear

• Can expand the variable set X1, X2, . . . , Xp by including their
squares and cross-products X2

1 , X
2
2 , . . . , X

2
p , X1X2, X1X2, . . .

• This adds p(p+ 1)/2 additional variables.

• Linear decision boundaries in the augmented space
corresponds to quadratic decision boundaries in the original
space. 4.2 Linear Regression of an Indicator Matrix 103

1

1

1

11
11

1
1

1
1

1

1

1

1

1

1

1
1 1

11
1

1

1

1

1

1

1
1

1

1

1
1

1

1
1

1
1

1

1

1

1

1

1

1 1
1

1

1 1

1

1

1

1

1

1

1
11

1

1

1

1

1

1

1 1
11

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1
11

1

1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1 1

1

1

1
1

1

1

1

1 1

1

1

1
1 1

1

1

1 1
1

1
1

1

1

1

1

1

1

1

1
1

1 1

1
1

1

1

1

11

1

1

1

1 1

1
1

1

1
1

1

1

1

1

1
1

1

1
1

1

1
1

1

1

1
1
1

1

1 1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

2
2

2
22

2

2

2

2
2

2

2
22

2
2

2

2
2

22
2

2

22
2

2

2

2

2 2

2

2

2

22

2

2

2
2

2

2

2

2

2

2 22
2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2
2

2

2

22
2

2

2

2

2

2 2

2

2

2

2

2

2
2

2

2

2

2 22

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2

2

2

2

2

2
2

2

2

2

22

2 2

2
2 2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2
22

2

2

2

22
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2
2

22

2 2

2

2

2

3

3

3

3

3
3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

33

3

3

3

33

3

33

3

3

3

3

3

3

3

3 3

3

3

3

3

3
3

3

3

33

3

3

3
3

3

3
3
3

3

3

3 3

3 3

3

3

3

3

3

3

3

3

3

3

33

3 3

3

3
3

3 3

33

3

3

3

33
3

3

3

3

3

3

3

3

3

3
3

3

3

3

3 3

3

3

3

3
3

3

3 3
3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3
3

3
3

3

33

3

3

3

3

3

3

3 3

3

3

3 3

3

3

3

3
3

3

3

3 3

3
3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

1

1

11
11

1
1

1
1

1

1

1

1

1

1

1
1 1

11
1

1

1

1

1

1

1
1

1

1

1
1

1

1
1

1
1

1

1

1

1

1

1

1 1
1

1

1 1

1

1

1

1

1

1

1
11

1

1

1

1

1

1

1 1
11

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1
11

1

1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1 1

1

1

1
1

1

1

1

1 1

1

1

1
1 1

1

1

1 1
1

1
1

1

1

1

1

1

1

1

1
1

1 1

1
1

1

1

1

11

1

1

1

1 1

1
1

1

1
1

1

1

1

1

1
1

1

1
1

1

1
1

1

1

1
1
1

1

1 1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

2
2

2
22

2

2

2

2
2

2

2
22

2
2

2

2
2

22
2

2

22
2

2

2

2

2 2

2

2

2

22

2

2

2
2

2

2

2

2

2

2 22
2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2
2

2

2

22
2

2

2

2

2

2 2

2

2

2

2

2

2
2

2

2

2

2 22

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2

2

2

2

2

2
2

2

2

2

22

2 2

2
2 2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2
22

2

2

2

22
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2
2

22

2 2

2

2

2

3

3

3

3

3
3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

33

3

3

3

33

3

33

3

3

3

3

3

3

3

3 3

3

3

3

3

3
3

3

3

33

3

3

3
3

3

3
3
3

3

3

3 3

3 3

3

3

3

3

3

3

3

3

3

3

33

3 3

3

3
3

3 3

33

3

3

3

33
3

3

3

3

3

3

3

3

3

3
3

3

3

3

3 3

3

3

3

3
3

3

3 3
3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3
3

3
3

3

33

3

3

3

3

3

3

3 3

3

3

3 3

3

3

3

3
3

3

3

3 3

3
3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X2

2 . Linear inequalities in this
space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XT X)−1XT Y. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient

matrix B̂ = (XT X)−1XT Y. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT)B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)

Linear decision boundaries can be made non-linear

• Can expand the variable set X1, X2, . . . , Xp by including their
squares and cross-products X2

1 , X
2
2 , . . . , X

2
p , X1X2, X1X2, . . .

• This adds p(p+ 1)/2 additional variables.

• Linear decision boundaries in the augmented space
corresponds to quadratic decision boundaries in the original
space. 4.2 Linear Regression of an Indicator Matrix 103

1

1

1

11
11

1
1

1
1

1

1

1

1

1

1

1
1 1

11
1

1

1

1

1

1

1
1

1

1

1
1

1

1
1

1
1

1

1

1

1

1

1

1 1
1

1

1 1

1

1

1

1

1

1

1
11

1

1

1

1

1

1

1 1
11

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1
11

1

1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1 1

1

1

1
1

1

1

1

1 1

1

1

1
1 1

1

1

1 1
1

1
1

1

1

1

1

1

1

1

1
1

1 1

1
1

1

1

1

11

1

1

1

1 1

1
1

1

1
1

1

1

1

1

1
1

1

1
1

1

1
1

1

1

1
1
1

1

1 1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

2
2

2
22

2

2

2

2
2

2

2
22

2
2

2

2
2

22
2

2

22
2

2

2

2

2 2

2

2

2

22

2

2

2
2

2

2

2

2

2

2 22
2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2
2

2

2

22
2

2

2

2

2

2 2

2

2

2

2

2

2
2

2

2

2

2 22

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2

2

2

2

2

2
2

2

2

2

22

2 2

2
2 2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2
22

2

2

2

22
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2
2

22

2 2

2

2

2

3

3

3

3

3
3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

33

3

3

3

33

3

33

3

3

3

3

3

3

3

3 3

3

3

3

3

3
3

3

3

33

3

3

3
3

3

3
3
3

3

3

3 3

3 3

3

3

3

3

3

3

3

3

3

3

33

3 3

3

3
3

3 3

33

3

3

3

33
3

3

3

3

3

3

3

3

3

3
3

3

3

3

3 3

3

3

3

3
3

3

3 3
3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3
3

3
3

3

33

3

3

3

3

3

3

3 3

3

3

3 3

3

3

3

3
3

3

3

3 3

3
3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

1

1

11
11

1
1

1
1

1

1

1

1

1

1

1
1 1

11
1

1

1

1

1

1

1
1

1

1

1
1

1

1
1

1
1

1

1

1

1

1

1

1 1
1

1

1 1

1

1

1

1

1

1

1
11

1

1

1

1

1

1

1 1
11

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1
11

1

1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1 1

1

1

1
1

1

1

1

1 1

1

1

1
1 1

1

1

1 1
1

1
1

1

1

1

1

1

1

1

1
1

1 1

1
1

1

1

1

11

1

1

1

1 1

1
1

1

1
1

1

1

1

1

1
1

1

1
1

1

1
1

1

1

1
1
1

1

1 1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

2
2

2
22

2

2

2

2
2

2

2
22

2
2

2

2
2

22
2

2

22
2

2

2

2

2 2

2

2

2

22

2

2

2
2

2

2

2

2

2

2 22
2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2
2

2

2

22
2

2

2

2

2

2 2

2

2

2

2

2

2
2

2

2

2

2 22

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2

2

2

2

2

2
2

2

2

2

22

2 2

2
2 2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2
22

2

2

2

22
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2
2

22

2 2

2

2

2

3

3

3

3

3
3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

33

3

3

3

33

3

33

3

3

3

3

3

3

3

3 3

3

3

3

3

3
3

3

3

33

3

3

3
3

3

3
3
3

3

3

3 3

3 3

3

3

3

3

3

3

3

3

3

3

33

3 3

3

3
3

3 3

33

3

3

3

33
3

3

3

3

3

3

3

3

3

3
3

3

3

3

3 3

3

3

3

3
3

3

3 3
3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3
3

3
3

3

33

3

3

3

3

3

3

3 3

3

3

3 3

3

3

3

3
3

3

3

3 3

3
3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X2

2 . Linear inequalities in this
space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XT X)−1XT Y. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient

matrix B̂ = (XT X)−1XT Y. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT)B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)

Linear decision boundaries can be made non-linear

• Can expand the variable set X1, X2, . . . , Xp by including their
squares and cross-products X2

1 , X
2
2 , . . . , X

2
p , X1X2, X1X2, . . .

• This adds p(p+ 1)/2 additional variables.

• Linear decision boundaries in the augmented space
corresponds to quadratic decision boundaries in the original
space. 4.2 Linear Regression of an Indicator Matrix 103

1

1

1

11
11

1
1

1
1

1

1

1

1

1

1

1
1 1

11
1

1

1

1

1

1

1
1

1

1

1
1

1

1
1

1
1

1

1

1

1

1

1

1 1
1

1

1 1

1

1

1

1

1

1

1
11

1

1

1

1

1

1

1 1
11

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1
11

1

1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1 1

1

1

1
1

1

1

1

1 1

1

1

1
1 1

1

1

1 1
1

1
1

1

1

1

1

1

1

1

1
1

1 1

1
1

1

1

1

11

1

1

1

1 1

1
1

1

1
1

1

1

1

1

1
1

1

1
1

1

1
1

1

1

1
1
1

1

1 1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

2
2

2
22

2

2

2

2
2

2

2
22

2
2

2

2
2

22
2

2

22
2

2

2

2

2 2

2

2

2

22

2

2

2
2

2

2

2

2

2

2 22
2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2
2

2

2

22
2

2

2

2

2

2 2

2

2

2

2

2

2
2

2

2

2

2 22

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2

2

2

2

2

2
2

2

2

2

22

2 2

2
2 2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2
22

2

2

2

22
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2
2

22

2 2

2

2

2

3

3

3

3

3
3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

33

3

3

3

33

3

33

3

3

3

3

3

3

3

3 3

3

3

3

3

3
3

3

3

33

3

3

3
3

3

3
3
3

3

3

3 3

3 3

3

3

3

3

3

3

3

3

3

3

33

3 3

3

3
3

3 3

33

3

3

3

33
3

3

3

3

3

3

3

3

3

3
3

3

3

3

3 3

3

3

3

3
3

3

3 3
3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3
3

3
3

3

33

3

3

3

3

3

3

3 3

3

3

3 3

3

3

3

3
3

3

3

3 3

3
3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

1

1

11
11

1
1

1
1

1

1

1

1

1

1

1
1 1

11
1

1

1

1

1

1

1
1

1

1

1
1

1

1
1

1
1

1

1

1

1

1

1

1 1
1

1

1 1

1

1

1

1

1

1

1
11

1

1

1

1

1

1

1 1
11

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1
11

1

1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1 1

1

1

1
1

1

1

1

1 1

1

1

1
1 1

1

1

1 1
1

1
1

1

1

1

1

1

1

1

1
1

1 1

1
1

1

1

1

11

1

1

1

1 1

1
1

1

1
1

1

1

1

1

1
1

1

1
1

1

1
1

1

1

1
1
1

1

1 1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

2
2

2
22

2

2

2

2
2

2

2
22

2
2

2

2
2

22
2

2

22
2

2

2

2

2 2

2

2

2

22

2

2

2
2

2

2

2

2

2

2 22
2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2
2

2

2

22
2

2

2

2

2

2 2

2

2

2

2

2

2
2

2

2

2

2 22

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2

2

2

2

2

2
2

2

2

2

22

2 2

2
2 2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2
22

2

2

2

22
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2
2

22

2 2

2

2

2

3

3

3

3

3
3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

33

3

3

3

33

3

33

3

3

3

3

3

3

3

3 3

3

3

3

3

3
3

3

3

33

3

3

3
3

3

3
3
3

3

3

3 3

3 3

3

3

3

3

3

3

3

3

3

3

33

3 3

3

3
3

3 3

33

3

3

3

33
3

3

3

3

3

3

3

3

3

3
3

3

3

3

3 3

3

3

3

3
3

3

3 3
3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3
3

3
3

3

33

3

3

3

3

3

3

3 3

3

3

3 3

3

3

3

3
3

3

3

3 3

3
3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X2

2 . Linear inequalities in this
space are quadratic inequalities in the original space.

mation h(X) where h : IRp !→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XT X)−1XT Y. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient

matrix B̂ = (XT X)−1XT Y. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.

A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT)B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)

Linear Regression of an Indicator Matrix

Use linear regression to find discriminant functions

• Have training data {(xi, gi)}ni=1 where each xi ∈ Rp and
gi ∈ {1, . . . ,K}.

• For each k construct a linear discriminant δk(x) via:

1 For i = 1, . . . , n set

yi =

{
0 if gi 6= k

1 if gi = k

2 Compute (β̂0k, β̂k) = arg min
β0,βk

∑n
i=1(yi − β0 − βtkxi)2

3 Define

δk(x) = β̂0k + β̂tkx

• Classify a new point x with

G(x) = arg max
k

δk(x)

Use linear regression to find discriminant functions

• Have training data {(xi, gi)}ni=1 where each xi ∈ Rp and
gi ∈ {1, . . . ,K}.

• For each k construct a linear discriminant δk(x) via:

1 For i = 1, . . . , n set

yi =

{
0 if gi 6= k

1 if gi = k

2 Compute (β̂0k, β̂k) = arg min
β0,βk

∑n
i=1(yi − β0 − βtkxi)2

3 Define

δk(x) = β̂0k + β̂tkx

• Classify a new point x with

G(x) = arg max
k

δk(x)

Use linear regression to find discriminant functions

• Have training data {(xi, gi)}ni=1 where each xi ∈ Rp and
gi ∈ {1, . . . ,K}.

• For each k construct a linear discriminant δk(x) via:

1 For i = 1, . . . , n set

yi =

{
0 if gi 6= k

1 if gi = k

2 Compute (β̂0k, β̂k) = arg min
β0,βk

∑n
i=1(yi − β0 − βtkxi)2

3 Define

δk(x) = β̂0k + β̂tkx

• Classify a new point x with

G(x) = arg max
k

δk(x)

Use linear regression to find discriminant functions

• Have training data {(xi, gi)}ni=1 where each xi ∈ Rp and
gi ∈ {1, . . . ,K}.

• For each k construct a linear discriminant δk(x) via:

1 For i = 1, . . . , n set

yi =

{
0 if gi 6= k

1 if gi = k

2 Compute (β̂0k, β̂k) = arg min
β0,βk

∑n
i=1(yi − β0 − βtkxi)2

3 Define

δk(x) = β̂0k + β̂tkx

• Classify a new point x with

G(x) = arg max
k

δk(x)

Use linear regression to find discriminant functions

• Have training data {(xi, gi)}ni=1 where each xi ∈ Rp and
gi ∈ {1, . . . ,K}.

• For each k construct a linear discriminant δk(x) via:

1 For i = 1, . . . , n set

yi =

{
0 if gi 6= k

1 if gi = k

2 Compute (β̂0k, β̂k) = arg min
β0,βk

∑n
i=1(yi − β0 − βtkxi)2

3 Define

δk(x) = β̂0k + β̂tkx

• Classify a new point x with

G(x) = arg max
k

δk(x)

Use linear regression to find discriminant functions

• Have training data {(xi, gi)}ni=1 where each xi ∈ Rp and
gi ∈ {1, . . . ,K}.

