Chapter 4: Linear Methods for Classification

DD3364

March 23, 2012

Introduction

Focus on linear classification

- Want to learn a predictor $G: \mathbb{R}^{p} \rightarrow \mathcal{G}=\{1, \ldots, K\}$
- G divides input space into regions labelled according to their classification.
- The boundaries between these regions are termed the decision boundaries.
- When these decision boundaries are linear we term the classification method as linear

Focus on linear classification

- Want to learn a predictor $G: \mathbb{R}^{p} \rightarrow \mathcal{G}=\{1, \ldots, K\}$
- G divides input space into regions labelled according to their classification.
- The boundaries between these regions are termed the decision boundaries.
- When these decision boundaries are linear we term the classification method as linear.

Focus on linear classification

- Want to learn a predictor $G: \mathbb{R}^{p} \rightarrow \mathcal{G}=\{1, \ldots, K\}$
- G divides input space into regions labelled according to their classification.
- The boundaries between these regions are termed the decision boundaries.
- When these decision boundaries are linear we term the classification method as linear.

Focus on linear classification

- Want to learn a predictor $G: \mathbb{R}^{p} \rightarrow \mathcal{G}=\{1, \ldots, K\}$
- G divides input space into regions labelled according to their classification.
- The boundaries between these regions are termed the decision boundaries.
- When these decision boundaries are linear we term the classification method as linear.

An example when a linear decision boundaries arises

- Learn a discriminant function $\delta_{k}(x)$ for each class k and set

$$
G(x)=\arg \max _{k} \delta_{k}(x)
$$

- This generates a linear decision boundary when \exists some monotone transformation g of $\delta_{k}(x)$ which is linear.
- That is g is a monotone function s.t.

An example when a linear decision boundaries arises

- Learn a discriminant function $\delta_{k}(x)$ for each class k and set

$$
G(x)=\arg \max _{k} \delta_{k}(x)
$$

- This generates a linear decision boundary when \exists some monotone transformation g of $\delta_{k}(x)$ which is linear.
- That is g is a monotone function s.t.

An example when a linear decision boundaries arises

- Learn a discriminant function $\delta_{k}(x)$ for each class k and set

$$
G(x)=\arg \max _{k} \delta_{k}(x)
$$

- This generates a linear decision boundary when \exists some monotone transformation g of $\delta_{k}(x)$ which is linear.
- That is g is a monotone function s.t.

$$
g\left(\delta_{k}(x)\right)=\gamma_{k 0}+\gamma_{k}^{t} x
$$

Examples of discriminant functions

- Example 1: Fit a linear regression model to the class indicator variables. Then the discriminant functions are

$$
\delta_{k}(x)=\hat{\beta}_{k 0}+\hat{\beta}_{k}^{t} x
$$

- Example 2: Use the posterior probabilities $P(G=k \mid X=x)$ as the discriminant functions $\delta_{k}(x)$

Examples of discriminant functions

- Example 1: Fit a linear regression model to the class indicator variables. Then the discriminant functions are

$$
\delta_{k}(x)=\hat{\beta}_{k 0}+\hat{\beta}_{k}^{t} x
$$

- Example 2: Use the posterior probabilities $P(G=k \mid X=x)$ as the discriminant functions $\delta_{k}(x)$
- A popular model when there are two classes is:

- $g(p)=\log (p /(1-p))$ can be applied as a monotonic function to $\delta_{k}(x)=P(G=1 \mid X=x)$ to make it linear.

Examples of discriminant functions

- Example 1: Fit a linear regression model to the class indicator variables. Then the discriminant functions are

$$
\delta_{k}(x)=\hat{\beta}_{k 0}+\hat{\beta}_{k}^{t} x
$$

- Example 2: Use the posterior probabilities $P(G=k \mid X=x)$ as the discriminant functions $\delta_{k}(x)$
- A popular model when there are two classes is:

$$
\begin{aligned}
& P(G=1 \mid X=x)=\frac{\exp \left(\beta_{0}+\beta^{t} x\right)}{1+\exp \left(\beta_{0}+\beta^{t} x\right)} \\
& P(G=2 \mid X=x)=\frac{1}{1+\exp \left(\beta_{0}+\beta^{t} x\right)}
\end{aligned}
$$

- $g(p)=\log (p /(1-p))$ can be applied as a monotonic function to $\delta_{k}(x)=P(G=1 \mid X=x)$ to make it linear.

Can directly learn the linear decision boundary

- For a two class problem with p-dimensional inputs this \Longrightarrow modelling the decision boundary as a hyperplane.
- This chapter looks at two methods which explicitly look for the separating hyperplane. These are

Can directly learn the linear decision boundary

- For a two class problem with p-dimensional inputs this \Longrightarrow modelling the decision boundary as a hyperplane.
- This chapter looks at two methods which explicitly look for the separating hyperplane. These are
- Perceptron model and algorithm of Rosenblatt,
- SVM model and algorithm of Vapnik
- In the forms quoted both these algorithms find separating hyperplanes if they exist and fail of the points are not linearly separable
- There are fixes for the non-separable case but we will not consider these today.

Can directly learn the linear decision boundary

- For a two class problem with p-dimensional inputs this \Longrightarrow modelling the decision boundary as a hyperplane.
- This chapter looks at two methods which explicitly look for the separating hyperplane. These are
- Perceptron model and algorithm of Rosenblatt,
- SVM model and algorithm of Vapnik
- In the forms quoted both these algorithms find separating hyperplanes if they exist and fail of the points are not linearly separable.
- There are fixes for the non-separable case but we will not consider these today.

Can directly learn the linear decision boundary

- For a two class problem with p-dimensional inputs this \Longrightarrow modelling the decision boundary as a hyperplane.
- This chapter looks at two methods which explicitly look for the separating hyperplane. These are
- Perceptron model and algorithm of Rosenblatt,
- SVM model and algorithm of Vapnik
- In the forms quoted both these algorithms find separating hyperplanes if they exist and fail of the points are not linearly separable.
- There are fixes for the non-separable case but we will not consider these today.

Can directly learn the linear decision boundary

- For a two class problem with p-dimensional inputs this \Longrightarrow modelling the decision boundary as a hyperplane.
- This chapter looks at two methods which explicitly look for the separating hyperplane. These are
- Perceptron model and algorithm of Rosenblatt,
- SVM model and algorithm of Vapnik
- In the forms quoted both these algorithms find separating hyperplanes if they exist and fail of the points are not linearly separable.
- There are fixes for the non-separable case but we will not consider these today.

Can directly learn the linear decision boundary

- For a two class problem with p-dimensional inputs this \Longrightarrow modelling the decision boundary as a hyperplane.
- This chapter looks at two methods which explicitly look for the separating hyperplane. These are
- Perceptron model and algorithm of Rosenblatt,
- SVM model and algorithm of Vapnik
- In the forms quoted both these algorithms find separating hyperplanes if they exist and fail of the points are not linearly separable.
- There are fixes for the non-separable case but we will not consider these today.

Linear decision boundaries can be made non-linear

- Can expand the variable set $X_{1}, X_{2}, \ldots, X_{p}$ by including their squares and cross-products $X_{1}^{2}, X_{2}^{2}, \ldots, X_{p}^{2}, X_{1} X_{2}, X_{1} X_{2}, \ldots$
- This adds $p(p+1) / 2$ additional variables.
- Linear decision boundaries in the augmented space corresponds to quadratic decision boundaries in the original space.

Linear decision boundaries can be made non-linear

- Can expand the variable set $X_{1}, X_{2}, \ldots, X_{p}$ by including their squares and cross-products $X_{1}^{2}, X_{2}^{2}, \ldots, X_{p}^{2}, X_{1} X_{2}, X_{1} X_{2}, \ldots$
- This adds $p(p+1) / 2$ additional variables.
- Linear decision boundaries in the augmented space corresponds to quadratic decision boundaries in the original space

Linear decision boundaries can be made non-linear

- Can expand the variable set $X_{1}, X_{2}, \ldots, X_{p}$ by including their squares and cross-products $X_{1}^{2}, X_{2}^{2}, \ldots, X_{p}^{2}, X_{1} X_{2}, X_{1} X_{2}, \ldots$
- This adds $p(p+1) / 2$ additional variables.
- Linear decision boundaries in the augmented space corresponds to quadratic decision boundaries in the original space.

Linear Regression of an Indicator Matrix

Use linear regression to find discriminant functions

- Have training data $\left\{\left(x_{i}, g_{i}\right)\right\}_{i=1}^{n}$ where each $x_{i} \in \mathbb{R}^{p}$ and $g_{i} \in\{1, \ldots, K\}$.
- For each k construct a linear discriminant $\delta_{k}(x)$ via:
- Classify a new point x with

Use linear regression to find discriminant functions

- Have training data $\left\{\left(x_{i}, g_{i}\right)\right\}_{i=1}^{n}$ where each $x_{i} \in \mathbb{R}^{p}$ and $g_{i} \in\{1, \ldots, K\}$.
- For each k construct a linear discriminant $\delta_{k}(x)$ via:
(1) For $i=1, \ldots, n$ set

(2) Compute $\left(\hat{\beta}_{0 k}, \hat{\beta}_{k}\right)=\arg \min _{\beta_{0}, \beta_{k}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{k}^{t} x_{i}\right)^{2}$
(3) Define

- Classify a new point x with

Use linear regression to find discriminant functions

- Have training data $\left\{\left(x_{i}, g_{i}\right)\right\}_{i=1}^{n}$ where each $x_{i} \in \mathbb{R}^{p}$ and $g_{i} \in\{1, \ldots, K\}$.
- For each k construct a linear discriminant $\delta_{k}(x)$ via:
(1) For $i=1, \ldots, n$ set

$$
y_{i}= \begin{cases}0 & \text { if } g_{i} \neq k \\ 1 & \text { if } g_{i}=k\end{cases}
$$

(2) Compute $\left(\hat{\beta}_{0 k}, \hat{\beta}_{k}\right)=\arg \min _{\beta_{0}, \beta_{k}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{k}^{t} x_{i}\right)^{2}$
(3) Define

