Chapter 5: Basis Expansion and Regularization

DD3364

April 1, 2012

Introduction

Moving beyond linearity

Main idea

- Augment the vector of inputs X with additional variables.
- These are transformations of X

 $h_m(X): \mathbb{R}^p \to \mathbb{R}$

with $m = 1, \ldots, M$.

• Then model the relationship between \boldsymbol{X} and \boldsymbol{Y}

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X) = \sum_{m=1}^{M} \beta_m Z_m$$

as a linear basis expansion in X.

• Have a linear model w.r.t. Z. Can use the same methods as before.

Which transformations?

Some examples

• Linear:

$$h_m(X) = X_m, \ m = 1, \dots, p$$

• Polynomial:

$$h_m(X) = X_j^2, \quad \text{or} \quad h_m(X) = X_j X_k$$

• Non-linear transformation of single inputs:

$$h_m(X) = \log(X_j), \sqrt{X_j}, \dots$$

• Non-linear transformation of multiple input:

$$h_m(X) = \|X\|$$

• Use of Indicator functions:

$$h_m(X) = \operatorname{Ind}(L_m \le X_k < U_m)$$

Pros and Cons of this augmentation

Pros

- Can model more complicated decision boundaries.
- Can model more complicated regression relationships.

Cons

- Lack of locality in global basis functions.
 - **Solution** Use local polynomial representations such as *piecewise-polynomials* and *splines*.
- How should one find the correct complexity in the model?
- There is the danger of over-fitting.

Pros and Cons of this augmentation

Pros

- Can model more complicated decision boundaries.
- Can model more complicated regression relationships.

Cons

- Lack of locality in global basis functions.
 - **Solution** Use local polynomial representations such as *piecewise-polynomials* and *splines*.
- How should one find the correct complexity in the model?
- There is the danger of over-fitting.

Common approaches taken:

• Restriction Methods

Limit the class of functions considered. Use additive models

$$f(X) = \sum_{j=1}^{p} \sum_{m=1}^{M_j} \beta_{jm} h_{jm}(X_j)$$

Selection Methods

Scan the set of h_m and only include those that contribute significantly to the fit of the model - Boosting, CART.

Regularization Methods
 Let

$$f(X) = \sum_{j=1}^{M} \beta_j h_j(X)$$

but when learning the β_j 's restrict their values in the manner of *ridge regression* and *lasso*.

Piecewise Polynomials and Splines

Piecewise polynomial function

To obtain a piecewise polynomial function f(X)

- Divide the domain of X into contiguous intervals.
- Represent f by a separate polynomial in each interval.

Examples

Blue curve - ground truth function.

Green curve - piecewise constant/linear fit to the training data.

Piecewise polynomial function

To obtain a piecewise polynomial function f(X)

- Divide the domain of X into contiguous intervals.
- Represent f by a separate polynomial in each interval.

Examples

Blue curve - ground truth function.

Green curve - piecewise constant/linear fit to the training data.

Example: Piecewise constant function

Piecewise Constant

- Divide [a, b], the domain of X, into three regions $[a, \xi_1), [\xi_1, \xi_2), [\xi_2, b]$ with $\xi_1 < \xi_2 < \xi_3 \quad \xi_i$'s are referred to as knots
- Define three basis functions $h_1(X) = \operatorname{Ind}(X < \xi_1), \ h_2(X) = \operatorname{Ind}(\xi_1 \le X < \xi_2), \ h_3(X) = \operatorname{Ind}(\xi_2 \le X)$
- The model $f(X) = \sum_{m=1}^{3} \beta_m h_m(X)$ is fit using least-squares.
- As basis functions don't overlap $\implies \hat{\beta}_m = \text{mean of } y_i$'s in the *m*th region.

Example: Piecewise linear function

Piecewise Linear

- In this case define 6 basis functions
 - $h_1(X) = \operatorname{Ind}(X < \xi_1), \quad h_2(X) = \operatorname{Ind}(\xi_1 \le X < \xi_2), \quad h_3(X) = \operatorname{Ind}(\xi_2 \le X)$ $h_4(X) = X h_1(X), \qquad h_5(X) = X h_2(X), \qquad h_6(X) = X h_3(X)$
- The model $f(X) = \sum_{m=1}^{6} \beta_m h_m(X)$ is fit using least-squares.
- As basis functions don't overlap model to the data in each region.