• For each k construct a linear discriminant δk(x) via:

1 For i = 1, . . . , n set

yi =

{
0 if gi 6= k

1 if gi = k

2 Compute (β̂0k, β̂k) = arg min
β0,βk

∑n
i=1(yi − β0 − βtkxi)2

3 Define

δk(x) = β̂0k + β̂tkx

• Classify a new point x with

G(x) = arg max
k

δk(x)

3 class example

Use linear regression of an indicator matrix to find the discriminant
functions for the above 3-classes.

Construct K linear regression problems

For each k construct the response vectors from the class labels

0
10

20
0

100

0.5

1

0
10

20
0

100

0.5

1

0
10

20
0

100

0.5

1

For each k fit a hyperplane that minimizes the RSS

0
10

20
0

100

0.5

1

0
10

20
0

100

0.5

1

0
10

20
0

100

0.5

1

Construct K discriminant functions

For each k construct the response vectors from the class labels

0
10

20
0

100

0.5

1

0
10

20
0

100

0.5

1

0
10

20
0

100

0.5

1

The k discriminant fns defined by the least square hyperplanes

−0.5 0 0.5 1 1.5 −0.5 0 0.5 1 1.5 −0.5 0 0.5 1 1.5

δ1(x) δ2(x) δ3(x)

The decision boundary defined by these discriminant fns

This approach will fail in this case

The training data from 3 classes

The discriminant functions learnt via regression

0 0.5 1 0 0.5 1 0 0.5 1

δ1(x) δ2(x) δ3(x)

The resulting decision boundary

The discriminant functions learnt via regression

0 0.5 1 0 0.5 1 0 0.5 1

δ1(x) δ2(x) δ3(x)

The resulting decision boundary

• In this last example masking has occurred.

• This occurs because of the rigid nature of the linear
discriminant functions.

• This example is extreme but for large K and small p such
maskings occur naturally.

• The other methods in this chapter are based on linear decision
functions of x, but they are learnt in a smarter why...

The resulting decision boundary

• In this last example masking has occurred.

• This occurs because of the rigid nature of the linear
discriminant functions.

• This example is extreme but for large K and small p such
maskings occur naturally.

• The other methods in this chapter are based on linear decision
functions of x, but they are learnt in a smarter why...

The resulting decision boundary

• In this last example masking has occurred.

• This occurs because of the rigid nature of the linear
discriminant functions.

• This example is extreme but for large K and small p such
maskings occur naturally.

• The other methods in this chapter are based on linear decision
functions of x, but they are learnt in a smarter why...

The resulting decision boundary

• In this last example masking has occurred.

• This occurs because of the rigid nature of the linear
discriminant functions.

• This example is extreme but for large K and small p such
maskings occur naturally.

• The other methods in this chapter are based on linear decision
functions of x, but they are learnt in a smarter why...

Linear Discriminant Analysis

Optimal classification requires the posterior

• To perform optimal classification need to know P (G |X). Let

• fk(x) represent the class-conditional P (X |G = k) and

• πk be the prior probability of class k with
∑K
k=1 πk = 1

• A simple application of Bayes Rule gives

P (G = k |X = x) =
fk(x)πk∑K
l=1 fl(x)πl

• Therefore for classification having fk(x) is almost equivalent
to having P (G = k |X = x).

Optimal classification requires the posterior

• To perform optimal classification need to know P (G |X). Let

• fk(x) represent the class-conditional P (X |G = k) and

• πk be the prior probability of class k with
∑K
k=1 πk = 1

• A simple application of Bayes Rule gives

P (G = k |X = x) =
fk(x)πk∑K
l=1 fl(x)πl

• Therefore for classification having fk(x) is almost equivalent
to having P (G = k |X = x).

Optimal classification requires the posterior

• To perform optimal classification need to know P (G |X). Let

• fk(x) represent the class-conditional P (X |G = k) and

• πk be the prior probability of class k with
∑K
k=1 πk = 1

• A simple application of Bayes Rule gives

P (G = k |X = x) =
fk(x)πk∑K
l=1 fl(x)πl

• Therefore for classification having fk(x) is almost equivalent
to having P (G = k |X = x).

Optimal classification requires the posterior

• To perform optimal classification need to know P (G |X). Let

• fk(x) represent the class-conditional P (X |G = k) and

• πk be the prior probability of class k with
∑K
k=1 πk = 1

• A simple application of Bayes Rule gives

P (G = k |X = x) =
fk(x)πk∑K
l=1 fl(x)πl

• Therefore for classification having fk(x) is almost equivalent
to having P (G = k |X = x).

How to model the class densities

• Many methods are based on specific models of fk(x)

• linear and quadratic discriminant functions use Gaussian
distributions,

• mixture of Gaussian distributions produce non-linear decision
boundaries,

• non-parametric density estimates which allow the most
flexibility,

• Naive Bayes where fk(X) =
∏p
j=1 fkj(Xj).

How to model the class densities

• Many methods are based on specific models of fk(x)

• linear and quadratic discriminant functions use Gaussian
distributions,

• mixture of Gaussian distributions produce non-linear decision
boundaries,

• non-parametric density estimates which allow the most
flexibility,

• Naive Bayes where fk(X) =
∏p
j=1 fkj(Xj).

How to model the class densities

• Many methods are based on specific models of fk(x)

• linear and quadratic discriminant functions use Gaussian
distributions,

• mixture of Gaussian distributions produce non-linear decision
boundaries,

• non-parametric density estimates which allow the most
flexibility,

• Naive Bayes where fk(X) =
∏p
j=1 fkj(Xj).

How to model the class densities

• Many methods are based on specific models of fk(x)

• linear and quadratic discriminant functions use Gaussian
distributions,

• mixture of Gaussian distributions produce non-linear decision
boundaries,

• non-parametric density estimates which allow the most
flexibility,

• Naive Bayes where fk(X) =
∏p
j=1 fkj(Xj).

How to model the class densities

• Many methods are based on specific models of fk(x)

• linear and quadratic discriminant functions use Gaussian
distributions,

• mixture of Gaussian distributions produce non-linear decision
boundaries,

• non-parametric density estimates which allow the most
flexibility,

• Naive Bayes where fk(X) =
∏p
j=1 fkj(Xj).

Multivariate Gaussian class densities

• Model each fk(x) as a multivariate Gaussian

fk(x) =
1

p
√

2π
√
|Σk|

exp {−.5(x− µk)t Σ−1k (x− µk)}

• Linear Discriminant Analysis (LDA) arises in the special
case when

Σk = Σ for all k

Linear discriminant functions

Similar discriminant functions were derived where each p(x |ωi) is
Normally distributed with equal covariance matrices.

class distributions decision boundary partition of space

In this lecture, no assumptions, made about the underlying densities.

The form of the discriminant function will be assumed to be linear.

One gets linear decision boundaries.

Multivariate Gaussian class densities

• Model each fk(x) as a multivariate Gaussian

fk(x) =
1

p
√

2π
√
|Σk|

exp {−.5(x− µk)t Σ−1k (x− µk)}

• Linear Discriminant Analysis (LDA) arises in the special
case when

Σk = Σ for all k

Linear discriminant functions

Similar discriminant functions were derived where each p(x |ωi) is
Normally distributed with equal covariance matrices.

class distributions decision boundary partition of space

In this lecture, no assumptions, made about the underlying densities.

The form of the discriminant function will be assumed to be linear.

One gets linear decision boundaries.

LDA

• Can see this as

log
P (G = k |X = x)

P (G = l |X = x)
= log

fk(x)

fl(x)
+ log

πk
πl

= log
πk
πl
− .5µtk Σ−1µk + .5µtl Σ−1µl

+ xtΣ−1(µk − µl)
= xta+ b ← a linear function

• The equal covariance matrices allow the xtΣ−1k x and xtΣ−1l x
terms to cancel out.

• From the log-odds function we see that the linear discriminant
functions

δk(x) = xt Σ−1µk − .5µtk Σ−1µk + log πk

are an equivalent description of the decision rule with

G(x) = arg max
k

δk(x)

LDA

• Can see this as

log
P (G = k |X = x)

P (G = l |X = x)
= log

fk(x)

fl(x)
+ log

πk
πl

= log
πk
πl
− .5µtk Σ−1µk + .5µtl Σ−1µl

+ xtΣ−1(µk − µl)
= xta+ b ← a linear function

• The equal covariance matrices allow the xtΣ−1k x and xtΣ−1l x
terms to cancel out.

• From the log-odds function we see that the linear discriminant
functions

δk(x) = xt Σ−1µk − .5µtk Σ−1µk + log πk

are an equivalent description of the decision rule with

G(x) = arg max
k

δk(x)

LDA

• Can see this as

log
P (G = k |X = x)

P (G = l |X = x)
= log

fk(x)

fl(x)
+ log

πk
πl

= log
πk
πl
− .5µtk Σ−1µk + .5µtl Σ−1µl

+ xtΣ−1(µk − µl)
= xta+ b ← a linear function

• The equal covariance matrices allow the xtΣ−1k x and xtΣ−1l x
terms to cancel out.

• From the log-odds function we see that the linear discriminant
functions

δk(x) = xt Σ−1µk − .5µtk Σ−1µk + log πk

are an equivalent description of the decision rule with

G(x) = arg max
k

δk(x)

LDA: Some practicalities

In practice don’t know the parameters of the Gaussian distributions
and estimate these from the training data.
Let nk be the number of class k observations then
• π̂k = nk/n

• µ̂k =
∑

gi=k
xi/nk

• Σ̂k =
∑K

k=1

∑
gi=k

(xi − µ̂k)(xi − µ̂k)t/(n−K)4.3 Linear Discriminant Analysis 109

+ +

+
3

21

1

1

2

3

3

3

1

2

3

3

2

1 1 21

1

3
3

1 21

2

3

2

3

3

1

2

2

1

1

1

1

3

2

2

2

2

1 3

2 2

3

1

3

1

3

3 2

1

3

3

2

3

1

3

3

2
1

3
3

2

2

3
2

2

21
1

1

1
1

2

1

3

3

1
1

3

3
2

2
2

23

1

2

FIGURE 4.5. The left panel shows three Gaussian distributions, with the same
covariance and different means. Included are the contours of constant density
enclosing 95% of the probability in each case. The Bayes decision boundaries
between each pair of classes are shown (broken straight lines), and the Bayes
decision boundaries separating all three classes are the thicker solid lines (a subset
of the former). On the right we see a sample of 30 drawn from each Gaussian
distribution, and the fitted LDA decision boundaries.

the figure the contours corresponding to 95% highest probability density,
as well as the class centroids. Notice that the decision boundaries are not
the perpendicular bisectors of the line segments joining the centroids. This
would be the case if the covariance Σ were spherical σ2I, and the class
priors were equal. From (4.9) we see that the linear discriminant functions

δk(x) = xT Σ−1µk − 1

2
µT

k Σ−1µk + log πk (4.10)

are an equivalent description of the decision rule, with G(x) = argmaxkδk(x).
In practice we do not know the parameters of the Gaussian distributions,

and will need to estimate them using our training data:

• π̂k = Nk/N , where Nk is the number of class-k observations;

• µ̂k =
∑

gi=k xi/Nk;

• Σ̂ =
∑K

k=1

∑
gi=k(xi − µ̂k)(xi − µ̂k)T /(N − K).

Figure 4.5 (right panel) shows the estimated decision boundaries based on
a sample of size 30 each from three Gaussian distributions. Figure 4.1 on
page 103 is another example, but here the classes are not Gaussian.

With two classes there is a simple correspondence between linear dis-
criminant analysis and classification by linear least squares, as in (4.5).
The LDA rule classifies to class 2 if

xT Σ̂
−1

(µ̂2 − µ̂1) >
1

2
µ̂T

2 Σ̂
−1

µ̂2 − 1

2
µ̂T

1 Σ̂
−1

µ̂1 + log(N1/N) − log(N2/N)

(4.11)

When Σk’s are not all equal

• If the Σk are not assumed to be equal then the quadratic
terms remain and we get quadratic discriminant functions
(QDA)

δk(x) = −.5 log |Σk| − .5 (x− µk)t Σ−1k (x− µk) + log πk

• In this case the decision boundary between classes are
described by a quadratic equation {x : δk(x) = δl(x)}.

Bivariate example

Have a two class problem with

µ1 =

�
1
−1

�
,Σ1 =

�
.9 .4
.4 .3

�
, P (ω1) = .5 µ2 =

�
2.6
3

�
,Σ2 =

�
.4 −.2
−.2 .5

�
, P (ω2) = .5

class distributions decision boundaries partition of space

When Σk’s are not all equal

• If the Σk are not assumed to be equal then the quadratic
terms remain and we get quadratic discriminant functions
(QDA)

δk(x) = −.5 log |Σk| − .5 (x− µk)t Σ−1k (x− µk) + log πk

• In this case the decision boundary between classes are
described by a quadratic equation {x : δk(x) = δl(x)}.

Bivariate example

Have a two class problem with

µ1 =

�
1
−1

�
,Σ1 =

�
.9 .4
.4 .3

�
, P (ω1) = .5 µ2 =

�
2.6
3

�
,Σ2 =

�
.4 −.2
−.2 .5

�
, P (ω2) = .5

class distributions decision boundaries partition of space

Best way to compute a quadratic discriminant function?

Left plot shows the quadratic decision boundaries found using
LDA in the five dimensional space X1, X2, X

2
1 , X

2
2 , X1X2.