- Classify a new point x with

Use linear regression to find discriminant functions

- Have training data $\left\{\left(x_{i}, g_{i}\right)\right\}_{i=1}^{n}$ where each $x_{i} \in \mathbb{R}^{p}$ and $g_{i} \in\{1, \ldots, K\}$.
- For each k construct a linear discriminant $\delta_{k}(x)$ via:
(1) For $i=1, \ldots, n$ set

$$
y_{i}= \begin{cases}0 & \text { if } g_{i} \neq k \\ 1 & \text { if } g_{i}=k\end{cases}
$$

(2) Compute $\left(\hat{\beta}_{0 k}, \hat{\beta}_{k}\right)=\arg \min _{\beta_{0}, \beta_{k}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{k}^{t} x_{i}\right)^{2}$
(3) Define

- Classify a new point x with

Use linear regression to find discriminant functions

- Have training data $\left\{\left(x_{i}, g_{i}\right)\right\}_{i=1}^{n}$ where each $x_{i} \in \mathbb{R}^{p}$ and $g_{i} \in\{1, \ldots, K\}$.
- For each k construct a linear discriminant $\delta_{k}(x)$ via:
(1) For $i=1, \ldots, n$ set

$$
y_{i}= \begin{cases}0 & \text { if } g_{i} \neq k \\ 1 & \text { if } g_{i}=k\end{cases}
$$

(2) Compute $\left(\hat{\beta}_{0 k}, \hat{\beta}_{k}\right)=\arg \min _{\beta_{0}, \beta_{k}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{k}^{t} x_{i}\right)^{2}$
(3) Define

$$
\delta_{k}(x)=\hat{\beta}_{0 k}+\hat{\beta}_{k}^{t} x
$$

- Classify a new point x with

Use linear regression to find discriminant functions

- Have training data $\left\{\left(x_{i}, g_{i}\right)\right\}_{i=1}^{n}$ where each $x_{i} \in \mathbb{R}^{p}$ and $g_{i} \in\{1, \ldots, K\}$.
- For each k construct a linear discriminant $\delta_{k}(x)$ via:
(1) For $i=1, \ldots, n$ set

$$
y_{i}= \begin{cases}0 & \text { if } g_{i} \neq k \\ 1 & \text { if } g_{i}=k\end{cases}
$$

(2) Compute $\left(\hat{\beta}_{0 k}, \hat{\beta}_{k}\right)=\arg \min _{\beta_{0}, \beta_{k}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{k}^{t} x_{i}\right)^{2}$
(3) Define

$$
\delta_{k}(x)=\hat{\beta}_{0 k}+\hat{\beta}_{k}^{t} x
$$

- Classify a new point x with

$$
G(x)=\arg \max _{k} \delta_{k}(x)
$$

3 class example

Use linear regression of an indicator matrix to find the discriminant functions for the above 3-classes.

Construct K linear regression problems

For each k construct the response vectors from the class labels

For each k fit a hyperplane that minimizes the RSS

Construct K discriminant functions

For each k construct the response vectors from the class labels

The k discriminant $\mathbf{f n s}$ defined by the least square hyperplanes

$\delta_{1}(x)$

$\delta_{2}(x)$

$\delta_{3}(x)$

This approach will fail in this case

The training data from 3 classes

The discriminant functions learnt via regression

$\delta_{1}(x)$

$\delta_{2}(x)$

$\delta_{3}(x)$

The resulting decision boundary

The discriminant functions learnt via regression

0

$$
\delta_{1}(x)
$$

0
$\delta_{2}(x)$

$\delta_{3}(x)$

The resulting decision boundary

- In this last example masking has occurred.
- This occurs because of the rigid nature of the linear discriminant functions.
- This example is extreme but for large K and small p such maskings occur naturally.
- The other methods in this chapter are based on linear decision functions of x, but they are learnt in a smarter why..

The resulting decision boundary

- In this last example masking has occurred.
- This occurs because of the rigid nature of the linear discriminant functions.
- This example is extreme but for large K and small p such maskings occur naturally.
- The other methods in this chapter are based on linear decision functions of x, but they are learnt in a smarter why.

The resulting decision boundary

- In this last example masking has occurred.
- This occurs because of the rigid nature of the linear discriminant functions.
- This example is extreme but for large K and small p such maskings occur naturally.
- The other methods in this chapter are based on linear decision functions of x, but they are learnt in a smarter why.

The resulting decision boundary

- In this last example masking has occurred.
- This occurs because of the rigid nature of the linear discriminant functions.
- This example is extreme but for large K and small p such maskings occur naturally.
- The other methods in this chapter are based on linear decision functions of x, but they are learnt in a smarter why...

Linear Discriminant Analysis

Optimal classification requires the posterior

- To perform optimal classification need to know $P(G \mid X)$. Let
- $f_{k}(x)$ represent the class-conditional $P(X \mid G=k)$ and
- π_{k} be the prior probability of class k with $\sum_{k=1}^{K} \pi_{k}=1$
- A simple application of Bayes Rule gives

- Therefore for classification having $f_{k}(x)$ is almost equivalent to having $P(G=k \mid X=x)$.

Optimal classification requires the posterior

- To perform optimal classification need to know $P(G \mid X)$. Let
- $f_{k}(x)$ represent the class-conditional $P(X \mid G=k)$ and
- π_{k} be the prior probability of class k with $\sum_{k=1}^{K} \pi_{k}=1$
- A simple application of Bayes Rule gives

- Therefore for classification having $f_{k}(x)$ is almost equivalent to having $P(G=k \mid X=x)$.

Optimal classification requires the posterior

- To perform optimal classification need to know $P(G \mid X)$. Let
- $f_{k}(x)$ represent the class-conditional $P(X \mid G=k)$ and
- π_{k} be the prior probability of class k with $\sum_{k=1}^{K} \pi_{k}=1$
- A simple application of Bayes Rule gives

$$
P(G=k \mid X=x)=\frac{f_{k}(x) \pi_{k}}{\sum_{l=1}^{K} f_{l}(x) \pi_{l}}
$$

- Therefore for classification having $f_{k}(x)$ is almost equivalent to having $P(G=k \mid X=x)$.

Optimal classification requires the posterior

- To perform optimal classification need to know $P(G \mid X)$. Let
- $f_{k}(x)$ represent the class-conditional $P(X \mid G=k)$ and
- π_{k} be the prior probability of class k with $\sum_{k=1}^{K} \pi_{k}=1$
- A simple application of Bayes Rule gives

$$
P(G=k \mid X=x)=\frac{f_{k}(x) \pi_{k}}{\sum_{l=1}^{K} f_{l}(x) \pi_{l}}
$$

- Therefore for classification having $f_{k}(x)$ is almost equivalent to having $P(G=k \mid X=x)$.

How to model the class densities

- Many methods are based on specific models of $f_{k}(x)$
- linear and quadratic discriminant functions use Gaussian distributions,
- mixture of Gaussian distributions produce non-linear decision boundaries,
- non-parametric density estimates which allow the most flexibility.
- Naive Bayes where $f_{k}(X)=\prod_{j=1}^{p} f_{k j}\left(X_{j}\right)$.

How to model the class densities

- Many methods are based on specific models of $f_{k}(x)$
- linear and quadratic discriminant functions use Gaussian distributions,
- mixture of Gaussian distributions produce non-linear decision boundaries,
- non-parametric density estimates which allow the most flexibility.
- Naive Bayes where $f_{k}(X)=\prod_{j=1}^{p} f_{k j}\left(X_{j}\right)$.

How to model the class densities

- Many methods are based on specific models of $f_{k}(x)$
- linear and quadratic discriminant functions use Gaussian distributions,
- mixture of Gaussian distributions produce non-linear decision boundaries,
- non-parametric density estimates which allow the most flexibility.
- Naive Bayes where $f_{k}(X)=\prod_{j=1}^{p} f_{k j}\left(X_{j}\right)$.

How to model the class densities

- Many methods are based on specific models of $f_{k}(x)$
- linear and quadratic discriminant functions use Gaussian distributions,
- mixture of Gaussian distributions produce non-linear decision boundaries,
- non-parametric density estimates which allow the most flexibility,
- Naive Bayes where $f_{k}(X)=\prod_{j=1}^{p} f_{k j}\left(X_{j}\right)$.

How to model the class densities

- Many methods are based on specific models of $f_{k}(x)$
- linear and quadratic discriminant functions use Gaussian distributions,
- mixture of Gaussian distributions produce non-linear decision boundaries,
- non-parametric density estimates which allow the most flexibility,
- Naive Bayes where $f_{k}(X)=\prod_{j=1}^{p} f_{k j}\left(X_{j}\right)$.

Multivariate Gaussian class densities

- Model each $f_{k}(x)$ as a multivariate Gaussian

$$
f_{k}(x)=\frac{1}{\sqrt[p]{2 \pi} \sqrt{\left|\Sigma_{k}\right|}} \exp \left\{-.5\left(x-\mu_{k}\right)^{t} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)\right\}
$$

- Linear Discriminant Analysis (LDA) arises in the special case when

class distributions

decision boundary

Multivariate Gaussian class densities

- Model each $f_{k}(x)$ as a multivariate Gaussian

$$
f_{k}(x)=\frac{1}{\sqrt[p]{2 \pi} \sqrt{\left|\Sigma_{k}\right|}} \exp \left\{-.5\left(x-\mu_{k}\right)^{t} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)\right\}
$$

- Linear Discriminant Analysis (LDA) arises in the special case when

$$
\Sigma_{k}=\Sigma \text { for all } k
$$

class distributions

One gets linear decision boundaries.