Example: Continuous piecewise linear function

Continuous Piecewise Linear

- Additionally impose the constraint that f(X) is continuous as ξ_1 and ξ_2 .
- This means

$$\beta_1 + \beta_2 \xi_1 = \beta_3 + \beta_4 \xi_1$$
, and
 $\beta_3 + \beta_4 \xi_2 = \beta_5 + \beta_6 \xi_2$

• This reduces the # of dof of f(X) from 6 to 4.

A more compact set of basis functions

To impose the continuity constraints directly can use this basis instead:

$$h_1(X) = 1$$

 $h_2(X) = X$
 $h_3(X) = (X - \xi_1)_+$
 $h_4(X) = (X - \xi_2)_+$

Piecewise-linear Basis Function

Can achieve a smoother f(X) by increasing the order

- of the local polynomials
- of the continuity at the knots

Can achieve a smoother f(X) by increasing the order

- of the local polynomials
- of the continuity at the knots

Piecewise-cubic polynomials with increasing orders of continuity

f(X) is a **cubic spline** if

- it is a piecewise cubic polynomial and
- has 1st and 2nd continuity at the knots

Cubic Spline

A cubic spline

The following basis represents a cubic spline with knots at ξ_1 and $\xi_2:$

$$h_1(X) = 1,$$
 $h_3(X) = X^2,$ $h_5(X) = (X - \xi_1)^3_+$
 $h_2(X) = X,$ $h_4(X) = X^3,$ $h_6(X) = (X - \xi_2)^3_+$

${\rm Order}\ M\ {\rm spline}$

- An order M spline with knots ξ_1, \ldots, ξ_K is
 - a piecewise-polynomial of order \boldsymbol{M} and
 - has continuous derivatives up to order M-2
- The general form for the truncated-power basis set is

$$h_j(X) = X^{j-1} \quad j = 1, \dots, M$$

 $h_{M+l}(X) = (X - \xi_l)_+^{M-1}, \quad l = 1, \dots, K$

• In practice the most widely used orders are M = 1, 2, 4.

${\rm Order}\ M\ {\rm spline}$

- An order M spline with knots ξ_1, \ldots, ξ_K is
 - a piecewise-polynomial of order \boldsymbol{M} and
 - has continuous derivatives up to order M-2
- The general form for the truncated-power basis set is

$$h_j(X) = X^{j-1} \quad j = 1, \dots, M$$

 $h_{M+l}(X) = (X - \xi_l)_+^{M-1}, \quad l = 1, \dots, K$

• In practice the most widely used orders are M = 1, 2, 4.

${\rm Order}\ M\ {\rm spline}$

- An order M spline with knots ξ_1, \ldots, ξ_K is
 - a piecewise-polynomial of order \boldsymbol{M} and
 - has continuous derivatives up to order M-2
- The general form for the truncated-power basis set is

$$h_j(X) = X^{j-1}$$
 $j = 1, ..., M$
 $h_{M+l}(X) = (X - \xi_l)_+^{M-1}, \quad l = 1, ..., K$

• In practice the most widely used orders are M = 1, 2, 4.

Regression Splines

- Fixed-knot splines are known as regression splines.
- For a regression spline one needs to select
 - the order of the spline,
 - the number of knots and
 - the placement of the knots.
- One common approach is to set a knot at each observation x_i .
- There are many equivalent bases for representing splines and the **truncated power basis** is intuitively attractive but **not** computationally attractive.
- A better basis set for implementation is the B-spline basis set.

Regression Splines

- Fixed-knot splines are known as regression splines.
- For a regression spline one needs to select
 - the order of the spline,
 - the number of knots and
 - the placement of the knots.
- One common approach is to set a knot at each observation x_i .
- There are many equivalent bases for representing splines and the **truncated power basis** is intuitively attractive but not computationally attractive.
- A better basis set for implementation is the B-spline basis set.