4.3 Linear Discriminant Analysis 111

1

1

1

11
11

1
1

1
1

1

1

1

1

1

1

1
1 1

11
1

1

1

1

1

1

1
1

1

1

1
1

1

1
1

1
1

1

1

1

1

1

1

1 1
1

1

1 1

1

1

1

1

1

1

1
11

1

1

1

1

1

1

1 1
11

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1
11

1

1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1 1

1

1

1
1

1

1

1

1 1

1

1

1
1 1

1

1

1 1
1

1
1

1

1

1

1

1

1

1

1
1

1 1

1
1

1

1

1

11

1

1

1

1 1

1
1

1

1
1

1

1

1

1

1
1

1

1
1

1

1
1

1

1

1
1
1

1

1 1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

2
2

2
22

2

2

2

2
2

2

2
22

2
2

2

2
2

22
2

2

22
2

2

2

2

2 2

2

2

2

22

2

2

2
2

2

2

2

2

2

2 22
2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2
2

2

2

22
2

2

2

2

2

2 2

2

2

2

2

2

2
2

2

2

2

2 22

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2

2

2

2

2

2
2

2

2

2

22

2 2

2
2 2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2
22

2

2

2

22
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2
2

22

2 2

2

2

2

3

3

3

3

3
3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

33

3

3

3

33

3

33

3

3

3

3

3

3

3

3 3

3

3

3

3

3
3

3

3

33

3

3

3
3

3

3
3
3

3

3

3 3

3 3

3

3

3

3

3

3

3

3

3

3

33

3 3

3

3
3

3 3

33

3

3

3

33
3

3

3

3

3

3

3

3

3

3
3

3

3

3

3 3

3

3

3

3
3

3

3 3
3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3
3

3
3

3

33

3

3

3

3

3

3

3 3

3

3

3 3

3

3

3

3
3

3

3

3 3

3
3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

1

1

11
11

1
1

1
1

1

1

1

1

1

1

1
1 1

11
1

1

1

1

1

1

1
1

1

1

1
1

1

1
1

1
1

1

1

1

1

1

1

1 1
1

1

1 1

1

1

1

1

1

1

1
11

1

1

1

1

1

1

1 1
11

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1
11

1

1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1 1

1

1

1
1

1

1

1

1 1

1

1

1
1 1

1

1

1 1
1

1
1

1

1

1

1

1

1

1

1
1

1 1

1
1

1

1

1

11

1

1

1

1 1

1
1

1

1
1

1

1

1

1

1
1

1

1
1

1

1
1

1

1

1
1
1

1

1 1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

2
2

2
22

2

2

2

2
2

2

2
22

2
2

2

2
2

22
2

2

22
2

2

2

2

2 2

2

2

2

22

2

2

2
2

2

2

2

2

2

2 22
2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2
2

2

2

22
2

2

2

2

2

2 2

2

2

2

2

2

2
2

2

2

2

2 22

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2

2

2

2

2

2
2

2

2

2

22

2 2

2
2 2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2
22

2

2

2

22
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2
2

2

2

2
2

22

2 2

2

2

2

3

3

3

3

3
3

3

3

3

3

3 3

3

3

3

3

3

3

3

3

3

33

3

3

3

33

3

33

3

3

3

3

3

3

3

3 3

3

3

3

3

3
3

3

3

33

3

3

3
3

3

3
3
3

3

3

3 3

3 3

3

3

3

3

3

3

3

3

3

3

33

3 3

3

3
3

3 3

33

3

3

3

33
3

3

3

3

3

3

3

3

3

3
3

3

3

3

3 3

3

3

3

3
3

3

3 3
3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3
3

3
3

3

33

3

3

3

3

3

3

3 3

3

3

3 3

3

3

3

3
3

3

3

3 3

3
3

33

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

FIGURE 4.6. Two methods for fitting quadratic boundaries. The left plot shows
the quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA
in the five-dimensional space X1, X2, X1X2, X

2
1 , X2

2). The right plot shows the
quadratic decision boundaries found by QDA. The differences are small, as is
usually the case.

between the discriminant functions where K is some pre-chosen class (here
we have chosen the last), and each difference requires p + 1 parameters3.
Likewise for QDA there will be (K − 1) × {p(p + 3)/2 + 1} parameters.
Both LDA and QDA perform well on an amazingly large and diverse set
of classification tasks. For example, in the STATLOG project (Michie et
al., 1994) LDA was among the top three classifiers for 7 of the 22 datasets,
QDA among the top three for four datasets, and one of the pair were in the
top three for 10 datasets. Both techniques are widely used, and entire books
are devoted to LDA. It seems that whatever exotic tools are the rage of the
day, we should always have available these two simple tools. The question
arises why LDA and QDA have such a good track record. The reason is not
likely to be that the data are approximately Gaussian, and in addition for
LDA that the covariances are approximately equal. More likely a reason is
that the data can only support simple decision boundaries such as linear or
quadratic, and the estimates provided via the Gaussian models are stable.
This is a bias variance tradeoff—we can put up with the bias of a linear
decision boundary because it can be estimated with much lower variance
than more exotic alternatives. This argument is less believable for QDA,
since it can have many parameters itself, although perhaps fewer than the
non-parametric alternatives.

3Although we fit the covariance matrix Σ̂ to compute the LDA discriminant functions,

a much reduced function of it is all that is required to estimate the O(p) parameters

needed to compute the decision boundaries.

Right plot shows the quadratic decision boundaries found by QDA.

LDA and QDA summary

• These methods can be surprisingly effective.

• Can explain this

Reduced-Rank Linear Discriminant Analysis

Affine subspace defined by centroids of the classes

• Have K centroids in a p-dimensional input space: µ1, . . . , µK

• These centroids define an K − 1 dimensional affine subspace
HK−1 where if u ∈ HK−1 then

u = µ1 + α1(µ2 − µ1) + α2(µ3 − µ1) + · · ·+ αK−1(µK − µ1)

= µ1 + α1 d1 + α2 d2 + · · ·+ αK−1 dK−1

• If x ∈ Rp then it can be written as

x = µ1 + γ1 d1 + γ2 d2 + · · ·+ γK−1 dK−1 + x⊥, where x⊥ ∈ H⊥K−1.

• If x has been whitened with respect to the common covariance
matrix then the Mahalhobnis distance to centroid µj

‖x− µj‖ = ‖µ1 + γ1 d1 + γ2 d2 + · · ·+ γK−1 dK−1 + x⊥ − µj‖
= ‖2µ1 + γ1 d1 + · · ·+ (γj−1 − 1) dj−1 + · · ·+ γK−1 dK−1 + x⊥‖

• x⊥ does not change with µj , therefore to locate the closest
centroid can ignore it.

Affine subspace defined by centroids of the classes

• Have K centroids in a p-dimensional input space: µ1, . . . , µK

• These centroids define an K − 1 dimensional affine subspace
HK−1 where if u ∈ HK−1 then

u = µ1 + α1(µ2 − µ1) + α2(µ3 − µ1) + · · ·+ αK−1(µK − µ1)

= µ1 + α1 d1 + α2 d2 + · · ·+ αK−1 dK−1

• If x ∈ Rp then it can be written as

x = µ1 + γ1 d1 + γ2 d2 + · · ·+ γK−1 dK−1 + x⊥, where x⊥ ∈ H⊥K−1.

• If x has been whitened with respect to the common covariance
matrix then the Mahalhobnis distance to centroid µj

‖x− µj‖ = ‖µ1 + γ1 d1 + γ2 d2 + · · ·+ γK−1 dK−1 + x⊥ − µj‖
= ‖2µ1 + γ1 d1 + · · ·+ (γj−1 − 1) dj−1 + · · ·+ γK−1 dK−1 + x⊥‖

• x⊥ does not change with µj , therefore to locate the closest
centroid can ignore it.

Affine subspace defined by centroids of the classes

• Have K centroids in a p-dimensional input space: µ1, . . . , µK

• These centroids define an K − 1 dimensional affine subspace
HK−1 where if u ∈ HK−1 then

u = µ1 + α1(µ2 − µ1) + α2(µ3 − µ1) + · · ·+ αK−1(µK − µ1)

= µ1 + α1 d1 + α2 d2 + · · ·+ αK−1 dK−1

• If x ∈ Rp then it can be written as

x = µ1 + γ1 d1 + γ2 d2 + · · ·+ γK−1 dK−1 + x⊥, where x⊥ ∈ H⊥K−1.

• If x has been whitened with respect to the common covariance
matrix then the Mahalhobnis distance to centroid µj

‖x− µj‖ = ‖µ1 + γ1 d1 + γ2 d2 + · · ·+ γK−1 dK−1 + x⊥ − µj‖
= ‖2µ1 + γ1 d1 + · · ·+ (γj−1 − 1) dj−1 + · · ·+ γK−1 dK−1 + x⊥‖

• x⊥ does not change with µj , therefore to locate the closest
centroid can ignore it.

Affine subspace defined by centroids of the classes

• Have K centroids in a p-dimensional input space: µ1, . . . , µK

• These centroids define an K − 1 dimensional affine subspace
HK−1 where if u ∈ HK−1 then

u = µ1 + α1(µ2 − µ1) + α2(µ3 − µ1) + · · ·+ αK−1(µK − µ1)

= µ1 + α1 d1 + α2 d2 + · · ·+ αK−1 dK−1

• If x ∈ Rp then it can be written as

x = µ1 + γ1 d1 + γ2 d2 + · · ·+ γK−1 dK−1 + x⊥, where x⊥ ∈ H⊥K−1.

• If x has been whitened with respect to the common covariance
matrix then the Mahalhobnis distance to centroid µj

‖x− µj‖ = ‖µ1 + γ1 d1 + γ2 d2 + · · ·+ γK−1 dK−1 + x⊥ − µj‖
= ‖2µ1 + γ1 d1 + · · ·+ (γj−1 − 1) dj−1 + · · ·+ γK−1 dK−1 + x⊥‖

• x⊥ does not change with µj , therefore to locate the closest
centroid can ignore it.

Affine subspace defined by centroids of the classes

• Have K centroids in a p-dimensional input space: µ1, . . . , µK

• These centroids define an K − 1 dimensional affine subspace
HK−1 where if u ∈ HK−1 then

u = µ1 + α1(µ2 − µ1) + α2(µ3 − µ1) + · · ·+ αK−1(µK − µ1)

= µ1 + α1 d1 + α2 d2 + · · ·+ αK−1 dK−1

• If x ∈ Rp then it can be written as

x = µ1 + γ1 d1 + γ2 d2 + · · ·+ γK−1 dK−1 + x⊥, where x⊥ ∈ H⊥K−1.

• If x has been whitened with respect to the common covariance
matrix then the Mahalhobnis distance to centroid µj

‖x− µj‖ = ‖µ1 + γ1 d1 + γ2 d2 + · · ·+ γK−1 dK−1 + x⊥ − µj‖
= ‖2µ1 + γ1 d1 + · · ·+ (γj−1 − 1) dj−1 + · · ·+ γK−1 dK−1 + x⊥‖

• x⊥ does not change with µj , therefore to locate the closest
centroid can ignore it.

To summarize

• K centroids in p-dimensional input space lie in an affine
subspace of dimension ≤ K − 1.

• If p� K this is a big drop in dimension.

• To locate the closest centroid can ignore the directions
orthogonal to this subspace if the data has been sphered.

• Therefore can just project X∗ onto this centroid-spanning
subspace HK−1 and make comparisons there.

• LDA thus performs dimensionality reduction and one need
only consider the data in a subspace of dimension at most
K − 1.

What about a subspace of dimension L < K − 1?

• If K > 3 can ask the question:
Which subspace of dimensional L < K − 1 should we project
onto for optimality w.r.t. LDA?

• Fisher defined optimal as the projected centroids are spread
out as much as possible in terms of variance.

• Find the principal component subspace of the centroids.
4.3 Linear Discriminant Analysis 107

Coordinate 1 for Training Data

C
oo

rd
in

at
e

2
fo

r T
ra

in
in

g
D

at
a

-4 -2 0 2 4

-6
-4

-2
0

2
4

o
ooooo

o
o
o

o

oo

o
o
o o o o

oo
o
o
o

o

o o o o oo

ooo o oo

o
o

o

o

o o

o o
o

ooo

oo ooo
o

o

o

oo

o

o

oo
oo

o

o

o
ooooo

o o
oo
o

o

o

o
oooo

o oo o
oo

o

oo

o
o

o

oooo
o

ooo
oo
o

o

o

o
oo

o

o

o ooo
o o

ooo o o
o

o
oo ooo

oo o oo
o

o o
o
o o

o

oooooo

oooooo

oo
oooo

oooooo

oo
ooo o

ooooo
o

oooooo

o
o

oooo

o o
o

o
o

o

o ooooo

oooo
o

o

oooooo
o
o
oooo

oooooo

ooo
ooo

o
o

o

o
oo

ooooo o
o o
oo

o o
o o

oooo
o ooo

o

o

oo
o

o

o
o

ooo
o

o

o

oooo
o

o o
o

o

o
o

o

oooooo

o
o oooo

o
o

oo o
o oo

o
oo o

o o o
o

o
o

oo
o
ooo

o
oooo

o

o
o

o
oo

o
oo

o
o

oo

o o o
o
o o

o oo
oo

o

ooooo
o

o o

o
o

o
o

oo o oo
o

oooo
o o

o

o
o

o o o

o
o
ooo

o

oo
o

o
o

o

o

o
o

o
o
o

oo
ooo

o

ooo
o

o
o

o ooo
o

o

oooooo

o
oo o

o
o

ooooo o
o oo

o o o
oooooo

o
o

ooo o

o
oo o

o o

oo
o

o
oo

o

o

o
o

o
o

o o
o

ooo
ooo

o
oo

ooo ooo

oo
o

o oo
o oo

o
o

oo
oo

oo
o

oo
o

ooo

oo
oooo

oo

o

o
o o

••
••

••
•• •••• •• ••

•• ••
••

Linear Discriminant Analysis

FIGURE 4.4. A two-dimensional plot of the vowel training data. There are
eleven classes with X ∈ IR10, and this is the best view in terms of a LDA model
(Section 4.3.3). The heavy circles are the projected mean vectors for each class.
The class overlap is considerable.

TABLE 4.1. Training and test error rates using a variety of linear techniques
on the vowel data. There are eleven classes in ten dimensions, of which three
account for 90% of the variance (via a principal components analysis). We see
that linear regression is hurt by masking, increasing the test and training error
by over 10%.

Technique Error Rates
Training Test

Linear regression 0.48 0.67
Linear discriminant analysis 0.32 0.56

Quadratic discriminant analysis 0.01 0.53
Logistic regression 0.22 0.51

• In this example have 11
classes with 10 dimensional
input vectors.

• The bold dots correspond
to the centroids projected
onto the top 2 principal
directions.

What about a subspace of dimension L < K − 1?

• If K > 3 can ask the question:
Which subspace of dimensional L < K − 1 should we project
onto for optimality w.r.t. LDA?

• Fisher defined optimal as the projected centroids are spread
out as much as possible in terms of variance.

• Find the principal component subspace of the centroids.
4.3 Linear Discriminant Analysis 107

Coordinate 1 for Training Data

C
oo

rd
in

at
e

2
fo

r T
ra

in
in

g
D

at
a

-4 -2 0 2 4

-6
-4

-2
0

2
4

o
ooooo

o
o
o

o

oo

o
o
o o o o

oo
o
o
o

o

o o o o oo

ooo o oo

o
o

o

o

o o

o o
o

ooo

oo ooo
o

o

o

oo

o

o

oo
oo

o

o

o
ooooo

o o
oo
o

o

o

o
oooo

o oo o
oo

o

oo

o
o

o

oooo
o

ooo
oo
o

o

o

o
oo

o

o

o ooo
o o

ooo o o
o

o
oo ooo

oo o oo
o

o o
o
o o

o

oooooo

oooooo

oo
oooo

oooooo

oo
ooo o

ooooo
o

oooooo

o
o

oooo

o o
o

o
o

o

o ooooo

oooo
o

o

oooooo
o
o
oooo

oooooo

ooo
ooo

o
o

o

o
oo

ooooo o
o o
oo

o o
o o

oooo
o ooo

o

o

oo
o

o

o
o

ooo
o

o

o

oooo
o

o o
o

o

o
o

o

oooooo

o
o oooo

o
o

oo o
o oo

o
oo o

o o o
o

o
o

oo
o
ooo

o
oooo

o

o
o

o
oo

o
oo

o
o

oo

o o o
o
o o

o oo
oo

o

ooooo
o

o o

o
o

o
o

oo o oo
o

oooo
o o

o

o
o

o o o

o
o
ooo

o

oo
o

o
o

o

o

o
o

o
o
o

oo
ooo

o

ooo
o

o
o

o ooo
o

o

oooooo

o
oo o

o
o

ooooo o
o oo

o o o
oooooo

o
o

ooo o

o
oo o

o o

oo
o

o
oo

o

o

o
o

o
o

o o
o

ooo
ooo

o
oo

ooo ooo

oo
o

o oo
o oo

o
o

oo
oo

oo
o

oo
o

ooo

oo
oooo

oo

o

o
o o

••
••

••
•• •••• •• ••

•• ••
••

Linear Discriminant Analysis

FIGURE 4.4. A two-dimensional plot of the vowel training data. There are
eleven classes with X ∈ IR10, and this is the best view in terms of a LDA model
(Section 4.3.3). The heavy circles are the projected mean vectors for each class.
The class overlap is considerable.

TABLE 4.1. Training and test error rates using a variety of linear techniques
on the vowel data. There are eleven classes in ten dimensions, of which three
account for 90% of the variance (via a principal components analysis). We see
that linear regression is hurt by masking, increasing the test and training error
by over 10%.