- Can see this as

$$
\begin{aligned}
\log \frac{P(G=k \mid X=x)}{P(G=l \mid X=x)}= & \log \frac{f_{k}(x)}{f_{l}(x)}+\log \frac{\pi_{k}}{\pi_{l}} \\
= & \log \frac{\pi_{k}}{\pi_{l}}-.5 \mu_{k}^{t} \Sigma^{-1} \mu_{k}+.5 \mu_{l}^{t} \Sigma^{-1} \mu_{l} \\
& +x^{t} \Sigma^{-1}\left(\mu_{k}-\mu_{l}\right) \\
= & x^{t} a+b \quad \leftarrow \text { a linear function }
\end{aligned}
$$

- The equal covariance matrices allow the $x^{t} \Sigma_{k}^{-1} x$ and $x^{t} \Sigma_{l}^{-1} x$ terms to cancel out.
- From the log-odds function we see that the linear discriminant functions

$$
\delta_{k}(x)=x^{t} \Sigma^{-1} \mu_{k}-.5 \mu_{k}^{t} \Sigma^{-1} \mu_{k}+\log \pi_{k}
$$

are an equivalent description of the decision rule with

$$
G(x)=\underset{k}{\arg } \max _{k}(x)
$$

- Can see this as

$$
\begin{aligned}
\log \frac{P(G=k \mid X=x)}{P(G=l \mid X=x)}= & \log \frac{f_{k}(x)}{f_{l}(x)}+\log \frac{\pi_{k}}{\pi_{l}} \\
= & \log \frac{\pi_{k}}{\pi_{l}}-.5 \mu_{k}^{t} \Sigma^{-1} \mu_{k}+.5 \mu_{l}^{t} \Sigma^{-1} \mu_{l} \\
& +x^{t} \Sigma^{-1}\left(\mu_{k}-\mu_{l}\right) \\
= & x^{t} a+b \quad \leftarrow \text { a linear function }
\end{aligned}
$$

- The equal covariance matrices allow the $x^{t} \Sigma_{k}^{-1} x$ and $x^{t} \Sigma_{l}^{-1} x$ terms to cancel out.
- From the log-odds function we see that the linear discriminant functions

are an equivalent description of the decision rule with
- Can see this as

$$
\begin{aligned}
\log \frac{P(G=k \mid X=x)}{P(G=l \mid X=x)}= & \log \frac{f_{k}(x)}{f_{l}(x)}+\log \frac{\pi_{k}}{\pi_{l}} \\
= & \log \frac{\pi_{k}}{\pi_{l}}-.5 \mu_{k}^{t} \Sigma^{-1} \mu_{k}+.5 \mu_{l}^{t} \Sigma^{-1} \mu_{l} \\
& \quad+x^{t} \Sigma^{-1}\left(\mu_{k}-\mu_{l}\right) \\
= & x^{t} a+b \quad \leftarrow \text { a linear function }
\end{aligned}
$$

- The equal covariance matrices allow the $x^{t} \Sigma_{k}^{-1} x$ and $x^{t} \Sigma_{l}^{-1} x$ terms to cancel out.
- From the log-odds function we see that the linear discriminant functions

$$
\delta_{k}(x)=x^{t} \Sigma^{-1} \mu_{k}-.5 \mu_{k}^{t} \Sigma^{-1} \mu_{k}+\log \pi_{k}
$$

are an equivalent description of the decision rule with

$$
G(x)=\arg \max _{k} \delta_{k}(x)
$$

LDA: Some practicalities

In practice don't know the parameters of the Gaussian distributions and estimate these from the training data.
Let n_{k} be the number of class k observations then

- $\hat{\pi}_{k}=n_{k} / n$
- $\hat{\mu}_{k}=\sum_{g_{i}=k} x_{i} / n_{k}$
- $\hat{\Sigma}_{k}=\sum_{k=1}^{K} \sum_{g_{i}=k}\left(x_{i}-\hat{\mu_{k}}\right)\left(x_{i}-\hat{\mu_{k}}\right)^{t} /(n-K)$

When Σ_{k} 's are not all equal

- If the Σ_{k} are not assumed to be equal then the quadratic terms remain and we get quadratic discriminant functions (QDA)

$$
\delta_{k}(x)=-.5 \log \left|\Sigma_{k}\right|-.5\left(x-\mu_{k}\right)^{t} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)+\log \pi_{k}
$$

class distributions

decision boundaries

When Σ_{k} 's are not all equal

- If the Σ_{k} are not assumed to be equal then the quadratic terms remain and we get quadratic discriminant functions (QDA)

$$
\delta_{k}(x)=-.5 \log \left|\Sigma_{k}\right|-.5\left(x-\mu_{k}\right)^{t} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)+\log \pi_{k}
$$

- In this case the decision boundary between classes are described by a quadratic equation $\left\{x: \delta_{k}(x)=\delta_{l}(x)\right\}$.

class distributions

decision boundaries

Best way to compute a quadratic discriminant function?

Left plot shows the quadratic decision boundaries found using LDA in the five dimensional space $X_{1}, X_{2}, X_{1}^{2}, X_{2}^{2}, X_{1} X_{2}$.

Right plot shows the quadratic decision boundaries found by QDA.

LDA and QDA summary

- These methods can be surprisingly effective.
- Can explain this

Reduced-Rank Linear Discriminant Analysis

Affine subspace defined by centroids of the classes

- Have K centroids in a p-dimensional input space: μ_{1}, \ldots, μ_{K}
- These centroids define an $K-1$ dimensional affine subspace H_{K-1} where if $u \in H_{K-1}$ then
$\mu=\mu_{1}+\alpha_{1}\left(\mu_{2}-\mu_{1}\right)+\alpha_{2}\left(\mu_{3}-\mu_{1}\right)+\cdots+\alpha_{K-1}\left(\mu_{K}-\mu_{1}\right)$ $=\mu_{1}+\alpha_{1} d_{1}+\alpha_{2} d_{2}+\cdots+\alpha_{K-1} d_{K-1}$
- If $x \in \mathbb{R}^{p}$ then it can be written as
- If x has been whitened with respect to the common covariance matrix then the Mahalhobnis distance to centroid μ_{j}
- x^{\perp} does not change with μ_{j}, therefore to locate the closest centroid can ignore it

Affine subspace defined by centroids of the classes

- Have K centroids in a p-dimensional input space: μ_{1}, \ldots, μ_{K}
- These centroids define an $K-1$ dimensional affine subspace H_{K-1} where if $u \in H_{K-1}$ then

$$
\begin{aligned}
u & =\mu_{1}+\alpha_{1}\left(\mu_{2}-\mu_{1}\right)+\alpha_{2}\left(\mu_{3}-\mu_{1}\right)+\cdots+\alpha_{K-1}\left(\mu_{K}-\mu_{1}\right) \\
& =\mu_{1}+\alpha_{1} d_{1}+\alpha_{2} d_{2}+\cdots+\alpha_{K-1} d_{K-1}
\end{aligned}
$$

- If $x \in \mathbb{R}^{p}$ then it can be written as
- If x has been whitened with respect to the common covariance matrix then the Mahalhobnis distance to centroid μ_{j}

Affine subspace defined by centroids of the classes

- Have K centroids in a p-dimensional input space: μ_{1}, \ldots, μ_{K}
- These centroids define an $K-1$ dimensional affine subspace H_{K-1} where if $u \in H_{K-1}$ then

$$
\begin{aligned}
u & =\mu_{1}+\alpha_{1}\left(\mu_{2}-\mu_{1}\right)+\alpha_{2}\left(\mu_{3}-\mu_{1}\right)+\cdots+\alpha_{K-1}\left(\mu_{K}-\mu_{1}\right) \\
& =\mu_{1}+\alpha_{1} d_{1}+\alpha_{2} d_{2}+\cdots+\alpha_{K-1} d_{K-1}
\end{aligned}
$$

- If $x \in \mathbb{R}^{p}$ then it can be written as

$$
x=\mu_{1}+\gamma_{1} d_{1}+\gamma_{2} d_{2}+\cdots+\gamma_{K-1} d_{K-1}+x^{\perp}, \quad \text { where } x^{\perp} \in H_{K-1}^{\perp} .
$$

- If x has been whitened with respect to the common covariance matrix then the Mahalhobnis distance to centroid μ_{j}

Affine subspace defined by centroids of the classes

- Have K centroids in a p-dimensional input space: μ_{1}, \ldots, μ_{K}
- These centroids define an $K-1$ dimensional affine subspace H_{K-1} where if $u \in H_{K-1}$ then

$$
\begin{aligned}
u & =\mu_{1}+\alpha_{1}\left(\mu_{2}-\mu_{1}\right)+\alpha_{2}\left(\mu_{3}-\mu_{1}\right)+\cdots+\alpha_{K-1}\left(\mu_{K}-\mu_{1}\right) \\
& =\mu_{1}+\alpha_{1} d_{1}+\alpha_{2} d_{2}+\cdots+\alpha_{K-1} d_{K-1}
\end{aligned}
$$

- If $x \in \mathbb{R}^{p}$ then it can be written as

$$
x=\mu_{1}+\gamma_{1} d_{1}+\gamma_{2} d_{2}+\cdots+\gamma_{K-1} d_{K-1}+x^{\perp}, \quad \text { where } x^{\perp} \in H_{K-1}^{\perp} .
$$

- If x has been whitened with respect to the common covariance matrix then the Mahalhobnis distance to centroid μ_{j}

$$
\begin{aligned}
\left\|x-\mu_{j}\right\| & =\left\|\mu_{1}+\gamma_{1} d_{1}+\gamma_{2} d_{2}+\cdots+\gamma_{K-1} d_{K-1}+x^{\perp}-\mu_{j}\right\| \\
& =\left\|2 \mu_{1}+\gamma_{1} d_{1}+\cdots+\left(\gamma_{j-1}-1\right) d_{j-1}+\cdots+\gamma_{K-1} d_{K-1}+x^{\perp}\right\|
\end{aligned}
$$

Affine subspace defined by centroids of the classes

- Have K centroids in a p-dimensional input space: μ_{1}, \ldots, μ_{K}
- These centroids define an $K-1$ dimensional affine subspace H_{K-1} where if $u \in H_{K-1}$ then

$$
\begin{aligned}
u & =\mu_{1}+\alpha_{1}\left(\mu_{2}-\mu_{1}\right)+\alpha_{2}\left(\mu_{3}-\mu_{1}\right)+\cdots+\alpha_{K-1}\left(\mu_{K}-\mu_{1}\right) \\
& =\mu_{1}+\alpha_{1} d_{1}+\alpha_{2} d_{2}+\cdots+\alpha_{K-1} d_{K-1}
\end{aligned}
$$

- If $x \in \mathbb{R}^{p}$ then it can be written as

$$
x=\mu_{1}+\gamma_{1} d_{1}+\gamma_{2} d_{2}+\cdots+\gamma_{K-1} d_{K-1}+x^{\perp}, \quad \text { where } x^{\perp} \in H_{K-1}^{\perp} .
$$

- If x has been whitened with respect to the common covariance matrix then the Mahalhobnis distance to centroid μ_{j}

$$
\begin{aligned}
\left\|x-\mu_{j}\right\| & =\left\|\mu_{1}+\gamma_{1} d_{1}+\gamma_{2} d_{2}+\cdots+\gamma_{K-1} d_{K-1}+x^{\perp}-\mu_{j}\right\| \\
& =\left\|2 \mu_{1}+\gamma_{1} d_{1}+\cdots+\left(\gamma_{j-1}-1\right) d_{j-1}+\cdots+\gamma_{K-1} d_{K-1}+x^{\perp}\right\|
\end{aligned}
$$

- x^{\perp} does not change with μ_{j}, therefore to locate the closest centroid can ignore it.
- K centroids in p-dimensional input space lie in an affine subspace of dimension $\leq K-1$.
- If $p \gg K$ this is a big drop in dimension.
- To locate the closest centroid can ignore the directions orthogonal to this subspace if the data has been sphered.
- Therefore can just project X^{*} onto this centroid-spanning subspace H_{K-1} and make comparisons there.
- LDA thus performs dimensionality reduction and one need only consider the data in a subspace of dimension at most $K-1$.