Technique Error Rates
Training Test

Linear regression 0.48 0.67
Linear discriminant analysis 0.32 0.56

Quadratic discriminant analysis 0.01 0.53
Logistic regression 0.22 0.51

• In this example have 11
classes with 10 dimensional
input vectors.

• The bold dots correspond
to the centroids projected
onto the top 2 principal
directions.

What about a subspace of dimension L < K − 1?

• If K > 3 can ask the question:
Which subspace of dimensional L < K − 1 should we project
onto for optimality w.r.t. LDA?

• Fisher defined optimal as the projected centroids are spread
out as much as possible in terms of variance.

• Find the principal component subspace of the centroids.
4.3 Linear Discriminant Analysis 107

Coordinate 1 for Training Data

C
oo

rd
in

at
e

2
fo

r T
ra

in
in

g
D

at
a

-4 -2 0 2 4

-6
-4

-2
0

2
4

o
ooooo

o
o
o

o

oo

o
o
o o o o

oo
o
o
o

o

o o o o oo

ooo o oo

o
o

o

o

o o

o o
o

ooo

oo ooo
o

o

o

oo

o

o

oo
oo

o

o

o
ooooo

o o
oo
o

o

o

o
oooo

o oo o
oo

o

oo

o
o

o

oooo
o

ooo
oo
o

o

o

o
oo

o

o

o ooo
o o

ooo o o
o

o
oo ooo

oo o oo
o

o o
o
o o

o

oooooo

oooooo

oo
oooo

oooooo

oo
ooo o

ooooo
o

oooooo

o
o

oooo

o o
o

o
o

o

o ooooo

oooo
o

o

oooooo
o
o
oooo

oooooo

ooo
ooo

o
o

o

o
oo

ooooo o
o o
oo

o o
o o

oooo
o ooo

o

o

oo
o

o

o
o

ooo
o

o

o

oooo
o

o o
o

o

o
o

o

oooooo

o
o oooo

o
o

oo o
o oo

o
oo o

o o o
o

o
o

oo
o
ooo

o
oooo

o

o
o

o
oo

o
oo

o
o

oo

o o o
o
o o

o oo
oo

o

ooooo
o

o o

o
o

o
o

oo o oo
o

oooo
o o

o

o
o

o o o

o
o
ooo

o

oo
o

o
o

o

o

o
o

o
o
o

oo
ooo

o

ooo
o

o
o

o ooo
o

o

oooooo

o
oo o

o
o

ooooo o
o oo

o o o
oooooo

o
o

ooo o

o
oo o

o o

oo
o

o
oo

o

o

o
o

o
o

o o
o

ooo
ooo

o
oo

ooo ooo

oo
o

o oo
o oo

o
o

oo
oo

oo
o

oo
o

ooo

oo
oooo

oo

o

o
o o

••
••

••
•• •••• •• ••

•• ••
••

Linear Discriminant Analysis

FIGURE 4.4. A two-dimensional plot of the vowel training data. There are
eleven classes with X ∈ IR10, and this is the best view in terms of a LDA model
(Section 4.3.3). The heavy circles are the projected mean vectors for each class.
The class overlap is considerable.

TABLE 4.1. Training and test error rates using a variety of linear techniques
on the vowel data. There are eleven classes in ten dimensions, of which three
account for 90% of the variance (via a principal components analysis). We see
that linear regression is hurt by masking, increasing the test and training error
by over 10%.

Technique Error Rates
Training Test

Linear regression 0.48 0.67
Linear discriminant analysis 0.32 0.56

Quadratic discriminant analysis 0.01 0.53
Logistic regression 0.22 0.51

• In this example have 11
classes with 10 dimensional
input vectors.

• The bold dots correspond
to the centroids projected
onto the top 2 principal
directions.

What about a subspace of dimension L < K − 1?

• If K > 3 can ask the question:
Which subspace of dimensional L < K − 1 should we project
onto for optimality w.r.t. LDA?

• Fisher defined optimal as the projected centroids are spread
out as much as possible in terms of variance.

• Find the principal component subspace of the centroids.
4.3 Linear Discriminant Analysis 107

Coordinate 1 for Training Data

C
oo

rd
in

at
e

2
fo

r T
ra

in
in

g
D

at
a

-4 -2 0 2 4

-6
-4

-2
0

2
4

o
ooooo

o
o
o

o

oo

o
o
o o o o

oo
o
o
o

o

o o o o oo

ooo o oo

o
o

o

o

o o

o o
o

ooo

oo ooo
o

o

o

oo

o

o

oo
oo

o

o

o
ooooo

o o
oo
o

o

o

o
oooo

o oo o
oo

o

oo

o
o

o

oooo
o

ooo
oo
o

o

o

o
oo

o

o

o ooo
o o

ooo o o
o

o
oo ooo

oo o oo
o

o o
o
o o

o

oooooo

oooooo

oo
oooo

oooooo

oo
ooo o

ooooo
o

oooooo

o
o

oooo

o o
o

o
o

o

o ooooo

oooo
o

o

oooooo
o
o
oooo

oooooo

ooo
ooo

o
o

o

o
oo

ooooo o
o o
oo

o o
o o

oooo
o ooo

o

o

oo
o

o

o
o

ooo
o

o

o

oooo
o

o o
o

o

o
o

o

oooooo

o
o oooo

o
o

oo o
o oo

o
oo o

o o o
o

o
o

oo
o
ooo

o
oooo

o

o
o

o
oo

o
oo

o
o

oo

o o o
o
o o

o oo
oo

o

ooooo
o

o o

o
o

o
o

oo o oo
o

oooo
o o

o

o
o

o o o

o
o
ooo

o

oo
o

o
o

o

o

o
o

o
o
o

oo
ooo

o

ooo
o

o
o

o ooo
o

o

oooooo

o
oo o

o
o

ooooo o
o oo

o o o
oooooo

o
o

ooo o

o
oo o

o o

oo
o

o
oo

o

o

o
o

o
o

o o
o

ooo
ooo

o
oo

ooo ooo

oo
o

o oo
o oo

o
o

oo
oo

oo
o

oo
o

ooo

oo
oooo

oo

o

o
o o

••
••

••
•• •••• •• ••

•• ••
••

Linear Discriminant Analysis

FIGURE 4.4. A two-dimensional plot of the vowel training data. There are
eleven classes with X ∈ IR10, and this is the best view in terms of a LDA model
(Section 4.3.3). The heavy circles are the projected mean vectors for each class.
The class overlap is considerable.

TABLE 4.1. Training and test error rates using a variety of linear techniques
on the vowel data. There are eleven classes in ten dimensions, of which three
account for 90% of the variance (via a principal components analysis). We see
that linear regression is hurt by masking, increasing the test and training error
by over 10%.

Technique Error Rates
Training Test

Linear regression 0.48 0.67
Linear discriminant analysis 0.32 0.56

Quadratic discriminant analysis 0.01 0.53
Logistic regression 0.22 0.51

• In this example have 11
classes with 10 dimensional
input vectors.

• The bold dots correspond
to the centroids projected
onto the top 2 principal
directions.

The optimal sequence of subspaces

• To find the sequences of optimal subspaces for LDA:

1 Compute the K × p matrix of class centroids M and the
common covariance matrix W - the within-class variance.

2 Compute M∗ = MW−
1
2 using the eigen-decomposition of W

3 Compute B∗ the covariance matrix of M∗ - the between-class
variance.

4 B∗’s eigen-decomposition is B∗ = V ∗DBV . The columns of
v∗l of V ∗ define basis of the optimal subspace.

• The lth discriminant variable is given by Zl = v∗lW
− 1

2X

The optimal sequence of subspaces

• To find the sequences of optimal subspaces for LDA:

1 Compute the K × p matrix of class centroids M and the
common covariance matrix W - the within-class variance.

2 Compute M∗ = MW−
1
2 using the eigen-decomposition of W

3 Compute B∗ the covariance matrix of M∗ - the between-class
variance.

4 B∗’s eigen-decomposition is B∗ = V ∗DBV . The columns of
v∗l of V ∗ define basis of the optimal subspace.

• The lth discriminant variable is given by Zl = v∗lW
− 1

2X

4.3 Linear Discriminant Analysis 115

Coordinate 1

C
oo

rd
in

at
e

3

-4 -2 0 2 4
-2

0
2

o
o
oooo

o

o

oo

o

o

oo

o o o
o

oooo
oo

o
o

o
o oo

o
o
o

ooo

o o o o o

o o o

o
o

o
o

o

oo
ooo

o
ooo
o o

oo
oo

o
o

o
o
oooo

o

o

o
o

o

o

o

o

o
o
o
o

oo
oo
oo

o
o

o
o

o o

oo
oooo

oo
o
o
o

o
o

ooo oo
o

ooo
oo

oo
o

o ooo

ooooo

oo o
oo

o

o
o

o

o

oo

oo
o
o
oo

oo
o

oo
o

oo
oooo

o
o
o

o

o
o

oo
o

o
o

o o
oo
o
o o

o
oo

o
oo

o
o

oo

o

o

o
o

o

oo
o

o
o
ooo

o o
oo

ooo

o

o
oo

o
o

oo
o

oo

o

oo
oo

oo

o
oooo
o

o

o
o

o

oo

o
oo

o
oo

o o

o

o

o

o

o
o

ooo
o o

oo
o

oo

oooo

o

o

o
o
oo
oo

o
o

o
o

o

o
o

o o
o

o
o

oo

ooo
o

o

o

oooo
o

o

oo oo

oo

o
o

o
o

o o o
oo

o

o
o
o
o

o

o

o
oo

o
oo

o

oo
oo

o

oo
oo

o
o

o o
oo

o

o

o

o

ooo
o

o
o

o

o
o

o o

o

ooo

ooo
o

o
o

o
o

o
o

oo o

o
o

o

o
o o

oo
o

o
oo

o
o

o

o

o

o

oo

o
o

o

o
oo

o

o

o

o

o

o
oooo

o oooo
o

ooo

o

o

o

o
oo o o

o

ooooo
o

o

o
o
o

o
o

ooo
oo

o

o o oo
o ooo

o o o

o

oo o
o

o
o

o
o oooo

o

o

o

o

o
o

ooo
ooo

o

o
o

oo

o

o

oo
o

o
o

o
o

oo oo

ooo
ooo oo

o
ooo

o
ooo
o

o

oo
o

oo

o

••
•••• ••

•••• •• •••• ••••

Coordinate 2

C
oo

rd
in

at
e

3

-6 -4 -2 0 2 4

-2
0

2

o
o
oooo

o

o

o o

o

o

oo

ooo
o

ooo
o

oo

o
o
o
oo
o

o
o
o

ooo

ooooo

o oo

o
o

o
o

o

oo
oo

o
o

ooo
oo

oooo
o

o

o
o
oooo

o

o

o
o

o

o

o

o

o
o
o
o

oo
oo

oo

o
o

o
o

o o

oo
oooo

oo
o
o

o

o
o

o oooo
o

ooo
oo

oo
o

oooo

ooo
o
o

ooo
oo

o

o
o

o

o

oo

oo
o
o
oo

oo
o
oo

o

oo
oooo

o
o
o
o

o
o

oo
o
o
o

oo
oo

o
oo

o
oo
o
oo

o
o

oo

o

o

o
o

o

oo
o

o
o
ooo

oo
oo
ooo

o

o
oo
o
o

oo
o

oo

o

oo
oo

oo

o
oooo

o

o

o
o

o

oo

o
oo

o
oo

oo

o

o

o

o

o
o

ooo
o o
oo
o

oo

oooo

o

o

o
o
oo

oo

o
o

o
o

o

o
o

oo
o

o
o

oo

ooo
o

o

o

oooo
o

o

ooo o

oo

o
o
o
o

ooo
oo

o

o
o

o
o

o

o

o
oo

o
oo

o

oo
oo

o

oo
oo
o
o

oo
oo

o

o

o

o

ooo
o

o
o
o

o
o
o o

o

oo o

ooo
o

o
o

o
o

o
o

ooo

o
o

o

o
oo

oo
o

o
oo

o
o

o

o

o

o

oo

o
o

o

o
oo

o

o

o

o

o

o
oo oo

ooooo
o

ooo

o

o

o

o
ooo o

o

ooooo
o

o

o
o

o

o
o

ooo
oo
o

oooo
oo oo

ooo

o

oo o
o

o
o

o
oo o oo

o

o

o

o

o
o

ooo
o oo

o

o
o

oo

o

o

o o
o
o
o

o
o

oooo

ooo
oo ooo

o
ooo

o
o oo
o

o

oo
o

oo

o

••
•• •• ••

•••••••••••• ••

Coordinate 1

C
oo

rd
in

at
e

7

-4 -2 0 2 4

-3
-2

-1
0

1
2

3

oooooo

o
o
o

o

o

o

oo
o o oo

oooooo

o o oo
ooo

oo

ooo

o o o
o

o

o

o o

o
oo

o

o
oo

o
o
o

oooo

o

o

oooo
o

ooooo
oo

o

o
oo
o

o

o

o ooo
oooo

o
oo

o

o

o
o

o o

oo

o
o
oo

o
o

o
o
oo

oo
o
o oo

o o
o

ooo
oo

o o
oo

o
oo

ooo

oo o
o

o
o

o o
oo

o
o

oooooo

oooo
o

o

oooooo

oooo

o

o
o
o
o

ooo

oooo
o o

o
o
o

o
o
o

ooo
o

o
o

o
ooo

o
o

o oo
o

oo

oo
oooo

oo
ooo

o

ooo

oo

o
ooo

oo
o

oo

oooo

o
o o

o
o

o

ooo
ooo

o o

oo

o o o oooo
o

o
ooo

o
o

o
o

oo
o o o

o
oooo

o

o
o

o

o
o

o o o
ooo

o
ooo

o
o

o
oooo
ooo

oo oo o
ooo

o o

o
o o

o

oooo

oo
oo

oo
o

o

o
o

o o
ooo

o

o
o
oo

o
o

o
o

ooo o
oo

o
o

o
o

o
ooo

oo

o
o

oo
o

o
o

oo oo
o

o
oo

oo
o o

ooo o o
oo

o
o

o
o

oo
o
o

o
o

o
o o

o
oo

oooo
oo

oooooo

o
o

oo
o

o

oo

o

oo
o

ooo o
oo

o
o
ooo
o

o ooo o
o

o
o

oo
o
o

o
o

ooo
o

o
o

o o

o
o

o
o

oo oo
oo

oooo

o
o

o
o

o
o

ooo
ooo

o
oo

oo

o

ooo o ooo o
oo

o
o

o
oooo

o
o
o

ooooo

o

o
oo

o

o
o

o

o
o o

•••••• •• •••• •• •••• ••••

Coordinate 9

C
oo

rd
in

at
e

10

-2 -1 0 1 2 3
-2

-1
0

1
2

oo
o

o
oo

o
o

o

o
o o

o

oo o o
o

oo
o

ooo

o
oo

o

oo

o
o

o

o
o

o

o
o
ooo

o

o
o
o

o
oo

o o

o
oo

o

o
o

o
ooo

oooo
o
o
oooooo

o
o o o

o oo
o o

o o o

o
o

o
o

o o

o

o o o
o o

o
o
o ooo

oooo ooo
o
o

o
oo

o
oo
oo o

oo oo o
o

o

o

o
o

o o

oo
o

oo

o

oo o
o

o o

o
oo

o
o o ooooo o

ooo
ooo

o
o

oo

o
o

o
o
o o

o
o

ooo ooo

o

o
o

o
o
o

ooooo

o

o
o

o
oo
o o

oooo
o

oooo
oo

oo
oo o o ooo

o
o

o

o ooo
oo

oo o
o

o
o

o
o

o ooo

oo o

o
o

o
o

oo
o

o
o

ooo
o

o
o

o
oo

ooo

o

o
o

o
o

o

oo
oo

o o

ooooo

o

o
oo

o
o

o

o o o
o

oo

o

o
ooo

o

ooo
o o o

o
ooo o

o

o o
o

o
o

o

o
o o
oo

o

o
o o

o

o
o

o
o

o
o

o o

ooo oo o

o o o
ooo

o
o

o

o

o
o

oooo o o

oo

oo
o o

o
o

oo o
o

o

o o oo
o

o
o

o

o
o
o

o

o

o
o o

o

o

o

oo

o

o

o

o
o

o
o o

oo
o o o

o

o
o

oo
o o

oo
o

o
o

o

o
o

o
oo

o

o
o

oo

oo

o
o

o

o
o

o

o
o

o o

o

o

o
o

oo o o

oo
o

ooo

o

ooooo

o
o

o

o

o

o

o
o oo

o
o

ooo

o

o
o

o o
oo

oo

o

oo

oo
o

o

o

oo
o

o

oooo
oo

o
oo o

oo

o oo
o

oo

o
ooo

o
o

oo

o
o

o
o

••••••••••••••••••••••

Linear Discriminant Analysis

FIGURE 4.8. Four projections onto pairs of canonical variates. Notice that as
the rank of the canonical variates increases, the centroids become less spread out.
In the lower right panel they appear to be superimposed, and the classes most
confused.