What about a subspace of dimension $L<K-1$?

- If $K>3$ can ask the question: Which subspace of dimensional $L<K-1$ should we project onto for optimality w.r.t. LDA?
- Fisher defined optimal as the projected centroids are spread out as much as possible in terms of variance.
- Find the principal component subspace of the centroids.

- In this example have 11 classes with 10 dimensional input vectors.
- The bold dots correspond to the centroids projected onto the top 2 principal directions.

What about a subspace of dimension $L<K-1$?

- If $K>3$ can ask the question: Which subspace of dimensional $L<K-1$ should we project onto for optimality w.r.t. LDA?
- Fisher defined optimal as the projected centroids are spread out as much as possible in terms of variance.
- Find the principal component subspace of the centroids.

- In this example have 11 classes with 10 dimensional input vectors.
- The bold dots correspond to the centroids projected onto the top 2 principal directions.

What about a subspace of dimension $L<K-1$?

- If $K>3$ can ask the question: Which subspace of dimensional $L<K-1$ should we project onto for optimality w.r.t. LDA?
- Fisher defined optimal as the projected centroids are spread out as much as possible in terms of variance.
- Find the principal component subspace of the centroids.

- In this example have 11 classes with 10 dimensional input vectors
- The bold dots correspond to the centroids projected onto the top 2 principal directions

What about a subspace of dimension $L<K-1$?

- If $K>3$ can ask the question: Which subspace of dimensional $L<K-1$ should we project onto for optimality w.r.t. LDA?
- Fisher defined optimal as the projected centroids are spread out as much as possible in terms of variance.
- Find the principal component subspace of the centroids.

- In this example have 11 classes with 10 dimensional input vectors.
- The bold dots correspond to the centroids projected onto the top 2 principal directions.

The optimal sequence of subspaces

- To find the sequences of optimal subspaces for LDA:
(1) Compute the $K \times p$ matrix of class centroids M and the common covariance matrix W - the within-class variance.
(2) Compute $M^{*}=M W^{-\frac{1}{2}}$ using the eigen-decomposition of W
(3) Compute B^{*} the covariance matrix of M^{*} - the between-class variance.
(4) $B^{* \prime}$ s eigen-decomposition is $B^{*}=V^{*} D_{B} V$. The columns of v_{l}^{*} of V^{*} define basis of the optimal subspace.
- The l th discriminant variable is given by $Z_{l}=v_{l}^{*} W^{-\frac{1}{2}} X$

The optimal sequence of subspaces

- To find the sequences of optimal subspaces for LDA:
(1) Compute the $K \times p$ matrix of class centroids M and the common covariance matrix W - the within-class variance.
(2) Compute $M^{*}=M W^{-\frac{1}{2}}$ using the eigen-decomposition of W
(3) Compute B^{*} the covariance matrix of M^{*} - the between-class variance.
(4) $B^{* \prime}$ s eigen-decomposition is $B^{*}=V^{*} D_{B} V$. The columns of v_{l}^{*} of V^{*} define basis of the optimal subspace.
- The l th discriminant variable is given by $Z_{l}=v_{l}^{*} W^{-\frac{1}{2}} X$

Note as the rank of the canonical variates increase the projected centroids become less spread out.

LDA via the Fisher criterion

Fisher arrived at this decomposition via a different route. He posed the problem

Find the linear combination $Z=a X$ such that the between-class variance is maximized relative to the within-class variance.

Why this criterion makes sense

LDA via the Fisher criterion

Fisher arrived at this decomposition via a different route. He posed the problem

Find the linear combination $Z=a X$ such that the between-class variance is maximized relative to the within-class variance.

Why this criterion makes sense

The Fisher criterion

- W is the common covariance matrix of the original data X.
- B is the covariance matrix of the centroid matrix M
- Then for the projected data Z
- Fisher's problem amounts to maximizing the Raleigh quotient

or equivalently

The Fisher criterion

- W is the common covariance matrix of the original data X.
- B is the covariance matrix of the centroid matrix M
- Then for the projected data Z
(1) The between-class variance of Z is $a^{t} B a$
(2) The within-class variance of Z is $a^{t} W a$
- Fisher's problem amounts to maximizing the Raleigh quotient

or equivalently

The Fisher criterion

- W is the common covariance matrix of the original data X.
- B is the covariance matrix of the centroid matrix M
- Then for the projected data Z
(1) The between-class variance of Z is $a^{t} B a$
(2) The within-class variance of Z is $a^{t} W a$
- Fisher's problem amounts to maximizing the Raleigh quotient

$$
\max _{a} \frac{a^{t} B a}{a^{t} W a}
$$

or equivalently
$\max a^{t} B a$ subject to $a^{t} W a=1$

The Fisher criterion

- Fisher's problem amounts to maximizing the Raleigh quotient

$$
a_{1}=\arg \max _{a} a^{t} B a \text { subject to } a^{t} W a=1
$$

- This is a generalized eigenvalue problem with a given by the largest eigenvalue of $W^{-1} B$.
- Can be shown that a_{1} is equal to $W^{-\frac{1}{2}} v_{1}^{*}$ defined earlier
- Can find the next direction a_{2}

- In a similar fashion can find a_{3}, a_{4},

The Fisher criterion

- Fisher's problem amounts to maximizing the Raleigh quotient

$$
a_{1}=\arg \max _{a} a^{t} B a \text { subject to } a^{t} W a=1
$$

- This is a generalized eigenvalue problem with a given by the largest eigenvalue of $W^{-1} B$.
- Can be shown that a_{1} is equal to $W^{-\frac{1}{2}} v_{1}^{*}$ defined earlier.
- Can find the next direction a_{2}

Once again $a_{2}=W^{-\frac{1}{2}} v_{2}^{*}$

- In a similar fashion can find a_{3}, a_{4},

The Fisher criterion

- Fisher's problem amounts to maximizing the Raleigh quotient

$$
a_{1}=\arg \max _{a} a^{t} B a \text { subject to } a^{t} W a=1
$$

- This is a generalized eigenvalue problem with a given by the largest eigenvalue of $W^{-1} B$.
- Can be shown that a_{1} is equal to $W^{-\frac{1}{2}} v_{1}^{*}$ defined earlier.
- Can find the next direction a_{2}

Once again $a_{2}=W^{-\frac{1}{2}} v_{2}^{*}$

- In a similar fashion can find a_{3}, a_{4},

The Fisher criterion

- Fisher's problem amounts to maximizing the Raleigh quotient

$$
a_{1}=\arg \max _{a} a^{t} B a \text { subject to } a^{t} W a=1
$$

- This is a generalized eigenvalue problem with a given by the largest eigenvalue of $W^{-1} B$.
- Can be shown that a_{1} is equal to $W^{-\frac{1}{2}} v_{1}^{*}$ defined earlier.
- Can find the next direction a_{2}

$$
a_{2}=\arg \max _{a} \frac{a^{t} B a}{a^{t} W a} \text { subject to } a^{t} W a_{1}=0
$$

Once again $a_{2}=W^{-\frac{1}{2}} v_{2}^{*}$.

The Fisher criterion

- Fisher's problem amounts to maximizing the Raleigh quotient

$$
a_{1}=\arg \max _{a} a^{t} B a \text { subject to } a^{t} W a=1
$$

- This is a generalized eigenvalue problem with a given by the largest eigenvalue of $W^{-1} B$.
- Can be shown that a_{1} is equal to $W^{-\frac{1}{2}} v_{1}^{*}$ defined earlier.
- Can find the next direction a_{2}

$$
a_{2}=\arg \max _{a} \frac{a^{t} B a}{a^{t} W a} \text { subject to } a^{t} W a_{1}=0
$$

Once again $a_{2}=W^{-\frac{1}{2}} v_{2}^{*}$.

- In a similar fashion can find a_{3}, a_{4}, \ldots

Classification in the reduced subspace

- The a_{l} 's are referred to as discriminant coordinates or canonical variates.

- In this example have 11 classes with 10 dimensional input vectors.
- The decision boundaries based on using basic linear discrimination in the low dimensional space given by the first 2 canonical variates.

Logistic Regression

Logistic regression

- Arises from trying to model the posterior probabilities of the K classes using linear functions in x while ensuring they sum to one.
- The simple model used is for $k=1, \ldots, K-1$

and $k=K$

- These posterior probabilities clearly sum to one.

Logistic regression

- Arises from trying to model the posterior probabilities of the K classes using linear functions in x while ensuring they sum to one.
- The simple model used is for $k=1, \ldots, K-1$

$$
P(G=k \mid X=x)=\frac{\exp \left(\beta_{k 0}+\beta_{k}^{t} x\right)}{1+\sum_{l=1}^{K-1} \exp \left(\beta_{l 0}+\beta_{l}^{t} x\right)}
$$

and $k=K$

$$
P(G=K \mid X=x)=\frac{1}{1+\sum_{l=1}^{K-1} \exp \left(\beta_{l 0}+\beta_{l}^{t} x\right)}
$$

- These posterior probabilities clearly sum to one.