Note as the rank of the canonical variates increase the projected

centroids become less spread out.

LDA via the Fisher criterion

Fisher arrived at this decomposition via a different route. He
posed the problem

Find the linear combination Z = aX such that the
between-class variance is maximized relative to the
within-class variance.
116 4. Linear Methods for Classification

+

+
+

+

FIGURE 4.9. Although the line joining the centroids defines the direction of
greatest centroid spread, the projected data overlap because of the covariance
(left panel). The discriminant direction minimizes this overlap for Gaussian data
(right panel).

Fisher’s problem therefore amounts to maximizing the Rayleigh quotient,

max
a

aT Ba

aT Wa
, (4.15)

or equivalently
max

a
aT Ba subject to aT Wa = 1. (4.16)

This is a generalized eigenvalue problem, with a given by the largest
eigenvalue of W−1B. It is not hard to show (Exercise 4.1) that the optimal
a1 is identical to v1 defined above. Similarly one can find the next direction
a2, orthogonal in W to a1, such that aT

2 Ba2/aT
2 Wa2 is maximized; the

solution is a2 = v2, and so on. The a! are referred to as discriminant
coordinates, not to be confused with discriminant functions. They are also
referred to as canonical variates, since an alternative derivation of these
results is through a canonical correlation analysis of the indicator response
matrix Y on the predictor matrix X. This line is pursued in Section 12.5.

To summarize the developments so far:

• Gaussian classification with common covariances leads to linear deci-
sion boundaries. Classification can be achieved by sphering the data
with respect to W, and classifying to the closest centroid (modulo
log πk) in the sphered space.

• Since only the relative distances to the centroids count, one can con-
fine the data to the subspace spanned by the centroids in the sphered
space.

• This subspace can be further decomposed into successively optimal
subspaces in term of centroid separation. This decomposition is iden-
tical to the decomposition due to Fisher.

Why this criterion makes sense

LDA via the Fisher criterion

Fisher arrived at this decomposition via a different route. He
posed the problem

Find the linear combination Z = aX such that the
between-class variance is maximized relative to the
within-class variance.
116 4. Linear Methods for Classification

+

+
+

+

FIGURE 4.9. Although the line joining the centroids defines the direction of
greatest centroid spread, the projected data overlap because of the covariance
(left panel). The discriminant direction minimizes this overlap for Gaussian data
(right panel).

Fisher’s problem therefore amounts to maximizing the Rayleigh quotient,

max
a

aT Ba

aT Wa
, (4.15)

or equivalently
max

a
aT Ba subject to aT Wa = 1. (4.16)

This is a generalized eigenvalue problem, with a given by the largest
eigenvalue of W−1B. It is not hard to show (Exercise 4.1) that the optimal
a1 is identical to v1 defined above. Similarly one can find the next direction
a2, orthogonal in W to a1, such that aT

2 Ba2/aT
2 Wa2 is maximized; the

solution is a2 = v2, and so on. The a! are referred to as discriminant
coordinates, not to be confused with discriminant functions. They are also
referred to as canonical variates, since an alternative derivation of these
results is through a canonical correlation analysis of the indicator response
matrix Y on the predictor matrix X. This line is pursued in Section 12.5.

To summarize the developments so far:

• Gaussian classification with common covariances leads to linear deci-
sion boundaries. Classification can be achieved by sphering the data
with respect to W, and classifying to the closest centroid (modulo
log πk) in the sphered space.

• Since only the relative distances to the centroids count, one can con-
fine the data to the subspace spanned by the centroids in the sphered
space.

• This subspace can be further decomposed into successively optimal
subspaces in term of centroid separation. This decomposition is iden-
tical to the decomposition due to Fisher.

Why this criterion makes sense

The Fisher criterion

• W is the common covariance matrix of the original data X.

• B is the covariance matrix of the centroid matrix M

• Then for the projected data Z

1 The between-class variance of Z is atBa

2 The within-class variance of Z is atWa

• Fisher’s problem amounts to maximizing the Raleigh quotient

max
a

atB a

atW a

or equivalently

max
a

atB a subject to atW a = 1

The Fisher criterion

• W is the common covariance matrix of the original data X.

• B is the covariance matrix of the centroid matrix M

• Then for the projected data Z

1 The between-class variance of Z is atBa

2 The within-class variance of Z is atWa

• Fisher’s problem amounts to maximizing the Raleigh quotient

max
a

atB a

atW a

or equivalently

max
a

atB a subject to atW a = 1

The Fisher criterion

• W is the common covariance matrix of the original data X.

• B is the covariance matrix of the centroid matrix M

• Then for the projected data Z

1 The between-class variance of Z is atBa

2 The within-class variance of Z is atWa

• Fisher’s problem amounts to maximizing the Raleigh quotient

max
a

atB a

atW a

or equivalently

max
a

atB a subject to atW a = 1

The Fisher criterion

• Fisher’s problem amounts to maximizing the Raleigh quotient

a1 = arg max
a

atB a subject to atW a = 1

• This is a generalized eigenvalue problem with a given by the
largest eigenvalue of W−1B.

• Can be shown that a1 is equal to W−
1
2 v∗1 defined earlier.

• Can find the next direction a2

a2 = arg max
a

atB a

atW a
subject to atW a1 = 0

Once again a2 = W−
1
2 v∗2.

• In a similar fashion can find a3, a4, . . .

The Fisher criterion

• Fisher’s problem amounts to maximizing the Raleigh quotient

a1 = arg max
a

atB a subject to atW a = 1

• This is a generalized eigenvalue problem with a given by the
largest eigenvalue of W−1B.

• Can be shown that a1 is equal to W−
1
2 v∗1 defined earlier.

• Can find the next direction a2

a2 = arg max
a

atB a

atW a
subject to atW a1 = 0

Once again a2 = W−
1
2 v∗2.

• In a similar fashion can find a3, a4, . . .

The Fisher criterion

• Fisher’s problem amounts to maximizing the Raleigh quotient

a1 = arg max
a

atB a subject to atW a = 1

• This is a generalized eigenvalue problem with a given by the
largest eigenvalue of W−1B.

• Can be shown that a1 is equal to W−
1
2 v∗1 defined earlier.

• Can find the next direction a2

a2 = arg max
a

atB a

atW a
subject to atW a1 = 0

Once again a2 = W−
1
2 v∗2.

• In a similar fashion can find a3, a4, . . .

The Fisher criterion

• Fisher’s problem amounts to maximizing the Raleigh quotient

a1 = arg max
a

atB a subject to atW a = 1

• This is a generalized eigenvalue problem with a given by the
largest eigenvalue of W−1B.

• Can be shown that a1 is equal to W−
1
2 v∗1 defined earlier.

• Can find the next direction a2

a2 = arg max
a

atB a

atW a
subject to atW a1 = 0

Once again a2 = W−
1
2 v∗2.

• In a similar fashion can find a3, a4, . . .

The Fisher criterion

• Fisher’s problem amounts to maximizing the Raleigh quotient

a1 = arg max
a

atB a subject to atW a = 1

• This is a generalized eigenvalue problem with a given by the
largest eigenvalue of W−1B.

• Can be shown that a1 is equal to W−
1
2 v∗1 defined earlier.

• Can find the next direction a2

a2 = arg max
a

atB a

atW a
subject to atW a1 = 0

Once again a2 = W−
1
2 v∗2.

• In a similar fashion can find a3, a4, . . .

Classification in the reduced subspace

• The al’s are referred to as discriminant coordinates or
canonical variates.

118 4. Linear Methods for Classification

o

o

oo

o

o o

o

o

o

o
o

o

o o

o

o

o

o

o

o
o

o

o
o

o

o
oo

oo

o

o
o

o

o

o o

o

o

o

o

o

o

o

o

oo

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o o

o

oo
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

oo o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o
o

oo

o

o

o

o
o

o

o

o o

o

o

o

o
o

o
o

o

o

o o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o o

oo

o

o o

o

o
o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o o o

o

o

o
o

o

o

o
o

o
o

oo

o

o

o

o

o

o

o

o

o o
o

o

o

o

o

o
o

o

o

oo

o

o
o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

oo

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o o
o

o

o

o
o

o

o

o

o

o
o

o

o
o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Canonical Coordinate 1

C
an

on
ic

al
 C

oo
rd

in
at

e
2

Classification in Reduced Subspace

••
••

••
•• •••• •• ••

•• ••
••

FIGURE 4.11. Decision boundaries for the vowel training data, in the two-di-
mensional subspace spanned by the first two canonical variates. Note that in
any higher-dimensional subspace, the decision boundaries are higher-dimensional
affine planes, and could not be represented as lines.

• In this example have 11
classes with 10
dimensional input
vectors.

• The decision boundaries
based on using basic
linear discrimination in
the low dimensional
space given by the first
2 canonical variates.

Logistic Regression

Logistic regression

• Arises from trying to model the posterior probabilities of the
K classes using linear functions in x while ensuring they sum
to one.

• The simple model used is for k = 1, . . . ,K − 1

P (G = k|X = x) =
exp(βk0 + βtkx)

1 +
∑K−1

l=1 exp(βl0 + βtlx)

and k = K

P (G = K|X = x) =
1

1 +
∑K−1

l=1 exp(βl0 + βtlx)

• These posterior probabilities clearly sum to one.

Logistic regression

• Arises from trying to model the posterior probabilities of the
K classes using linear functions in x while ensuring they sum
to one.

• The simple model used is for k = 1, . . . ,K − 1

P (G = k|X = x) =
exp(βk0 + βtkx)

1 +
∑K−1

l=1 exp(βl0 + βtlx)

and k = K

P (G = K|X = x) =
1

1 +
∑K−1

l=1 exp(βl0 + βtlx)

• These posterior probabilities clearly sum to one.

Logistic regression

• This model: k = 1, . . . ,K − 1

P (G = k|X = x) =
exp(βk0 + βtkx)

1 +
∑K−1

l=1 exp(βl0 + βtlx)

and k = K

P (G = K|X = x) =
1

1 +
∑K−1

l=1 exp(βl0 + βtlx)

induces linear decision boundaries between classes as

{x : P (G = k|X = x) = P (G = l|X = x)}

is the same as

{x : (βk0 − βl0) + (βk − βl)tx = 0}

for 1 ≤ k < K and 1 ≤ l < K.

Fitting Logistic regression models

• To simplify notation let

1 θ = {β10, βt1, β20, βt2, . . .} and

2 P (G = k|X = x) = pk(x; θ)

• Given training data {(xi, gi)}ni=1 one usually fits the logistic
regression model by maximum likelihood.

• The log-likelihood for the n observations is

`(θ) = log

(
n∏

i=1

pgi(xi; θ)

)
=

n∑

i=1

log(pgi(xi; θ))

in my opinion this is an abuse of terminology as the posterior
probabilities are being used...

Fitting Logistic regression models: The two class case

p1(x;β) =
exp(βtx)

1 + exp(βtx)
and p2(x;β) = 1− p1(x;β)

Let β = θ = (β10, β
t
1) and assume xi’s include the constant term 1.

A convenient way to write the likelihood for one sample (xi, gi) is:

• Code the two-class gi as a {0, 1} response yi where

yi =

{
1 if gi = 1

0 if gi = 2

• Then one can write

pgi(xi;β) = yi p1(xi;β) + (1− yi)(1− p1(xi;β))

Fitting Logistic regression models: The two class case

Similarly

log pgi(xi;β) = yi log p1(xi;β) + (1− yi) log(1− p1(xi;β))

The log-likelihood of the data becomes

`(β) =

n∑

i=1

[yi log p1(xi;β) + (1− yi) log(1− p1(xi;β))]

=

n∑

i=1

[
yiβ

txi − yi log(1 + eβ
txi)− (1− yi) log(1 + eβ

txi)
]

=

n∑

i=1

[
yiβ

txi − log(1 + eβ
txi)
]

Fitting Logistic regression models: The two class case

`(β) =

n∑

i=1

[
yiβ

txi − log(1 + eβ
txi)
]

• To maximize the log-likelihood set its derivatives to zero to get

∂`(β)

∂β
=

n∑

i=1

[
xiyi − xi

exp(βtxi)

1 + exp(βtxi)

]

=

n∑

i=1

xi

(
yi −

exp(βtxi)

1 + exp(βtxi)

)

=

n∑

i=1

xi(yi − p1(xi;β)) = 0

• These are (p+ 1) equations non-linear equations in β.

• Must solve iteratively and in the book they use the
Newton-Raphson algorithm.

The two class case: Iterative optimization

Newton-Raphson requires both the gradient

∂`(β)

∂β
=

n∑

i=1

xi(yi − p1(xi;β))

and Hessian matrix

∂`(β)

∂β∂βt
= −

n∑

i=1

xix
t
i p1(xi;β)(1− p1(xi;β))

Starting with βold, a single Newton update step is

βnew = βold −
(
∂`(β)

∂β∂βt

)−1 ∂`(β)

∂β

where the derivatives are calculated at βold.

Iterative optimization in matrix notation

Write the Hessian and gradient in matrix notation. Let

• X be the N × (p+ 1) matrix with (1, xti) on each row,

• p = (p1(x1;β
old), p1(x2;β

old), . . . , p1(xn;βold))t

• W is n× n diagonal matrix with ith diagonal element
p1(x1;β

old)(1− p1(x1;βold)).

Then

∂`(β)

∂β
= Xt(y − p)

and

∂`(β)

∂β∂βt
= −XtWX

Iterative optimization as iterative weighted ls

The Newton step is then

βnew = βold + (XtWX)−1Xt(y − p)
= (XtWX)−1XtW

(
Xβold + W−1(y − p)

)

= (XtWX)−1XtWz

Have re-expressed the Newton step as a weighted least squares step

βnew = arg min
β

(z −Xβ)tW(z −Xβ)

with response

z = Xβold + W−1(y − p)

known as the adjusted response. Note at iteration each W, p and
z change.