Logistic regression

- This model: $k=1, \ldots, K-1$

$$
P(G=k \mid X=x)=\frac{\exp \left(\beta_{k 0}+\beta_{k}^{t} x\right)}{1+\sum_{l=1}^{K-1} \exp \left(\beta_{l 0}+\beta_{l}^{t} x\right)}
$$

and $k=K$

$$
P(G=K \mid X=x)=\frac{1}{1+\sum_{l=1}^{K-1} \exp \left(\beta_{l 0}+\beta_{l}^{t} x\right)}
$$

induces linear decision boundaries between classes as

$$
\{x: P(G=k \mid X=x)=P(G=l \mid X=x)\}
$$

is the same as

$$
\left\{x:\left(\beta_{k 0}-\beta_{l 0}\right)+\left(\beta_{k}-\beta_{l}\right)^{t} x=0\right\}
$$

for $1 \leq k<K$ and $1 \leq l<K$.

Fitting Logistic regression models

- To simplify notation let
(1) $\theta=\left\{\beta_{10}, \beta_{1}^{t}, \beta_{20}, \beta_{2}^{t}, \ldots\right\}$ and
(2) $P(G=k \mid X=x)=p_{k}(x ; \theta)$
- Given training data $\left\{\left(x_{i}, g_{i}\right)\right\}_{i=1}^{n}$ one usually fits the logistic regression model by maximum likelihood.
- The log-likelihood for the n observations is

$$
\ell(\theta)=\log \left(\prod_{i=1}^{n} p_{g_{i}}\left(x_{i} ; \theta\right)\right)=\sum_{i=1}^{n} \log \left(p_{g_{i}}\left(x_{i} ; \theta\right)\right)
$$

in my opinion this is an abuse of terminology as the posterior probabilities are being used...

Fitting Logistic regression models: The two class case

$$
p_{1}(x ; \beta)=\frac{\exp \left(\beta^{t} x\right)}{1+\exp \left(\beta^{t} x\right)} \text { and } p_{2}(x ; \beta)=1-p_{1}(x ; \beta)
$$

Let $\beta=\theta=\left(\beta_{10}, \beta_{1}^{t}\right)$ and assume x_{i} 's include the constant term 1 .
A convenient way to write the likelihood for one sample $\left(x_{i}, g_{i}\right)$ is:

- Code the two-class g_{i} as a $\{0,1\}$ response y_{i} where

$$
y_{i}= \begin{cases}1 & \text { if } g_{i}=1 \\ 0 & \text { if } g_{i}=2\end{cases}
$$

- Then one can write

$$
p_{g_{i}}\left(x_{i} ; \beta\right)=y_{i} p_{1}\left(x_{i} ; \beta\right)+\left(1-y_{i}\right)\left(1-p_{1}\left(x_{i} ; \beta\right)\right)
$$

Fitting Logistic regression models: The two class case

Similarly

$$
\log p_{g_{i}}\left(x_{i} ; \beta\right)=y_{i} \log p_{1}\left(x_{i} ; \beta\right)+\left(1-y_{i}\right) \log \left(1-p_{1}\left(x_{i} ; \beta\right)\right)
$$

The log-likelihood of the data becomes

$$
\begin{aligned}
\ell(\beta) & =\sum_{i=1}^{n}\left[y_{i} \log p_{1}\left(x_{i} ; \beta\right)+\left(1-y_{i}\right) \log \left(1-p_{1}\left(x_{i} ; \beta\right)\right)\right] \\
& =\sum_{i=1}^{n}\left[y_{i} \beta^{t} x_{i}-y_{i} \log \left(1+e^{\beta^{t} x_{i}}\right)-\left(1-y_{i}\right) \log \left(1+e^{\beta^{t} x_{i}}\right)\right] \\
& =\sum_{i=1}^{n}\left[y_{i} \beta^{t} x_{i}-\log \left(1+e^{\beta^{t} x_{i}}\right)\right]
\end{aligned}
$$

Fitting Logistic regression models: The two class case

$$
\ell(\beta)=\sum_{i=1}^{n}\left[y_{i} \beta^{t} x_{i}-\log \left(1+e^{\beta^{t} x_{i}}\right)\right]
$$

- To maximize the log-likelihood set its derivatives to zero to get

$$
\begin{aligned}
\frac{\partial \ell(\beta)}{\partial \beta} & =\sum_{i=1}^{n}\left[x_{i} y_{i}-x_{i} \frac{\exp \left(\beta^{t} x_{i}\right)}{1+\exp \left(\beta^{t} x_{i}\right)}\right] \\
& =\sum_{i=1}^{n} x_{i}\left(y_{i}-\frac{\exp \left(\beta^{t} x_{i}\right)}{1+\exp \left(\beta^{t} x_{i}\right)}\right) \\
& =\sum_{i=1}^{n} x_{i}\left(y_{i}-p_{1}\left(x_{i} ; \beta\right)\right)=0
\end{aligned}
$$

- These are $(p+1)$ equations non-linear equations in β.
- Must solve iteratively and in the book they use the Newton-Raphson algorithm.

The two class case: Iterative optimization

Newton-Raphson requires both the gradient

$$
\frac{\partial \ell(\beta)}{\partial \beta}=\sum_{i=1}^{n} x_{i}\left(y_{i}-p_{1}\left(x_{i} ; \beta\right)\right)
$$

and Hessian matrix

$$
\frac{\partial \ell(\beta)}{\partial \beta \partial \beta^{t}}=-\sum_{i=1}^{n} x_{i} x_{i}^{t} p_{1}\left(x_{i} ; \beta\right)\left(1-p_{1}\left(x_{i} ; \beta\right)\right)
$$

Starting with $\beta^{\text {old }}$, a single Newton update step is

$$
\beta_{\text {new }}=\beta^{\text {old }}-\left(\frac{\partial \ell(\beta)}{\partial \beta \partial \beta^{t}}\right)^{-1} \frac{\partial \ell(\beta)}{\partial \beta}
$$

where the derivatives are calculated at $\beta^{\text {old }}$.

Iterative optimization in matrix notation

Write the Hessian and gradient in matrix notation. Let

- \mathbf{X} be the $N \times(p+1)$ matrix with $\left(1, x_{i}^{t}\right)$ on each row,
- $p=\left(p_{1}\left(x_{1} ; \beta^{\text {old }}\right), p_{1}\left(x_{2} ; \beta^{\text {old }}\right), \ldots, p_{1}\left(x_{n} ; \beta^{\text {old }}\right)\right)^{t}$
- \mathbf{W} is $n \times n$ diagonal matrix with i th diagonal element $p_{1}\left(x_{1} ; \beta^{\text {old }}\right)\left(1-p_{1}\left(x_{1} ; \beta^{\text {old }}\right)\right)$.

Then

$$
\frac{\partial \ell(\beta)}{\partial \beta}=\mathbf{X}^{t}(y-p)
$$

and

$$
\frac{\partial \ell(\beta)}{\partial \beta \partial \beta^{t}}=-\mathbf{X}^{t} \mathbf{W} \mathbf{X}
$$

Iterative optimization as iterative weighted Is

The Newton step is then

$$
\begin{aligned}
\beta^{\text {new }} & =\beta^{\text {old }}+\left(\mathbf{X}^{t} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{t}(y-p) \\
& =\left(\mathbf{X}^{t} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{W}\left(\mathbf{X} \beta^{\text {old }}+\mathbf{W}^{-1}(y-p)\right) \\
& =\left(\mathbf{X}^{t} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{W} z
\end{aligned}
$$

Have re-expressed the Newton step as a weighted least squares step

$$
\beta^{\text {new }}=\arg \min _{\beta}(z-\mathbf{X} \beta)^{t} \mathbf{W}(z-\mathbf{X} \beta)
$$

with response

$$
z=\mathbf{X} \beta^{\text {old }}+\mathbf{W}^{-1}(y-p)
$$

known as the adjusted response. Note at iteration each W,p and z change.

An toy example

- Two class problem with 2 dimensional input vectors.
- Use Logistic Regression to find a decision boundary

Illustration of the optimization process

- The current estimate $\hat{\beta}^{\text {cur }}$

Quantities involved in the weighted least sqs

Size $\propto p_{1}\left(x_{i} ; \hat{\beta}^{\text {cur }}\right)$

Size $\propto p_{1}\left(x_{i} ; \hat{\beta}^{\text {cur }}\right)\left(1-p_{1}\left(x_{i} ; \hat{\beta}^{\text {cur }}\right)\right)=\mathbf{W}_{i i}$

Size $\propto 1 / \mathbf{W}_{i i}$

Update the estimate of $\hat{\beta}^{\text {cur }}$

- The current estimate $\hat{\beta}^{\text {cur }}$

Quantities involved in the weighted least sqs

Size $\propto p_{1}\left(x_{i} ; \hat{\beta}^{\text {cur }}\right)$

Size $\propto 1 / \mathbf{W}_{i i}$

Update the estimate of $\hat{\beta}^{\text {atr }}$

- The current estimate $\hat{\beta}^{\text {cur }}$

Quantities involved in the weighted least sqs

Size $\propto p_{1}\left(x_{i} ; \hat{\beta}^{\mathrm{cur}}\right)$
Size $\propto p_{1}\left(x_{i} ; \hat{\beta}^{\text {cur }}\right)\left(1-p_{1}\left(x_{i} ; \hat{\beta}^{\text {cur }}\right)\right)=\mathbf{W}_{i i}$

Size $\propto 1 / \mathbf{W}_{i i}$

Update the estimate of $\hat{\beta}^{\text {arr }}$

- The current estimate $\hat{\beta}^{\text {cur }}$
- Logistic regression converges to this decision boundary.

L_{1} regularized logistic regression

L_{1} regularized logistic regression

The L_{1} penalty can be used for variable selection in logistic regression by maximizing a penalized version of the log-likelihood

$$
\max _{\beta_{0}, \beta_{1}}\left\{\sum_{i=1}^{n}\left[y_{i}\left(\beta_{0}+\beta^{t} x_{i}\right)-\log \left(1+e^{\beta_{0}+\beta^{t} x_{i}}\right)\right]-\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|\right\}
$$

Note:

- the intercept, β_{0}, is not included in the penalty term,
- the predictors should be standardized to ensure the penalty is meaningful,
- the above cost function is concave and a solution can be found using non-linear programming methods.