An toy example

• Two class problem with 2 dimensional input vectors.

• Use Logistic Regression to find a decision boundary

Illustration of the optimization process

• The current estimate β̂cur

Quantities involved in the weighted least sqs

Size ∝ p1(xi; β̂
cur) Size ∝ p1(xi; β̂

cur)(1− p1(xi; β̂
cur)) = Wii

Size ∝ 1/Wii

Update the estimate of β̂cur

• The current estimate β̂cur

Quantities involved in the weighted least sqs

Size ∝ p1(xi; β̂
cur) Size ∝ p1(xi; β̂

cur)(1− p1(xi; β̂
cur)) = Wii

Size ∝ 1/Wii

Update the estimate of β̂cur

• The current estimate β̂cur

Quantities involved in the weighted least sqs

Size ∝ p1(xi; β̂
cur) Size ∝ p1(xi; β̂

cur)(1− p1(xi; β̂
cur)) = Wii

Size ∝ 1/Wii

Update the estimate of β̂cur

• The current estimate β̂cur

• Logistic regression converges to this decision boundary.

L1 regularized logistic regression

L1 regularized logistic regression

The L1 penalty can be used for variable selection in logistic
regression by maximizing a penalized version of the log-likelihood

max
β0,β1

n∑

i=1

[
yi(β0 + βtxi)− log(1 + eβ0+β

txi)
]
− λ

p∑

j=1

|βj |

Note:

• the intercept, β0, is not included in the penalty term,

• the predictors should be standardized to ensure the penalty is
meaningful,

• the above cost function is concave and a solution can be
found using non-linear programming methods.

Separating Hyperplanes

Directly estimating separating hyperplanes

• In this section describe separating hyperplane classifiers - will

only consider separable training data.

• Construct linear decision boundaries that explicitly try to
separate the data into different classes as well as possible.

• A hyperplane is defined as

{x : β̂0 + β̂tx = 0}

Directly estimating separating hyperplanes

• In this section describe separating hyperplane classifiers - will

only consider separable training data.

• Construct linear decision boundaries that explicitly try to
separate the data into different classes as well as possible.

• A hyperplane is defined as

{x : β̂0 + β̂tx = 0}

Directly estimating separating hyperplanes

• In this section describe separating hyperplane classifiers - will

only consider separable training data.

• Construct linear decision boundaries that explicitly try to
separate the data into different classes as well as possible.

• A hyperplane is defined as

{x : β̂0 + β̂tx = 0}

Review of some vector algebra
130 4. Linear Methods for Classification

x0
x

β∗
β0 + βT x = 0

FIGURE 4.15. The linear algebra of a hyperplane (affine set).

ature in the late 1950s (Rosenblatt, 1958). Perceptrons set the foundations
for the neural network models of the 1980s and 1990s.

Before we continue, let us digress slightly and review some vector algebra.
Figure 4.15 depicts a hyperplane or affine set L defined by the equation
f(x) = β0 + βT x = 0; since we are in IR2 this is a line.

Here we list some properties:

1. For any two points x1 and x2 lying in L, βT (x1 − x2) = 0, and hence
β∗ = β/||β|| is the vector normal to the surface of L.

2. For any point x0 in L, βT x0 = −β0.

3. The signed distance of any point x to L is given by

β∗T (x − x0) =
1

‖β‖ (βT x + β0)

=
1

||f ′(x)||f(x). (4.40)

Hence f(x) is proportional to the signed distance from x to the hyperplane
defined by f(x) = 0.

4.5.1 Rosenblatt’s Perceptron Learning Algorithm

The perceptron learning algorithm tries to find a separating hyperplane by
minimizing the distance of misclassified points to the decision boundary. If

• Above is shown a hyperplane L defined by

f(x) = β0 + βtx = 0

• If x1, x2 ∈ L then βt(x1−x2) = 0 =⇒ β∗ = β/‖β‖ is normal to L

• If x0 ∈ L then βtx0 = −β0.

• The signed distance of point x to L is

β∗
t
(x− x0) =

1

‖β‖ (βtx+ β0) =
1

‖f ′(x)‖f(x) ∝ f(x)

Review of some vector algebra
130 4. Linear Methods for Classification

x0
x

β∗
β0 + βT x = 0

FIGURE 4.15. The linear algebra of a hyperplane (affine set).

ature in the late 1950s (Rosenblatt, 1958). Perceptrons set the foundations
for the neural network models of the 1980s and 1990s.

Before we continue, let us digress slightly and review some vector algebra.
Figure 4.15 depicts a hyperplane or affine set L defined by the equation
f(x) = β0 + βT x = 0; since we are in IR2 this is a line.

Here we list some properties:

1. For any two points x1 and x2 lying in L, βT (x1 − x2) = 0, and hence
β∗ = β/||β|| is the vector normal to the surface of L.

2. For any point x0 in L, βT x0 = −β0.

3. The signed distance of any point x to L is given by

β∗T (x − x0) =
1

‖β‖ (βT x + β0)

=
1

||f ′(x)||f(x). (4.40)

Hence f(x) is proportional to the signed distance from x to the hyperplane
defined by f(x) = 0.

4.5.1 Rosenblatt’s Perceptron Learning Algorithm

The perceptron learning algorithm tries to find a separating hyperplane by
minimizing the distance of misclassified points to the decision boundary. If

• Above is shown a hyperplane L defined by

f(x) = β0 + βtx = 0

• If x1, x2 ∈ L then βt(x1−x2) = 0 =⇒ β∗ = β/‖β‖ is normal to L

• If x0 ∈ L then βtx0 = −β0.

• The signed distance of point x to L is

β∗
t
(x− x0) =

1

‖β‖ (βtx+ β0) =
1

‖f ′(x)‖f(x) ∝ f(x)

Review of some vector algebra
130 4. Linear Methods for Classification

x0
x

β∗
β0 + βT x = 0

FIGURE 4.15. The linear algebra of a hyperplane (affine set).

ature in the late 1950s (Rosenblatt, 1958). Perceptrons set the foundations
for the neural network models of the 1980s and 1990s.

Before we continue, let us digress slightly and review some vector algebra.
Figure 4.15 depicts a hyperplane or affine set L defined by the equation
f(x) = β0 + βT x = 0; since we are in IR2 this is a line.

Here we list some properties:

1. For any two points x1 and x2 lying in L, βT (x1 − x2) = 0, and hence
β∗ = β/||β|| is the vector normal to the surface of L.

2. For any point x0 in L, βT x0 = −β0.

3. The signed distance of any point x to L is given by

β∗T (x − x0) =
1

‖β‖ (βT x + β0)

=
1

||f ′(x)||f(x). (4.40)

Hence f(x) is proportional to the signed distance from x to the hyperplane
defined by f(x) = 0.

4.5.1 Rosenblatt’s Perceptron Learning Algorithm

The perceptron learning algorithm tries to find a separating hyperplane by
minimizing the distance of misclassified points to the decision boundary. If

• Above is shown a hyperplane L defined by

f(x) = β0 + βtx = 0

• If x1, x2 ∈ L then βt(x1−x2) = 0 =⇒ β∗ = β/‖β‖ is normal to L

• If x0 ∈ L then βtx0 = −β0.

• The signed distance of point x to L is

β∗
t
(x− x0) =

1

‖β‖ (βtx+ β0) =
1

‖f ′(x)‖f(x) ∝ f(x)

Review of some vector algebra
130 4. Linear Methods for Classification

x0
x

β∗
β0 + βT x = 0

FIGURE 4.15. The linear algebra of a hyperplane (affine set).

ature in the late 1950s (Rosenblatt, 1958). Perceptrons set the foundations
for the neural network models of the 1980s and 1990s.

Before we continue, let us digress slightly and review some vector algebra.
Figure 4.15 depicts a hyperplane or affine set L defined by the equation
f(x) = β0 + βT x = 0; since we are in IR2 this is a line.

Here we list some properties:

1. For any two points x1 and x2 lying in L, βT (x1 − x2) = 0, and hence
β∗ = β/||β|| is the vector normal to the surface of L.

2. For any point x0 in L, βT x0 = −β0.

3. The signed distance of any point x to L is given by

β∗T (x − x0) =
1

‖β‖ (βT x + β0)

=
1

||f ′(x)||f(x). (4.40)

Hence f(x) is proportional to the signed distance from x to the hyperplane
defined by f(x) = 0.

4.5.1 Rosenblatt’s Perceptron Learning Algorithm

The perceptron learning algorithm tries to find a separating hyperplane by
minimizing the distance of misclassified points to the decision boundary. If

• Above is shown a hyperplane L defined by

f(x) = β0 + βtx = 0

• If x1, x2 ∈ L then βt(x1−x2) = 0 =⇒ β∗ = β/‖β‖ is normal to L

• If x0 ∈ L then βtx0 = −β0.

• The signed distance of point x to L is

β∗
t
(x− x0) =

1

‖β‖ (βtx+ β0) =
1

‖f ′(x)‖f(x) ∝ f(x)

Perceptron Learning

Rosenblatt’s Perceptron Learning Algorithm

Perceptron learning algorithm tries to find a separating hyperplane
by minimizing the distance of misclassified points to the decision
boundary.

The Objective Function

• Have labelled training data {(xi, yi)} with xi ∈ Rp and
yi ∈ {−1, 1}.

• A point xi is misclassified if sign(β0 + βtxi) 6= yi

• This can be re-stated as: a point xi is misclassified if

yi(β0 + βtxi) < 0

• The goal is to find β0 and β which minimize

D(β, β0) = −
∑

i∈M
yi(x

t
iβ + β0)

where M is the index of the misclassified points.

Rosenblatt’s Perceptron Learning Algorithm

Perceptron learning algorithm tries to find a separating hyperplane
by minimizing the distance of misclassified points to the decision
boundary.

The Objective Function

• Have labelled training data {(xi, yi)} with xi ∈ Rp and
yi ∈ {−1, 1}.

• A point xi is misclassified if sign(β0 + βtxi) 6= yi

• This can be re-stated as: a point xi is misclassified if

yi(β0 + βtxi) < 0

• The goal is to find β0 and β which minimize

D(β, β0) = −
∑

i∈M
yi(x

t
iβ + β0)

where M is the index of the misclassified points.

Rosenblatt’s Perceptron Learning Algorithm

Perceptron learning algorithm tries to find a separating hyperplane
by minimizing the distance of misclassified points to the decision
boundary.

The Objective Function

• Have labelled training data {(xi, yi)} with xi ∈ Rp and
yi ∈ {−1, 1}.

• A point xi is misclassified if sign(β0 + βtxi) 6= yi

• This can be re-stated as: a point xi is misclassified if

yi(β0 + βtxi) < 0

• The goal is to find β0 and β which minimize

D(β, β0) = −
∑

i∈M
yi(x

t
iβ + β0)

where M is the index of the misclassified points.

Rosenblatt’s Perceptron Learning Algorithm

Perceptron learning algorithm tries to find a separating hyperplane
by minimizing the distance of misclassified points to the decision
boundary.

The Objective Function

• Have labelled training data {(xi, yi)} with xi ∈ Rp and
yi ∈ {−1, 1}.

• A point xi is misclassified if sign(β0 + βtxi) 6= yi

• This can be re-stated as: a point xi is misclassified if

yi(β0 + βtxi) < 0

• The goal is to find β0 and β which minimize

D(β, β0) = −
∑

i∈M
yi(x

t
iβ + β0)

where M is the index of the misclassified points.

Rosenblatt’s Perceptron Learning Algorithm

Perceptron learning algorithm tries to find a separating hyperplane
by minimizing the distance of misclassified points to the decision
boundary.

The Objective Function

• Have labelled training data {(xi, yi)} with xi ∈ Rp and
yi ∈ {−1, 1}.

• A point xi is misclassified if sign(β0 + βtxi) 6= yi

• This can be re-stated as: a point xi is misclassified if

yi(β0 + βtxi) < 0

• The goal is to find β0 and β which minimize

D(β, β0) = −
∑

i∈M
yi(x

t
iβ + β0)

where M is the index of the misclassified points.

Perceptron Learning: The Objective Function

Want to find β0 and β which minimize

D(β, β0) = −
∑

i∈M
yi(x

t
iβ + β0) = −

∑

i∈M
yi fβ,β0

(xi)

• D(β, β0) is non-negative.

• D(β, β0) is proportional to the distance of the misclassified
points to the decision boundary defined by β0 + βtx = 0.

Questions:

• Is there a unique β, β0 which minimizes D(β, β0) (disregarding

re-scaling of β and β0) ?

• Can we say anything about the form of D(β, β0)?

Perceptron Learning: The Objective Function

Want to find β0 and β which minimize

D(β, β0) = −
∑

i∈M
yi(x

t
iβ + β0) = −

∑

i∈M
yi fβ,β0

(xi)

• D(β, β0) is non-negative.

• D(β, β0) is proportional to the distance of the misclassified
points to the decision boundary defined by β0 + βtx = 0.

Questions:

• Is there a unique β, β0 which minimizes D(β, β0) (disregarding

re-scaling of β and β0) ?

• Can we say anything about the form of D(β, β0)?

Perceptron Learning: The Objective Function

Want to find β0 and β which minimize

D(β, β0) = −
∑

i∈M
yi(x

t
iβ + β0) = −

∑

i∈M
yi fβ,β0

(xi)

• D(β, β0) is non-negative.

• D(β, β0) is proportional to the distance of the misclassified
points to the decision boundary defined by β0 + βtx = 0.

Questions:

• Is there a unique β, β0 which minimizes D(β, β0) (disregarding

re-scaling of β and β0) ?

• Can we say anything about the form of D(β, β0)?

Perceptron Learning: The Objective Function

Want to find β0 and β which minimize

D(β, β0) = −
∑

i∈M
yi(x

t
iβ + β0) = −

∑

i∈M
yi fβ,β0

(xi)

• D(β, β0) is non-negative.

• D(β, β0) is proportional to the distance of the misclassified
points to the decision boundary defined by β0 + βtx = 0.

Questions:

• Is there a unique β, β0 which minimizes D(β, β0) (disregarding

re-scaling of β and β0) ?

• Can we say anything about the form of D(β, β0)?

Perceptron Learning: The Objective Function

Want to find β0 and β which minimize

D(β, β0) = −
∑

i∈M
yi(x

t
iβ + β0) = −

∑

i∈M
yi fβ,β0

(xi)

• D(β, β0) is non-negative.

• D(β, β0) is proportional to the distance of the misclassified
points to the decision boundary defined by β0 + βtx = 0.

Questions:

• Is there a unique β, β0 which minimizes D(β, β0) (disregarding

re-scaling of β and β0) ?

• Can we say anything about the form of D(β, β0)?

Perceptron Learning: Optimizing the Objective Function

• The gradient, assuming a fixed M, is given by

∂D(β, β0)

∂β
= −

∑
i∈M

yi xi,
∂D(β, β0)

∂β0
= −

∑
i∈M

yi

• Stochastic gradient descent is used to minimize D(β, β0)
so an update step is made after each observation is visited.

• Identify a misclassified example wrt the current estimate of β
and β0 and make the update

β ← β + ρyixi and β0 ← β0 + ρyi

where ρ is the learning rate.

• Repeat this step until no points are misclassified.

Perceptron Learning: Optimizing the Objective Function

• The gradient, assuming a fixed M, is given by

∂D(β, β0)

∂β
= −

∑
i∈M

yi xi,
∂D(β, β0)

∂β0
= −

∑
i∈M

yi

• Stochastic gradient descent is used to minimize D(β, β0)
so an update step is made after each observation is visited.