Separating Hyperplanes

Directly estimating separating hyperplanes

- In this section describe separating hyperplane classifiers - will only consider separable training data.
- Construct linear decision boundaries that explicitly try to separate the data into different classes as well as possible.
- A hyperplane is defined as

Directly estimating separating hyperplanes

- In this section describe separating hyperplane classifiers - will only consider separable training data.
- Construct linear decision boundaries that explicitly try to separate the data into different classes as well as possible.
- A hyperplane is defined as

Directly estimating separating hyperplanes

- In this section describe separating hyperplane classifiers - will only consider separable training data.
- Construct linear decision boundaries that explicitly try to separate the data into different classes as well as possible.
- A hyperplane is defined as

$$
\left\{x: \hat{\beta}_{0}+\hat{\beta}^{t} x=0\right\}
$$

Review of some vector algebra

- Above is shown a hyperplane L defined by

$$
f(x)=\beta_{0}+\beta^{t} x=0
$$

- If $x_{1}, x_{2} \in L$ then $\beta^{t}\left(x_{1}-x_{2}\right)=0 \Longrightarrow \beta^{*}=\beta /\|\beta\|$ is normal to L
- If $x_{0} \in L$ then $\beta^{t} x_{0}=-\beta_{0}$.
- The signed distance of point x to L is

Review of some vector algebra

- Above is shown a hyperplane L defined by

$$
f(x)=\beta_{0}+\beta^{t} x=0
$$

- If $x_{1}, x_{2} \in L$ then $\beta^{t}\left(x_{1}-x_{2}\right)=0 \Longrightarrow \beta^{*}=\beta /\|\beta\|$ is normal to L
- If $x_{0} \in L$ then $\beta^{t} x_{0}=-\beta_{0}$.
- The signed distance of point x to L is

Review of some vector algebra

- Above is shown a hyperplane L defined by

$$
f(x)=\beta_{0}+\beta^{t} x=0
$$

- If $x_{1}, x_{2} \in L$ then $\beta^{t}\left(x_{1}-x_{2}\right)=0 \Longrightarrow \beta^{*}=\beta /\|\beta\|$ is normal to L
- If $x_{0} \in L$ then $\beta^{t} x_{0}=-\beta_{0}$.
- The signed distance of point x to L is

Review of some vector algebra

- Above is shown a hyperplane L defined by

$$
f(x)=\beta_{0}+\beta^{t} x=0
$$

- If $x_{1}, x_{2} \in L$ then $\beta^{t}\left(x_{1}-x_{2}\right)=0 \Longrightarrow \beta^{*}=\beta /\|\beta\|$ is normal to L
- If $x_{0} \in L$ then $\beta^{t} x_{0}=-\beta_{0}$.
- The signed distance of point x to L is

$$
\beta^{* t}\left(x-x_{0}\right)=\frac{1}{\|\beta\|}\left(\beta^{t} x+\beta_{0}\right)=\frac{1}{\left\|f^{\prime}(x)\right\|} f(x) \propto f(x)
$$

Perceptron Learning

Rosenblatt's Perceptron Learning Algorithm

Perceptron learning algorithm tries to find a separating hyperplane by minimizing the distance of misclassified points to the decision boundary.

The Objective Function

- Have labelled training data $\left\{\left(x_{i}, y_{i}\right)\right\}$ with $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in\{-1,1\}$
- A point x_{i} is misclassified if $\operatorname{sign}\left(\beta_{0}+\beta^{t} x_{i}\right) \neq y_{i}$
- This can be re-stated as: a point x_{i} is misclassified if
- The goal is to find β_{0} and β which minimize

Rosenblatt's Perceptron Learning Algorithm

Perceptron learning algorithm tries to find a separating hyperplane by minimizing the distance of misclassified points to the decision boundary.

The Objective Function

- Have labelled training data $\left\{\left(x_{i}, y_{i}\right)\right\}$ with $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in\{-1,1\}$.
- A point x_{i} is misclassified if $\operatorname{sign}\left(\beta_{0}+\beta^{t} x_{i}\right) \neq y_{i}$
- This can be re-stated as: a point x_{i} is misclassified if
- The goal is to find β_{0} and β which minimize

Rosenblatt's Perceptron Learning Algorithm

Perceptron learning algorithm tries to find a separating hyperplane by minimizing the distance of misclassified points to the decision boundary.

The Objective Function

- Have labelled training data $\left\{\left(x_{i}, y_{i}\right)\right\}$ with $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in\{-1,1\}$.
- A point x_{i} is misclassified if $\operatorname{sign}\left(\beta_{0}+\beta^{t} x_{i}\right) \neq y_{i}$
- This can be re-stated as: a point x_{i} is misclassified if
- The goal is to find β_{0} and β which minimize

Rosenblatt's Perceptron Learning Algorithm

Perceptron learning algorithm tries to find a separating hyperplane by minimizing the distance of misclassified points to the decision boundary.

The Objective Function

- Have labelled training data $\left\{\left(x_{i}, y_{i}\right)\right\}$ with $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in\{-1,1\}$.
- A point x_{i} is misclassified if $\operatorname{sign}\left(\beta_{0}+\beta^{t} x_{i}\right) \neq y_{i}$
- This can be re-stated as: a point x_{i} is misclassified if

$$
y_{i}\left(\beta_{0}+\beta^{t} x_{i}\right)<0
$$

- The goal is to find β_{0} and β which minimize

Rosenblatt's Perceptron Learning Algorithm

Perceptron learning algorithm tries to find a separating hyperplane by minimizing the distance of misclassified points to the decision boundary.

The Objective Function

- Have labelled training data $\left\{\left(x_{i}, y_{i}\right)\right\}$ with $x_{i} \in \mathbb{R}^{p}$ and $y_{i} \in\{-1,1\}$.
- A point x_{i} is misclassified if $\operatorname{sign}\left(\beta_{0}+\beta^{t} x_{i}\right) \neq y_{i}$
- This can be re-stated as: a point x_{i} is misclassified if

$$
y_{i}\left(\beta_{0}+\beta^{t} x_{i}\right)<0
$$

- The goal is to find β_{0} and β which minimize

$$
D\left(\beta, \beta_{0}\right)=-\sum_{i \in \mathcal{M}} y_{i}\left(x_{i}^{t} \beta+\beta_{0}\right)
$$

where \mathcal{M} is the index of the misclassified points.

Perceptron Learning: The Objective Function

Want to find β_{0} and β which minimize

$$
D\left(\beta, \beta_{0}\right)=-\sum_{i \in \mathcal{M}} y_{i}\left(x_{i}^{t} \beta+\beta_{0}\right)=-\sum_{i \in \mathcal{M}} y_{i} f_{\beta, \beta_{0}}\left(x_{i}\right)
$$

- $D\left(\beta, \beta_{0}\right)$ is non-negative.
- $D\left(\beta, \beta_{0}\right)$ is proportional to the distance of the misclassified points to the decision boundary defined by $\beta_{0}+\beta^{t} x=0$.

Questions:

- Is there a unique β, β_{0} which minimizes $D\left(\beta, \beta_{0}\right)$ (disregarding re-scaling of β and β_{0}) ?

Perceptron Learning: The Objective Function

Want to find β_{0} and β which minimize

$$
D\left(\beta, \beta_{0}\right)=-\sum_{i \in \mathcal{M}} y_{i}\left(x_{i}^{t} \beta+\beta_{0}\right)=-\sum_{i \in \mathcal{M}} y_{i} f_{\beta, \beta_{0}}\left(x_{i}\right)
$$

- $D\left(\beta, \beta_{0}\right)$ is non-negative.
- $D\left(\beta, \beta_{0}\right)$ is proportional to the distance of the misclassified points to the decision boundary defined by $\beta_{0}+\beta^{t} x=0$.

Questions:

- Is there a unique β, β_{0} which minimizes $D\left(\beta, \beta_{0}\right)$ (disregarding re-scaling of β and β_{0}) ?

Perceptron Learning: The Objective Function

Want to find β_{0} and β which minimize

$$
D\left(\beta, \beta_{0}\right)=-\sum_{i \in \mathcal{M}} y_{i}\left(x_{i}^{t} \beta+\beta_{0}\right)=-\sum_{i \in \mathcal{M}} y_{i} f_{\beta, \beta_{0}}\left(x_{i}\right)
$$

- $D\left(\beta, \beta_{0}\right)$ is non-negative.
- $D\left(\beta, \beta_{0}\right)$ is proportional to the distance of the misclassified points to the decision boundary defined by $\beta_{0}+\beta^{t} x=0$.

Perceptron Learning: The Objective Function

Want to find β_{0} and β which minimize

$$
D\left(\beta, \beta_{0}\right)=-\sum_{i \in \mathcal{M}} y_{i}\left(x_{i}^{t} \beta+\beta_{0}\right)=-\sum_{i \in \mathcal{M}} y_{i} f_{\beta, \beta_{0}}\left(x_{i}\right)
$$

- $D\left(\beta, \beta_{0}\right)$ is non-negative.
- $D\left(\beta, \beta_{0}\right)$ is proportional to the distance of the misclassified points to the decision boundary defined by $\beta_{0}+\beta^{t} x=0$.

Questions:

- Is there a unique β, β_{0} which minimizes $D\left(\beta, \beta_{0}\right)$ (disregarding re-scaling of β and β_{0}) ?

Perceptron Learning: The Objective Function

Want to find β_{0} and β which minimize

$$
D\left(\beta, \beta_{0}\right)=-\sum_{i \in \mathcal{M}} y_{i}\left(x_{i}^{t} \beta+\beta_{0}\right)=-\sum_{i \in \mathcal{M}} y_{i} f_{\beta, \beta_{0}}\left(x_{i}\right)
$$

- $D\left(\beta, \beta_{0}\right)$ is non-negative.
- $D\left(\beta, \beta_{0}\right)$ is proportional to the distance of the misclassified points to the decision boundary defined by $\beta_{0}+\beta^{t} x=0$.