• Identify a misclassified example wrt the current estimate of β
and β0 and make the update

β ← β + ρyixi and β0 ← β0 + ρyi

where ρ is the learning rate.

• Repeat this step until no points are misclassified.

Perceptron Learning: Optimizing the Objective Function

• The gradient, assuming a fixed M, is given by

∂D(β, β0)

∂β
= −

∑
i∈M

yi xi,
∂D(β, β0)

∂β0
= −

∑
i∈M

yi

• Stochastic gradient descent is used to minimize D(β, β0)
so an update step is made after each observation is visited.

• Identify a misclassified example wrt the current estimate of β
and β0 and make the update

β ← β + ρyixi and β0 ← β0 + ρyi

where ρ is the learning rate.

• Repeat this step until no points are misclassified.

Perceptron Learning: Optimizing the Objective Function

• The gradient, assuming a fixed M, is given by

∂D(β, β0)

∂β
= −

∑
i∈M

yi xi,
∂D(β, β0)

∂β0
= −

∑
i∈M

yi

• Stochastic gradient descent is used to minimize D(β, β0)
so an update step is made after each observation is visited.

• Identify a misclassified example wrt the current estimate of β
and β0 and make the update

β ← β + ρyixi and β0 ← β0 + ρyi

where ρ is the learning rate.

• Repeat this step until no points are misclassified.

Perceptron Learning: An Example

Want to find a separating hyperplane between the red and blue
points.

Perceptron Learning: One Iteration

Current estimate Point misclassified Use gradient at point
β(0) by β(0) to get β(1)

Perceptron Learning: Sequence of iterations

β(2)

Perceptron Learning: Sequence of iterations

β(3)

Perceptron Learning: Sequence of iterations

β(4)

Perceptron Learning: Sequence of iterations

β(5)

Perceptron Learning: Sequence of iterations

β(6)

Perceptron Learning: Sequence of iterations

β(7)

Perceptron Learning: Sequence of iterations

β(8)

Perceptron Learning: Sequence of iterations

β(9)

Perceptron Learning: Sequence of iterations

β(10)

Perceptron Learning: Sequence of iterations

β(11)

Perceptron Learning: Sequence of iterations

β(12)

Perceptron Learning: Sequence of iterations

β(13)

Perceptron Learning: Sequence of iterations

β(14)

Perceptron Learning: Sequence of iterations

β(15)

Perceptron Learning: Sequence of iterations

β(16)

Perceptron Learning: Sequence of iterations

β(17)

Perceptron Learning: Sequence of iterations

β(17)

Is this the best separating hyperplane we could have found?

Perceptron Learning Algorithm: Properties

Pros

• If the classes are linearly separable, the algorithm converges to
a separating hyperplane in a finite number of steps.

Cons

• All separating hyperplanes are considered equally valid.

• One found depends on the initial guess for β and β0.

• The finite number of steps can be very large.

• If the data is non-separable, the algorithm will not converge.

Perceptron Learning Algorithm: Properties

Pros

• If the classes are linearly separable, the algorithm converges to
a separating hyperplane in a finite number of steps.

Cons

• All separating hyperplanes are considered equally valid.

• One found depends on the initial guess for β and β0.

• The finite number of steps can be very large.

• If the data is non-separable, the algorithm will not converge.

Perceptron Learning Algorithm: Properties

Pros

• If the classes are linearly separable, the algorithm converges to
a separating hyperplane in a finite number of steps.

Cons

• All separating hyperplanes are considered equally valid.

• One found depends on the initial guess for β and β0.

• The finite number of steps can be very large.

• If the data is non-separable, the algorithm will not converge.

Perceptron Learning Algorithm: Properties

Pros

• If the classes are linearly separable, the algorithm converges to
a separating hyperplane in a finite number of steps.

Cons

• All separating hyperplanes are considered equally valid.

• One found depends on the initial guess for β and β0.

• The finite number of steps can be very large.

• If the data is non-separable, the algorithm will not converge.

Perceptron Learning Algorithm: Properties

Pros

• If the classes are linearly separable, the algorithm converges to
a separating hyperplane in a finite number of steps.

Cons

• All separating hyperplanes are considered equally valid.

• One found depends on the initial guess for β and β0.

• The finite number of steps can be very large.

• If the data is non-separable, the algorithm will not converge.

Optimal Separating Hyperplanes

Optimal Separating Hyperplane

• The optimal separating hyperplane separates the two
classes and maximizes the distance to the closes point from
either class [Vapnik 1996].

• This provides

• a unique definition of the separating hyperplane

Optimal separating hyperplanes

Consider the problem of finding a separating hyperplane for a linearly
separable dataset {(x1, y1), (x2, y2), . . . , (xn, yn)} with xi ∈ Rd and y ∈
{−1, +1}.

!"#$%&'(#)%"*#%*+,##-$"*.",/01)1

2)(,$&%*3'#)-$$-4561'",

7-8,1*.9:*;")<-$1)#0

=>

6?#)@,/*1-?,$,#)"A*B0?-$?/,"-1*C=D

! !"#$%&'()*+'),("-.'/)"0)0%#&%#1)2)$',2(2*%#1)+3,'(,.2#')0"()2).%#'2(.3)

$',2(2-.')&2*2$'*)45678379856:83:98;856<83<9=8)6!>
?8)3!4@78A7=

" !"#$"%&'%(")%#*'#*#()%"+,)-,./*)0%0"&1.2%3)%$"&&0)4%

! 5*(1#(#6).+7%/%"+,)-,./*)%("/(%,/00)0%(&&%$.&0)%(&%(")%(-/#*#*8%)9/:,.)0%3#..%;)%0)*0#(#6)%

(&%*�)%/*27%(")-)'&-)7%.)00%.#<).+%(&%8)*)-/.#=)%3)..%'&-%2/(/ &1(0#2)%(")%(-/#*#*8%0)(

! 5*0()/27%#(%0)):0%-)/0&*/;.)%(&%)9,)$(%("/(%/%"+,)-,./*)%("/(%#0 '/-(")0(%'-&:%/..%

(-/#*#*8%)9/:,.)0%3#..%"/6)%;)(()-%8)*)-/.#=/(#&*%$/,/;#.#(#)0

" >")-)'&-)7%(")%&,(#:/.%0),/-/(#*8%"+,)-,./*)%3#..%;)%(")%&*)%3#("%(")%./-8)0(%

/2(1%#7%!"#$"%#&%'()#*('%+&%,"(%-#*#-.-%'#&,+*$(%/)%+*%(0+-12(%,/%,"(%'($#&#/*%

&.3)+$(

43/-%56"(37+&&78 +*'%9.2#(3:%;<<=>

67

6:

67

6:

?
,(#:
/.%"+,)-,./*)

@/9#:1:

:/-8#*

Which of the infinite hyperplanes should we choose?

Intuitively

Bad a hyperplane passing too close to the training examples will be sensitive
to noise and probably less likely to generalize well

Better a hyperplane far away from all training examples will probably have
better generalization capabilities.

!"#$%&'(#)%"*#%*+,##-$"*.",/01)1

2)(,$&%*3'#)-$$-4561'",

7-8,1*.9:*;")<-$1)#0

=>

6?#)@,/*1-?,$,#)"A*B0?-$?/,"-1*C=D

! !"#$%&'()*+'),("-.'/)"0)0%#&%#1)2)$',2(2*%#1)+3,'(,.2#')0"()2).%#'2(.3)

$',2(2-.')&2*2$'*)45678379856:83:98;856<83<9=8)6!>
?8)3!4@78A7=

" !"#$"%&'%(")%#*'#*#()%"+,)-,./*)0%0"&1.2%3)%$"&&0)4%

! 5*(1#(#6).+7%/%"+,)-,./*)%("/(%,/00)0%(&&%$.&0)%(&%(")%(-/#*#*8%)9/:,.)0%3#..%;)%0)*0#(#6)%

(&%*�)%/*27%(")-)'&-)7%.)00%.#<).+%(&%8)*)-/.#=)%3)..%'&-%2/(/ &1(0#2)%(")%(-/#*#*8%0)(

! 5*0()/27%#(%0)):0%-)/0&*/;.)%(&%)9,)$(%("/(%/%"+,)-,./*)%("/(%#0 '/-(")0(%'-&:%/..%

(-/#*#*8%)9/:,.)0%3#..%"/6)%;)(()-%8)*)-/.#=/(#&*%$/,/;#.#(#)0

" >")-)'&-)7%(")%&,(#:/.%0),/-/(#*8%"+,)-,./*)%3#..%;)%(")%&*)%3#("%(")%./-8)0(%

/2(1%#7%!"#$"%#&%'()#*('%+&%,"(%-#*#-.-%'#&,+*$(%/)%+*%(0+-12(%,/%,"(%'($#&#/*%

&.3)+$(

43/-%56"(37+&&78 +*'%9.2#(3:%;<<=>

67

6:

67

6:

?
,(#:
/.%"+,)-,./*)

@/9#:1:

:/-8#*

Therefore, the optimal separating
hyperplane will be the one with the
largest margin, which is defined as the
minimum distance of an example to
the decision surface.

Which separating hyperplane? One which maximizes margin

• a decision boundary that generalizes well.

Optimal Separating Hyperplane

• The optimal separating hyperplane separates the two
classes and maximizes the distance to the closes point from
either class [Vapnik 1996].

• This provides

• a unique definition of the separating hyperplane

Optimal separating hyperplanes

Consider the problem of finding a separating hyperplane for a linearly
separable dataset {(x1, y1), (x2, y2), . . . , (xn, yn)} with xi ∈ Rd and y ∈
{−1, +1}.

!"#$%&'(#)%"*#%*+,##-$"*.",/01)1

2)(,$&%*3'#)-$$-4561'",

7-8,1*.9:*;")<-$1)#0

=>

6?#)@,/*1-?,$,#)"A*B0?-$?/,"-1*C=D

! !"#$%&'()*+'),("-.'/)"0)0%#&%#1)2)$',2(2*%#1)+3,'(,.2#')0"()2).%#'2(.3)

$',2(2-.')&2*2$'*)45678379856:83:98;856<83<9=8)6!>
?8)3!4@78A7=

" !"#$"%&'%(")%#*'#*#()%"+,)-,./*)0%0"&1.2%3)%$"&&0)4%

! 5*(1#(#6).+7%/%"+,)-,./*)%("/(%,/00)0%(&&%$.&0)%(&%(")%(-/#*#*8%)9/:,.)0%3#..%;)%0)*0#(#6)%

(&%*�)%/*27%(")-)'&-)7%.)00%.#<).+%(&%8)*)-/.#=)%3)..%'&-%2/(/ &1(0#2)%(")%(-/#*#*8%0)(

! 5*0()/27%#(%0)):0%-)/0&*/;.)%(&%)9,)$(%("/(%/%"+,)-,./*)%("/(%#0 '/-(")0(%'-&:%/..%

(-/#*#*8%)9/:,.)0%3#..%"/6)%;)(()-%8)*)-/.#=/(#&*%$/,/;#.#(#)0

" >")-)'&-)7%(")%&,(#:/.%0),/-/(#*8%"+,)-,./*)%3#..%;)%(")%&*)%3#("%(")%./-8)0(%

/2(1%#7%!"#$"%#&%'()#*('%+&%,"(%-#*#-.-%'#&,+*$(%/)%+*%(0+-12(%,/%,"(%'($#&#/*%

&.3)+$(

43/-%56"(37+&&78 +*'%9.2#(3:%;<<=>

67

6:

67

6:

?
,(#:
/.%"+,)-,./*)

@/9#:1:

:/-8#*

Which of the infinite hyperplanes should we choose?

Intuitively

Bad a hyperplane passing too close to the training examples will be sensitive
to noise and probably less likely to generalize well

Better a hyperplane far away from all training examples will probably have
better generalization capabilities.

!"#$%&'(#)%"*#%*+,##-$"*.",/01)1

2)(,$&%*3'#)-$$-4561'",

7-8,1*.9:*;")<-$1)#0

=>

6?#)@,/*1-?,$,#)"A*B0?-$?/,"-1*C=D

! !"#$%&'()*+'),("-.'/)"0)0%#&%#1)2)$',2(2*%#1)+3,'(,.2#')0"()2).%#'2(.3)

$',2(2-.')&2*2$'*)45678379856:83:98;856<83<9=8)6!>
?8)3!4@78A7=

" !"#$"%&'%(")%#*'#*#()%"+,)-,./*)0%0"&1.2%3)%$"&&0)4%

! 5*(1#(#6).+7%/%"+,)-,./*)%("/(%,/00)0%(&&%$.&0)%(&%(")%(-/#*#*8%)9/:,.)0%3#..%;)%0)*0#(#6)%

(&%*�)%/*27%(")-)'&-)7%.)00%.#<).+%(&%8)*)-/.#=)%3)..%'&-%2/(/ &1(0#2)%(")%(-/#*#*8%0)(

! 5*0()/27%#(%0)):0%-)/0&*/;.)%(&%)9,)$(%("/(%/%"+,)-,./*)%("/(%#0 '/-(")0(%'-&:%/..%

(-/#*#*8%)9/:,.)0%3#..%"/6)%;)(()-%8)*)-/.#=/(#&*%$/,/;#.#(#)0

" >")-)'&-)7%(")%&,(#:/.%0),/-/(#*8%"+,)-,./*)%3#..%;)%(")%&*)%3#("%(")%./-8)0(%

/2(1%#7%!"#$"%#&%'()#*('%+&%,"(%-#*#-.-%'#&,+*$(%/)%+*%(0+-12(%,/%,"(%'($#&#/*%

&.3)+$(

43/-%56"(37+&&78 +*'%9.2#(3:%;<<=>

67

6:

67

6:

?
,(#:
/.%"+,)-,./*)

@/9#:1:

:/-8#*

Therefore, the optimal separating
hyperplane will be the one with the
largest margin, which is defined as the
minimum distance of an example to
the decision surface.

Which separating hyperplane? One which maximizes margin

• a decision boundary that generalizes well.

Stating the optimization problem

• A first attempt

max
β, β0, ‖β‖ = 1

M subject to yi(β
txi + β0) ≥M‖β‖, i = 1, . . . , n

• The conditions ensure all the training points are a signed
distance M from the decision boundary defined by β and β0.

• Want to find the largest such M and its associated β and β0.

Stating the optimization problem

• Remove the constraint ‖β‖ = 1 by adjusting the constraints
on the training data as follows:

max
β, β0

M subject to yi(β
txi + β0) ≥M‖β‖, i = 1, . . . , n

• For any β and β0 fulfilling the above constraints then αβ and
αβ0 with α > 0 also fulfills the constraints.

• Therefore can arbitrarily set ‖β‖ = 1/M .

• Then the above optimization problem is equivalent to

min
β, β0

1

2
‖β‖2 subject to yi(β

txi + β0) ≥ 1, i = 1, . . . , n

Stating the optimization problem

• Remove the constraint ‖β‖ = 1 by adjusting the constraints
on the training data as follows:

max
β, β0

M subject to yi(β
txi + β0) ≥M‖β‖, i = 1, . . . , n

• For any β and β0 fulfilling the above constraints then αβ and
αβ0 with α > 0 also fulfills the constraints.

• Therefore can arbitrarily set ‖β‖ = 1/M .

• Then the above optimization problem is equivalent to

min
β, β0

1

2
‖β‖2 subject to yi(β

txi + β0) ≥ 1, i = 1, . . . , n

Stating the optimization problem

• Remove the constraint ‖β‖ = 1 by adjusting the constraints
on the training data as follows:

max
β, β0

M subject to yi(β
txi + β0) ≥M‖β‖, i = 1, . . . , n

• For any β and β0 fulfilling the above constraints then αβ and
αβ0 with α > 0 also fulfills the constraints.

• Therefore can arbitrarily set ‖β‖ = 1/M .

• Then the above optimization problem is equivalent to

min
β, β0

1

2
‖β‖2 subject to yi(β

txi + β0) ≥ 1, i = 1, . . . , n

Stating the optimization problem

• Remove the constraint ‖β‖ = 1 by adjusting the constraints
on the training data as follows:

max
β, β0

M subject to yi(β
txi + β0) ≥M‖β‖, i = 1, . . . , n

• For any β and β0 fulfilling the above constraints then αβ and
αβ0 with α > 0 also fulfills the constraints.

• Therefore can arbitrarily set ‖β‖ = 1/M .

• Then the above optimization problem is equivalent to

min
β, β0

1

2
‖β‖2 subject to yi(β

txi + β0) ≥ 1, i = 1, . . . , n

Stating the optimization problem

• With this formulation of the problem

min
β, β0

1

2
‖β‖2 subject to yi(β

txi + β0) ≥ 1, i = 1, . . . , n

• The margin has thickness 1/‖β‖ as shown in figure (notation

slightly different).

Optimal separating hyperplanes

Express the margin in terms of w and b of the separating hyperplane.

The distance between a point x and a plane (w, b) is |wTx+b|
�w�

!"#$%&'(#)%"*#%*+,##-$"*.",/01)1

2)(,$&%*3'#)-$$-4561'",

7-8,1*.9:*;")<-$1)#0

=>

6?#)@,/*1-?,$,#)"A*B0?-$?/,"-1*CDE

! !"#$%&'%&'(#)&)*&+(,"+"-%&).%&+(/0"#1&2%)34&%,5/%44&")&(4&(&67#$)"*#&*6&

).%&'%"0.)&8%$)*/&(#9&:"(4&*6&).%&4%5(/()"#0&.;5%/52(#%

" !"#$%&'()*%+"),#-#$.+"/0%+1.%2)(+'-*.%&.+3..-%'%4#)-+%5%'-2%'%46'-.%730&8%)(

" 9#+)*)-,%+1'+%+1.%#4+)$'6%1/4."46'-.%1'(%)-:)-)+.%(#6;+)#-(%&/%()$46/%(*'6)-,%+1.%

3.),1+%<.*+#"%'-2%&)'(0%3.%*1##(.%+1.%(#6;+)#-%:#"%31)*1%+1.%2)(*")$)-'-+%

:;-*+)#-%&.*#$.(%#-.%:#"%+1.%+"')-)-,%.5'$46.(%*6#(.(+%+#%+1.%&#;-2'"/

! =1)(%)(%>-#3-%'(%+1.%!"#$#%!"&'1/4."46'-.

" =1.".:#".0%+1.%2)(+'-*.%:"#$%+1.%*6#(.(+%

.5'$46.%+#%+1.%&#;-2'"/%)(

" ?-2%+1.%$'",)-%&.*#$.(

3

&53=
!

@&53)

=
"!

3

@

3

&53=

"

!

3

A
$ "

,<

,=

3

&53=
!

3

&

3

A

,<

,=

3

&53=
!

3

&

3

A

The optimal hyperplane has an infinite number of representations by simply
re-scaling the weight vector and bias.

The solution to this constrained optimization problem

min
β, β0

1

2
‖β‖2 subject to yi(β

txi + β0) ≥ 1, i = 1, . . . , n

• This is a convex optimization problem - quadratic objective
function with linear inequality constraints.

• Its associated primal Lagrangian function is

Lp(β, β0, α) =
1

2
‖β‖2 +

n∑

i=1

αiyi(1− βtxi − β0)

• β∗ and β∗0 is a minimum point of the cost function stated at
the top if...

The solution to this constrained optimization problem

min
β, β0

1

2
‖β‖2 subject to yi(β

txi + β0) ≥ 1, i = 1, . . . , n

• This is a convex optimization problem - quadratic objective
function with linear inequality constraints.

• Its associated primal Lagrangian function is

Lp(β, β0, α) =
1

2
‖β‖2 +

n∑

i=1

αiyi(1− βtxi − β0)

• β∗ and β∗0 is a minimum point of the cost function stated at
the top if...

The solution to this constrained optimization problem

min
β, β0

1

2
‖β‖2 subject to yi(β

txi + β0) ≥ 1, i = 1, . . . , n

• This is a convex optimization problem - quadratic objective
function with linear inequality constraints.

• Its associated primal Lagrangian function is

Lp(β, β0, α) =
1

2
‖β‖2 +

n∑

i=1

αiyi(1− βtxi − β0)

• β∗ and β∗0 is a minimum point of the cost function stated at
the top if...

The solution to this constrained optimization problem

min
β, β0

1

2
‖β‖2 subject to yi(β

txi + β0) ≥ 1, i = 1, . . . , n

The Karush-Kuhn-Tucker conditions state that β∗1 = (β∗0 , β
∗) is a

minimum of this cost function if ∃ a unique α∗ s.t.

1 ∇β1Lp(β∗1 , α∗) = 0

2 α∗j ≥ 0 for j = 1, . . . , n

3 α∗j (1− yj(β∗0 + xtjβ
∗)) = 0 for j = 1, . . . , n

4 (1− yj(β∗0 + xtjβ
∗)) ≤ 0 for j = 1, . . . , n

5 Plus positive definite constraints on ∇β1β1Lp(β∗1 , α∗)

Let’s check what the KKT conditions imply

Active constraints and Inactive constraints:

Let A be the set of indices with α∗j > 0 then

Lp(β∗1 , α∗) =
1

2
‖β∗‖2 +

∑

j∈A
α∗j (1− yj(β∗0 + xtjβ

∗)).

• Condition KKT 1, ∇β1Lp(β∗1 , α∗) = 0, implies

β∗ =
∑

j∈A
α∗jyjxj and 0 =

∑

j∈A
α∗jyj

• Condition KKT 3, α∗j (1− yj(β∗0 + xtjβ
∗)) = 0, implies

1 yj(β
∗
0 + xtjβ

∗) = 1 for all j ∈ A,

2 if yi(β
∗
0 + xtiβ

∗) > 1 then αi = 0 and i /∈ A

3 Lp(β∗1 , α∗) = .5‖β∗‖2.

Let’s check what the KKT conditions imply

Active constraints and Inactive constraints:

Let A be the set of indices with α∗j > 0 then

Lp(β∗1 , α∗) =
1

2
‖β∗‖2 +

∑

j∈A
α∗j (1− yj(β∗0 + xtjβ

∗)).

• Condition KKT 1, ∇β1Lp(β∗1 , α∗) = 0, implies

β∗ =
∑

j∈A
α∗jyjxj and 0 =

∑

j∈A
α∗jyj

• Condition KKT 3, α∗j (1− yj(β∗0 + xtjβ
∗)) = 0, implies

1 yj(β
∗
0 + xtjβ

∗) = 1 for all j ∈ A,

2 if yi(β
∗
0 + xtiβ

∗) > 1 then αi = 0 and i /∈ A

3 Lp(β∗1 , α∗) = .5‖β∗‖2.

To summarize

• As we have a convex optimization problem it has one local
minimum.

• At this minimum β∗1 there exist a unique α∗ s.t. β∗1 and α∗

fulfill the KKT conditions.

• Let A be the set of indices with α∗j > 0 then

1 if i ∈ A then yi(β
∗
0 + xtiβ

∗) = 1 and therefore xi lies on the
boundary of the margin.

xi is called a support vector.

2 And if i /∈ A then yi(β
∗
0 + xtiβ

∗) > 1 and xi lies outside of the
margin.

3 β∗ is a linear combination of the support vectors

β∗ =
∑

j∈A
α∗jyjxj

To summarize

• As we have a convex optimization problem it has one local
minimum.

• At this minimum β∗1 there exist a unique α∗ s.t. β∗1 and α∗

fulfill the KKT conditions.

• Let A be the set of indices with α∗j > 0 then

1 if i ∈ A then yi(β
∗
0 + xtiβ

∗) = 1 and therefore xi lies on the
boundary of the margin.

xi is called a support vector.

2 And if i /∈ A then yi(β
∗
0 + xtiβ

∗) > 1 and xi lies outside of the
margin.

3 β∗ is a linear combination of the support vectors

β∗ =
∑

j∈A
α∗jyjxj

To summarize

• As we have a convex optimization problem it has one local
minimum.

• At this minimum β∗1 there exist a unique α∗ s.t. β∗1 and α∗

fulfill the KKT conditions.

• Let A be the set of indices with α∗j > 0 then

1 if i ∈ A then yi(β
∗
0 + xtiβ

∗) = 1 and therefore xi lies on the
boundary of the margin.

xi is called a support vector.

2 And if i /∈ A then yi(β
∗
0 + xtiβ

∗) > 1 and xi lies outside of the
margin.

3 β∗ is a linear combination of the support vectors

β∗ =
∑

j∈A
α∗jyjxj

To summarize

• As we have a convex optimization problem it has one local
minimum.

• At this minimum β∗1 there exist a unique α∗ s.t. β∗1 and α∗

fulfill the KKT conditions.

• Let A be the set of indices with α∗j > 0 then

1 if i ∈ A then yi(β
∗
0 + xtiβ

∗) = 1 and therefore xi lies on the
boundary of the margin.

xi is called a support vector.

2 And if i /∈ A then yi(β
∗
0 + xtiβ

∗) > 1 and xi lies outside of the
margin.

3 β∗ is a linear combination of the support vectors

β∗ =
∑

j∈A
α∗jyjxj

To summarize

• As we have a convex optimization problem it has one local
minimum.

• At this minimum β∗1 there exist a unique α∗ s.t. β∗1 and α∗

fulfill the KKT conditions.

• Let A be the set of indices with α∗j > 0 then

1 if i ∈ A then yi(β
∗
0 + xtiβ

∗) = 1 and therefore xi lies on the
boundary of the margin.

xi is called a support vector.

2 And if i /∈ A then yi(β
∗
0 + xtiβ

∗) > 1 and xi lies outside of the
margin.

3 β∗ is a linear combination of the support vectors

β∗ =
∑

j∈A
α∗jyjxj

To summarize

Properties of the solution

Karush-Kuhn-Tucker conditions: For an optimal feasible, w∗, b∗,λ∗ solution
the following conditions hold:

KKT dual complementary condition →λ
∗
i gi(w

∗
, b

∗
) = 0, i = 1, . . . , n

gi(w
∗
, b

∗
) ≤ 0, i = 1, . . . , n

λ
∗
i ≥ 0, i = 1, . . . , n

!"#$%&'(#)%"*#%*+,##-$"*.",/01)1

2)(,$&%*3'#)-$$-4561'",

7-8,1*.9:*;")<-$1)#0

==

>'??%$#*@-(#%$1

! !"#$%!!$&'()*#(#+,-./$&'+01,1'+$2,-,#2$,"-,3$4'.$#5#./$)'1+,$1+$,"#$

,.-1+1+6$2#,3$,"#$4'**'71+6$#89-*1,/$(92,$"'*0

" !"#$#%&$#'(%&$(#)*"(#+),-.#'(#/0"#$(!/12(&$(3/45
!+/6789:12(,;<0("&.=

" !"&<#(-&/>0<(%&$(5"/*"(!/?2(,;<0(0"#>(./#(&>(&>#(&%(0"#(05&("3-#$-.)>#<(0")0(
=#%/>#(0"#(.)$@#<0(,)$@/>(4&>.3()0(0"#<#("3-#$-.)>#<(0"#(0#$,(3/45

!+/6789:(

7#*&,#<(A#$&:

! !"#<#(-&/>0<()$#(B>&5>()<(0"#(:9))'.,$;#&,'.2

" C..(0"#(&0"#$(-&/>0<(,;<0(")D#(!/12(
" E&0#(0")0(&>.3(0"#(<;--&$0(D#*0&$<(*&>0$/7;0#(

0&(=#%/>/>@(0"#(&-0/,).("3-#$-.)>#

! EF!GH(0"#(7/)<(0#$,(7(/<(%&;>=(%$&,(0"#(II!

&,-.#,#>0)$3(&>=/0/&>(&> 0"#(<;--&$0(D#*0&$<

" !"#$#%&$#'(0"#(*&,-.#0#(=)0)<#0(*&;.=(7#(

$#-.)*#=(73(&>.3(0"#(<;--&$0(D#*0&$<'()>=(

0"#(<#-)$)0/>@("3-#$-.)>#(5&;.=(7#(0"#(<),#

" #$ % 9JJJE/297+53! /

!

// &'&()

" #
*
&

&+&
,

, E

9/

/// +3!52
5

!7'5'K

<=

<>

:9))'.,$

;#&,'.2$?!@AB

If λ∗
i > 0 then gi(w

∗, b∗) = 0 =⇒ the
constraint gi is active.

Thus the SVM in fact only depends only a small number of support vectors.
β∗ =

∑

j∈A
α∗jyjxj

How do I calculate α∗?

• You have seen that the optimal solution is a weighted sum of
the support vectors.

• But how can we calculate these weights?

• Most common approach is to solve the Dual Lagrange
problem as opposed to the Primal Lagrange problem. (The

solutions to these problems are the same because of the original quadratic

cost function and linear inequality constraints.)

• This Dual problem is an easier constrained optimization and is
also convex. It has the form

max
α

{
n∑

i=1

αi −
1

2

n∑

i=1

n∑

k=1

αiαkyiykx
t
ixk

}
subject to αi ≥ 0 ∀i

How do I calculate α∗?

• You have seen that the optimal solution is a weighted sum of
the support vectors.

• But how can we calculate these weights?

• Most common approach is to solve the Dual Lagrange
problem as opposed to the Primal Lagrange problem. (The

solutions to these problems are the same because of the original quadratic

cost function and linear inequality constraints.)

• This Dual problem is an easier constrained optimization and is
also convex. It has the form

max
α

{
n∑

i=1

αi −
1

2

n∑

i=1

n∑

k=1

αiαkyiykx
t
ixk

}
subject to αi ≥ 0 ∀i

How do I calculate α∗?

• You have seen that the optimal solution is a weighted sum of
the support vectors.

• But how can we calculate these weights?

• Most common approach is to solve the Dual Lagrange
problem as opposed to the Primal Lagrange problem. (The

solutions to these problems are the same because of the original quadratic

cost function and linear inequality constraints.)

• This Dual problem is an easier constrained optimization and is
also convex. It has the form

max
α

{
n∑

i=1

αi −
1

2

n∑

i=1

n∑

k=1

αiαkyiykx
t
ixk

}
subject to αi ≥ 0 ∀i

How do I calculate α∗?

• You have seen that the optimal solution is a weighted sum of
the support vectors.

• But how can we calculate these weights?

• Most common approach is to solve the Dual Lagrange
problem as opposed to the Primal Lagrange problem. (The

solutions to these problems are the same because of the original quadratic

cost function and linear inequality constraints.)

• This Dual problem is an easier constrained optimization and is
also convex. It has the form

max
α

{
n∑

i=1

αi −
1

2

n∑

i=1

n∑

k=1

αiαkyiykx
t
ixk

}
subject to αi ≥ 0 ∀i