Questions:

- Is there a unique β, β_{0} which minimizes $D\left(\beta, \beta_{0}\right)$ (disregarding re-scaling of β and β_{0}) ?
- Can we say anything about the form of $D\left(\beta, \beta_{0}\right)$?
- The gradient, assuming a fixed \mathcal{M}, is given by

$$
\frac{\partial D\left(\beta, \beta_{0}\right)}{\partial \beta}=-\sum_{i \in \mathcal{M}} y_{i} x_{i}, \quad \frac{\partial D\left(\beta, \beta_{0}\right)}{\partial \beta_{0}}=-\sum_{i \in \mathcal{M}} y_{i}
$$

- Stochastic gradient descent is used to minimize $D\left(\beta, \beta_{0}\right)$ so an update step is made after each observation is visited.
- Identify a misclassified example wrt the current estimate of β and β_{0} and make the update

where ρ is the learning rate.
- Repeat this step until no points are misclassified.

Perceptron Learning: Optimizing the Objective Function

- The gradient, assuming a fixed \mathcal{M}, is given by

$$
\frac{\partial D\left(\beta, \beta_{0}\right)}{\partial \beta}=-\sum_{i \in \mathcal{M}} y_{i} x_{i}, \quad \frac{\partial D\left(\beta, \beta_{0}\right)}{\partial \beta_{0}}=-\sum_{i \in \mathcal{M}} y_{i}
$$

- Stochastic gradient descent is used to minimize $D\left(\beta, \beta_{0}\right)$ so an update step is made after each observation is visited.
- Identify a misclassified example wrt the current estimate of β and β_{0} and make the update

where ρ is the learning rate.
- Repeat this step until no points are misclassified

Perceptron Learning: Optimizing the Objective Function

- The gradient, assuming a fixed \mathcal{M}, is given by

$$
\frac{\partial D\left(\beta, \beta_{0}\right)}{\partial \beta}=-\sum_{i \in \mathcal{M}} y_{i} x_{i}, \quad \frac{\partial D\left(\beta, \beta_{0}\right)}{\partial \beta_{0}}=-\sum_{i \in \mathcal{M}} y_{i}
$$

- Stochastic gradient descent is used to minimize $D\left(\beta, \beta_{0}\right)$ so an update step is made after each observation is visited.
- Identify a misclassified example wrt the current estimate of β and β_{0} and make the update

$$
\beta \leftarrow \beta+\rho y_{i} x_{i} \quad \text { and } \quad \beta_{0} \leftarrow \beta_{0}+\rho y_{i}
$$

where ρ is the learning rate.

- Repeat this step until no points are misclassified

Perceptron Learning: Optimizing the Objective Function

- The gradient, assuming a fixed \mathcal{M}, is given by

$$
\frac{\partial D\left(\beta, \beta_{0}\right)}{\partial \beta}=-\sum_{i \in \mathcal{M}} y_{i} x_{i}, \quad \frac{\partial D\left(\beta, \beta_{0}\right)}{\partial \beta_{0}}=-\sum_{i \in \mathcal{M}} y_{i}
$$

- Stochastic gradient descent is used to minimize $D\left(\beta, \beta_{0}\right)$ so an update step is made after each observation is visited.
- Identify a misclassified example wrt the current estimate of β and β_{0} and make the update

$$
\beta \leftarrow \beta+\rho y_{i} x_{i} \quad \text { and } \quad \beta_{0} \leftarrow \beta_{0}+\rho y_{i}
$$

where ρ is the learning rate.

- Repeat this step until no points are misclassified.

Perceptron Learning: An Example

Want to find a separating hyperplane between the red and blue points.

Perceptron Learning: One Iteration

Current estimate $\beta^{(0)}$

Point misclassified
by $\beta^{(0)}$

Use gradient at point to get $\beta^{(1)}$

Perceptron Learning: Sequence of iterations

Is this the best separating hyperplane we could have found?

Perceptron Learning Algorithm: Properties

Pros

- If the classes are linearly separable, the algorithm converges to a separating hyperplane in a finite number of steps.
- All separating hyperplanes are considered equally valid.
- One found depends on the initial guess for β and β_{0}.
- The finite number of steps can be very large.
- If the data is non-separable, the algorithm will not converge.

Perceptron Learning Algorithm: Properties

Pros

- If the classes are linearly separable, the algorithm converges to a separating hyperplane in a finite number of steps.

Cons

- All separating hyperplanes are considered equally valid.
- One found depends on the initial guess for β and β_{0}.
- The finite number of steps can be very large.
- If the data is non-separable, the algorithm will not converge

Perceptron Learning Algorithm: Properties

Pros

- If the classes are linearly separable, the algorithm converges to a separating hyperplane in a finite number of steps.

Cons

- All separating hyperplanes are considered equally valid.
- One found depends on the initial guess for β and β_{0}.
- The finite number of steps can be very large.
- If the data is non-separable, the algorithm will not converge

Perceptron Learning Algorithm: Properties

Pros

- If the classes are linearly separable, the algorithm converges to a separating hyperplane in a finite number of steps.

Cons

- All separating hyperplanes are considered equally valid.
- One found depends on the initial guess for β and β_{0}.
- The finite number of steps can be very large.
- If the data is non-separable, the algorithm will not converge.

Perceptron Learning Algorithm: Properties

Pros

- If the classes are linearly separable, the algorithm converges to a separating hyperplane in a finite number of steps.

Cons

- All separating hyperplanes are considered equally valid.
- One found depends on the initial guess for β and β_{0}.
- The finite number of steps can be very large.
- If the data is non-separable, the algorithm will not converge.

Optimal Separating Hyperplanes

Optimal Separating Hyperplane

- The optimal separating hyperplane separates the two classes and maximizes the distance to the closes point from either class [Vapnik 1996].
- This provides
- a unique definition of the separating hyperplane

Which separating hyperplane?
One which maximizes margin

- a decision boundary that generalizes well.

Optimal Separating Hyperplane

- The optimal separating hyperplane separates the two classes and maximizes the distance to the closes point from either class [Vapnik 1996].
- This provides
- a unique definition of the separating hyperplane

Which separating hyperplane?

One which maximizes margin

- a decision boundary that generalizes well.

Stating the optimization problem

- A first attempt

$$
\max _{\beta, \beta_{0},\|\beta\|=1} M \text { subject to } y_{i}\left(\beta^{t} x_{i}+\beta_{0}\right) \geq M\|\beta\|, \quad i=1, \ldots, n
$$

- The conditions ensure all the training points are a signed distance M from the decision boundary defined by β and β_{0}.
- Want to find the largest such M and its associated β and β_{0}.

Stating the optimization problem

- Remove the constraint $\|\beta\|=1$ by adjusting the constraints on the training data as follows:

```
max }\mp@subsup{\operatorname{ma,}}{0}{}M\mathrm{ subject to }\mp@subsup{y}{i}{}(\mp@subsup{\beta}{}{t}\mp@subsup{x}{i}{}+\mp@subsup{\beta}{0}{})\geqM|\beta|,\quadi=1,\ldots,
\beta, \beta
```

- For any β and β_{0} fulfilling the above constraints then $\alpha \beta$ and $\alpha \beta_{0}$ with $\alpha>0$ also fulfills the constraints.
- Therefore can arbitrarily set $\|\beta\|=1 / M$.
- Then the above optimization problem is equivalent to

Stating the optimization problem

- Remove the constraint $\|\beta\|=1$ by adjusting the constraints on the training data as follows:

```
max}\mp@subsup{\operatorname{max}}{0}{}M\mathrm{ subject to }\mp@subsup{y}{i}{}(\mp@subsup{\beta}{}{t}\mp@subsup{x}{i}{}+\mp@subsup{\beta}{0}{})\geqM|\beta|,i=1,\ldots,
```

- For any β and β_{0} fulfilling the above constraints then $\alpha \beta$ and $\alpha \beta_{0}$ with $\alpha>0$ also fulfills the constraints.
- Therefore can arbitrarily set $\|\beta\|=1 / M$
- Then the above optimization problem is equivalent to

Stating the optimization problem

- Remove the constraint $\|\beta\|=1$ by adjusting the constraints on the training data as follows:

$$
\max _{\beta, \beta_{0}} M \text { subject to } y_{i}\left(\beta^{t} x_{i}+\beta_{0}\right) \geq M\|\beta\|, \quad i=1, \ldots, n
$$

- For any β and β_{0} fulfilling the above constraints then $\alpha \beta$ and $\alpha \beta_{0}$ with $\alpha>0$ also fulfills the constraints.
- Therefore can arbitrarily set $\|\beta\|=1 / M$.
- Then the above optimization problem is equivalent to

Stating the optimization problem

- Remove the constraint $\|\beta\|=1$ by adjusting the constraints on the training data as follows:

$$
\max _{\beta, \beta_{0}} M \text { subject to } y_{i}\left(\beta^{t} x_{i}+\beta_{0}\right) \geq M\|\beta\|, \quad i=1, \ldots, n
$$

- For any β and β_{0} fulfilling the above constraints then $\alpha \beta$ and $\alpha \beta_{0}$ with $\alpha>0$ also fulfills the constraints.
- Therefore can arbitrarily set $\|\beta\|=1 / M$.
- Then the above optimization problem is equivalent to

$$
\min _{\beta, \beta_{0}} \frac{1}{2}\|\beta\|^{2} \text { subject to } y_{i}\left(\beta^{t} x_{i}+\beta_{0}\right) \geq 1, \quad i=1, \ldots, n
$$

Stating the optimization problem

- With this formulation of the problem

$$
\min _{\beta, \beta_{0}} \frac{1}{2}\|\beta\|^{2} \text { subject to } y_{i}\left(\beta^{t} x_{i}+\beta_{0}\right) \geq 1, \quad i=1, \ldots, n
$$

- The margin has thickness $1 /\|\beta\|$ as shown in figure (notation slightly different).

The solution to this constrained optimization problem

$$
\min _{\beta, \beta_{0}} \frac{1}{2}\|\beta\|^{2} \text { subject to } y_{i}\left(\beta^{t} x_{i}+\beta_{0}\right) \geq 1, \quad i=1, \ldots, n
$$

- This is a convex optimization problem - quadratic objective function with linear inequality constraints.
- Its associated primal Lagrangian function is

The solution to this constrained optimization problem

$$
\min _{\beta, \beta_{0}} \frac{1}{2}\|\beta\|^{2} \text { subject to } y_{i}\left(\beta^{t} x_{i}+\beta_{0}\right) \geq 1, \quad i=1, \ldots, n
$$

- This is a convex optimization problem - quadratic objective function with linear inequality constraints.
- Its associated primal Lagrangian function is

$$
\mathcal{L}_{p}\left(\beta, \beta_{0}, \alpha\right)=\frac{1}{2}\|\beta\|^{2}+\sum_{i=1}^{n} \alpha_{i} y_{i}\left(1-\beta^{t} x_{i}-\beta_{0}\right)
$$

- β^{*} and β_{0}^{*} is a minimum point of the cost function stated at the top if...

The solution to this constrained optimization problem

$$
\min _{\beta, \beta_{0}} \frac{1}{2}\|\beta\|^{2} \text { subject to } y_{i}\left(\beta^{t} x_{i}+\beta_{0}\right) \geq 1, \quad i=1, \ldots, n
$$

- This is a convex optimization problem - quadratic objective function with linear inequality constraints.
- Its associated primal Lagrangian function is

$$
\mathcal{L}_{p}\left(\beta, \beta_{0}, \alpha\right)=\frac{1}{2}\|\beta\|^{2}+\sum_{i=1}^{n} \alpha_{i} y_{i}\left(1-\beta^{t} x_{i}-\beta_{0}\right)
$$

- β^{*} and β_{0}^{*} is a minimum point of the cost function stated at the top if...

The solution to this constrained optimization problem

$$
\min _{\beta, \beta_{0}} \frac{1}{2}\|\beta\|^{2} \text { subject to } y_{i}\left(\beta^{t} x_{i}+\beta_{0}\right) \geq 1, \quad i=1, \ldots, n
$$

The Karush-Kuhn-Tucker conditions state that $\beta_{1}^{*}=\left(\beta_{0}^{*}, \beta^{*}\right)$ is a minimum of this cost function if \exists a unique α^{*} s.t.
(1) $\nabla_{\beta_{1}} \mathcal{L}_{p}\left(\beta_{1}^{*}, \alpha^{*}\right)=0$
(2) $\alpha_{j}^{*} \geq 0$ for $j=1, \ldots, n$
(3) $\alpha_{j}^{*}\left(1-y_{j}\left(\beta_{0}^{*}+x_{j}^{t} \beta^{*}\right)\right)=0$ for $j=1, \ldots, n$
(4) $\left(1-y_{j}\left(\beta_{0}^{*}+x_{j}^{t} \beta^{*}\right)\right) \leq 0$ for $j=1, \ldots, n$
(5) Plus positive definite constraints on $\nabla_{\beta_{1} \beta_{1}} \mathcal{L}_{p}\left(\beta_{1}^{*}, \alpha^{*}\right)$

Let's check what the KKT conditions imply

Active constraints and Inactive constraints:

Let \mathcal{A} be the set of indices with $\alpha_{j}^{*}>0$ then

$$
\mathcal{L}_{p}\left(\beta_{1}^{*}, \alpha^{*}\right)=\frac{1}{2}\left\|\beta^{*}\right\|^{2}+\sum_{j \in \mathcal{A}} \alpha_{j}^{*}\left(1-y_{j}\left(\beta_{0}^{*}+x_{j}^{t} \beta^{*}\right)\right) .
$$

- Condition KKT 1, $\nabla_{\beta_{1}} \mathcal{L}_{p}\left(\beta_{1}^{*}, \alpha^{*}\right)=0$, implies

$$
\beta^{*}=\sum_{j \in \mathcal{A}} \alpha_{j}^{*} y_{j} x_{j} \quad \text { and } \quad 0=\sum_{j \in \mathcal{A}} \alpha_{j}^{*} y_{j}
$$

- Condition KKT 3, $\alpha_{j}^{*}\left(1-y_{j}\left(\beta_{0}^{*}+x_{j}^{t} \beta^{*}\right)\right)=0$, implies

(2) if $y_{i}\left(\beta_{0}^{*}+x_{i}^{t} \beta^{*}\right)>1$ then $\alpha_{i}=0$ and $i \notin \mathcal{A}$

Let's check what the KKT conditions imply

Active constraints and Inactive constraints:

Let \mathcal{A} be the set of indices with $\alpha_{j}^{*}>0$ then

$$
\mathcal{L}_{p}\left(\beta_{1}^{*}, \alpha^{*}\right)=\frac{1}{2}\left\|\beta^{*}\right\|^{2}+\sum_{j \in \mathcal{A}} \alpha_{j}^{*}\left(1-y_{j}\left(\beta_{0}^{*}+x_{j}^{t} \beta^{*}\right)\right)
$$

- Condition KKT 1, $\nabla_{\beta_{1}} \mathcal{L}_{p}\left(\beta_{1}^{*}, \alpha^{*}\right)=0$, implies

$$
\beta^{*}=\sum_{j \in \mathcal{A}} \alpha_{j}^{*} y_{j} x_{j} \quad \text { and } \quad 0=\sum_{j \in \mathcal{A}} \alpha_{j}^{*} y_{j}
$$

- Condition KKT 3, $\alpha_{j}^{*}\left(1-y_{j}\left(\beta_{0}^{*}+x_{j}^{t} \beta^{*}\right)\right)=0$, implies
(1) $y_{j}\left(\beta_{0}^{*}+x_{j}^{t} \beta^{*}\right)=1$ for all $j \in \mathcal{A}$,
(2) if $y_{i}\left(\beta_{0}^{*}+x_{i}^{t} \beta^{*}\right)>1$ then $\alpha_{i}=0$ and $i \notin \mathcal{A}$
(3) $\mathcal{L}_{p}\left(\beta_{1}^{*}, \alpha^{*}\right)=.5\left\|\beta^{*}\right\|^{2}$.

To summarize

- As we have a convex optimization problem it has one local minimum.
- At this minimum β_{1}^{*} there exist a unique α^{*} s.t. β_{1}^{*} and α^{*} fulfill the KKT conditions.
- Let \mathcal{A} be the set of indices with $\alpha_{j}^{*}>0$ then

To summarize

- As we have a convex optimization problem it has one local minimum.
- At this minimum β_{1}^{*} there exist a unique α^{*} s.t. β_{1}^{*} and α^{*} fulfill the KKT conditions.
- Let \mathcal{A} be the set of indices with $\alpha_{j}^{*}>0$ then

To summarize

- As we have a convex optimization problem it has one local minimum.
- At this minimum β_{1}^{*} there exist a unique α^{*} s.t. β_{1}^{*} and α^{*} fulfill the KKT conditions.
- Let \mathcal{A} be the set of indices with $\alpha_{j}^{*}>0$ then
(1) if $i \in \mathcal{A}$ then $y_{i}\left(\beta_{0}^{*}+x_{i}^{t} \beta^{*}\right)=1$ and therefore x_{i} lies on the boundary of the margin.
x_{i} is called a support vector.
(2) And if $i \notin \mathcal{A}$ then $y_{i}\left(\beta_{0}^{*}+x_{i}^{t} \beta^{*}\right)>1$ and x_{i} lies outside of the margin
(2) β^{*} is a linear combination of the support vectors

To summarize

- As we have a convex optimization problem it has one local minimum.
- At this minimum β_{1}^{*} there exist a unique α^{*} s.t. β_{1}^{*} and α^{*} fulfill the KKT conditions.
- Let \mathcal{A} be the set of indices with $\alpha_{j}^{*}>0$ then
(1) if $i \in \mathcal{A}$ then $y_{i}\left(\beta_{0}^{*}+x_{i}^{t} \beta^{*}\right)=1$ and therefore x_{i} lies on the boundary of the margin.
x_{i} is called a support vector.
(2) And if $i \notin \mathcal{A}$ then $y_{i}\left(\beta_{0}^{*}+x_{i}^{t} \beta^{*}\right)>1$ and x_{i} lies outside of the margin.
(3) β^{*} is a linear combination of the support vectors

To summarize

- As we have a convex optimization problem it has one local minimum.
- At this minimum β_{1}^{*} there exist a unique α^{*} s.t. β_{1}^{*} and α^{*} fulfill the KKT conditions.
- Let \mathcal{A} be the set of indices with $\alpha_{j}^{*}>0$ then
(1) if $i \in \mathcal{A}$ then $y_{i}\left(\beta_{0}^{*}+x_{i}^{t} \beta^{*}\right)=1$ and therefore x_{i} lies on the boundary of the margin.
x_{i} is called a support vector.
(2) And if $i \notin \mathcal{A}$ then $y_{i}\left(\beta_{0}^{*}+x_{i}^{t} \beta^{*}\right)>1$ and x_{i} lies outside of the margin.
(3) β^{*} is a linear combination of the support vectors

$$
\beta^{*}=\sum_{j \in \mathcal{A}} \alpha_{j}^{*} y_{j} x_{j}
$$

How do I calculate α^{*} ?

- You have seen that the optimal solution is a weighted sum of the support vectors.
- But how can we calculate these weights?
- Most common approach is to solve the Dual Lagrange problem as opposed to the Primal Lagrange problem. (The solutions to these problems are the same because of the original quadratic cost function and linear inequality constraints.)
- This Dual problem is an easier constrained optimization and is also convex. It has the form

How do I calculate α^{*} ?

- You have seen that the optimal solution is a weighted sum of the support vectors.
- But how can we calculate these weights?
- Most common approach is to solve the Dual Lagrange problem as opposed to the Primal Lagrange problem. (The solutions to these problems are the same because of the original quadratic cost function and linear inequality constraints.)
- This Dual problem is an easier constrained optimization and is also convex. It has the form

How do I calculate α^{*} ?

- You have seen that the optimal solution is a weighted sum of the support vectors.
- But how can we calculate these weights?
- Most common approach is to solve the Dual Lagrange problem as opposed to the Primal Lagrange problem. (The solutions to these problems are the same because of the original quadratic cost function and linear inequality constraints.)
- This Dual problem is an easier constrained optimization and is also convex. It has the form

How do I calculate α^{*} ?

- You have seen that the optimal solution is a weighted sum of the support vectors.
- But how can we calculate these weights?
- Most common approach is to solve the Dual Lagrange problem as opposed to the Primal Lagrange problem. (The solutions to these problems are the same because of the original quadratic cost function and linear inequality constraints.)
- This Dual problem is an easier constrained optimization and is also convex. It has the form

$$
\max _{\alpha}\left\{\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{i} \alpha_{k} y_{i} y_{k} x_{i}^{t} x_{k}\right\} \text { subject to } \alpha_{i} \geq 0 \forall i
$$