Regression Splines

- Fixed-knot splines are known as regression splines.
- For a regression spline one needs to select
 - the order of the spline,
 - the number of knots and
 - the placement of the knots.
- One common approach is to set a knot at each observation x_i .
- There are many equivalent bases for representing splines and the **truncated power basis** is intuitively attractive but not computationally attractive.
- A better basis set for implementation is the B-spline basis set.

Natural Cubic Splines

Problem

The polynomials fit beyond the boundary knots behave wildly.

Solution: Natural Cubic Splines

- Have the additional constraints that the function is linear beyond the boundary knots.
- This frees up 4 dof which can be used by having more knots in the interior region.
- Near the boundaries one has reduced the variance of the fit but increased its bias!

- Avoid knot selection problem by using a maximal set of knots.
- Complexity of the fit is controlled by regularization.
- Consider the following problem:

Find the function $f(\boldsymbol{x})$ with continuous second derivative which minimizes

$$\operatorname{RSS}(f,\lambda) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int (f''(t))^2 dt$$

- Avoid knot selection problem by using a maximal set of knots.
- Complexity of the fit is controlled by regularization.
- Consider the following problem:

Find the function $f(\boldsymbol{x})$ with continuous second derivative which minimizes

$$\operatorname{RSS}(f,\lambda) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int (f''(t))^2 dt$$

- Avoid knot selection problem by using a maximal set of knots.
- Complexity of the fit is controlled by regularization.
- Consider the following problem:

Find the function f(x) with continuous second derivative which minimizes

Smoothing Splines: Smoothing parameter

$$\operatorname{RSS}(f,\lambda) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int (f''(t))^2 dt$$

- λ establishes a trade-off between predicting the training data and minimizing the curvature of f(x).
- The two special cases are
 - $\lambda = 0$: \hat{f} is any function which interpolates the data.
 - $\lambda = \infty$: \hat{f} is the simple least squares line fit.
- In these two cases go from very rough to very smooth $\hat{f}(x)$.
- Hope is $\lambda \in (0,\infty)$ indexes an interesting class of functions in between.

Smoothing Splines: Smoothing parameter

$$\operatorname{RSS}(f,\lambda) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int (f''(t))^2 dt$$

- λ establishes a trade-off between predicting the training data and minimizing the curvature of f(x).
- The two special cases are
 - $\lambda = 0$: \hat{f} is any function which interpolates the data.
 - $\lambda = \infty$: \hat{f} is the simple least squares line fit.
- In these two cases go from very rough to very smooth $\hat{f}(x)$.
- Hope is $\lambda \in (0,\infty)$ indexes an interesting class of functions in between.

Smoothing Splines: Smoothing parameter

$$\operatorname{RSS}(f,\lambda) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int (f''(t))^2 dt$$

- λ establishes a trade-off between predicting the training data and minimizing the curvature of f(x).
- The two special cases are
 - $\lambda = 0$: \hat{f} is any function which interpolates the data.
 - $\lambda = \infty$: \hat{f} is the simple least squares line fit.
- In these two cases go from very rough to very smooth $\hat{f}(x)$.
- Hope is $\lambda \in (0,\infty)$ indexes an interesting class of functions in between.

Smoothing Splines: Form of the solution

$$\operatorname{RSS}(f,\lambda) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int (f''(t))^2 dt$$

- Amazingly the above equation has an explicit, finite-dimensional unique minimizer for a fixed λ.
- It is a natural cubic spline with knots as the unique values of the x_i, i = 1,...,n.
- That is

$$\hat{f}(x) = \sum_{j=1}^{n} N_j(x)\theta_j$$

where the $N_j(x)$ are an N-dimensional set of basis functions for representing this family of natural splines.

Smoothing Splines: Form of the solution

$$\operatorname{RSS}(f,\lambda) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int (f''(t))^2 dt$$

- Amazingly the above equation has an explicit, finite-dimensional unique minimizer for a fixed λ.
- It is a natural cubic spline with knots as the unique values of the x_i, i = 1,...,n.
- That is

$$\hat{f}(x) = \sum_{j=1}^{n} N_j(x)\theta_j$$

where the $N_j(x)$ are an N-dimensional set of basis functions for representing this family of natural splines.

Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

$$RSS(\theta, \lambda) = (y - \mathbf{N}\theta)^t (y - \mathbf{N}\theta) + \lambda \theta^t \Omega_N \theta$$

~ ` `

where

(NT (

$$\mathbf{N} = \begin{pmatrix} N_1(x_1) & N_2(x_1) & \cdots & N_n(x_1) \\ N_1(x_2) & N_2(x_2) & \cdots & N_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ N_1(x_n) & N_2(x_n) & \cdots & N_n(x_n) \end{pmatrix}$$
$$\Omega_N = \begin{pmatrix} \int N_1''(t)N_1''(t)dt & \int N_1''(t)N_2''(t)dt & \cdots & \int N_1''(t)N_n''(t)dt \\ \int N_2''(t)N_1''(t)dt & \int N_2''(t)N_2''(t)dt & \cdots & \int N_2''(t)N_n''(t)dt \\ \vdots & \vdots & \ddots & \vdots \\ \int N_n''(t)N_1''(t)dt & \int N_n''(t)N_2''(t)dt & \cdots & \int N_n''(t)N_n''(t)dt \end{pmatrix}$$
$$y = (y_1, y_2, \dots, y_n)^t$$
Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

$$RSS(\theta, \lambda) = (y - \mathbf{N}\theta)^t (y - \mathbf{N}\theta) + \lambda \theta^t \Omega_N \theta$$

and its solution is given by

$$\hat{\theta} = (\mathbf{N}^t \mathbf{N} + \lambda \,\Omega_N)^{-1} \mathbf{N}^t y$$

The fitted smoothing spline is then given by

$$\hat{f}(x) = \sum_{j=1}^{n} N_j(x)\hat{\theta}_j$$

Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

$$RSS(\theta, \lambda) = (y - \mathbf{N}\theta)^t (y - \mathbf{N}\theta) + \lambda \theta^t \Omega_N \theta$$

and its solution is given by

$$\hat{\theta} = (\mathbf{N}^t \mathbf{N} + \lambda \,\Omega_N)^{-1} \mathbf{N}^t y$$

The fitted smoothing spline is then given by

$$\hat{f}(x) = \sum_{j=1}^{n} N_j(x)\hat{\theta}_j$$

Degrees of Freedom and Smoother Matrices

A smoothing spline is a linear smoother

- Assume that λ has been set.
- Remember the estimated coefficients $\hat{\theta}$ are a linear combination of the y_i 's

$$\hat{\theta} = (\mathbf{N}^t \mathbf{N} + \lambda \,\Omega_N)^{-1} \mathbf{N}^t y$$

• Let $\hat{\mathbf{f}}$ be the *n*-vector of the fitted values $\hat{f}(x_i)$ then

 $\hat{\mathbf{f}} = \mathbf{N}\hat{\theta} = \mathbf{N}(\mathbf{N}^t\mathbf{N} + \lambda\,\Omega_N)^{-1}\mathbf{N}^t y = S_\lambda\,y$

where $S_{\lambda} = \mathbf{N} (\mathbf{N}^t \mathbf{N} + \lambda \Omega_N)^{-1} \mathbf{N}^t$.

A smoothing spline is a linear smoother

- Assume that λ has been set.
- Remember the estimated coefficients $\hat{\theta}$ are a linear combination of the y_i 's

$$\hat{\theta} = (\mathbf{N}^t \mathbf{N} + \lambda \,\Omega_N)^{-1} \mathbf{N}^t y$$

• Let $\hat{\mathbf{f}}$ be the *n*-vector of the fitted values $\hat{f}(x_i)$ then

$$\hat{\mathbf{f}} = \mathbf{N}\hat{\theta} = \mathbf{N}(\mathbf{N}^t\mathbf{N} + \lambda\,\Omega_N)^{-1}\mathbf{N}^t y = S_\lambda\,y$$

where $S_{\lambda} = \mathbf{N} (\mathbf{N}^t \mathbf{N} + \lambda \Omega_N)^{-1} \mathbf{N}^t$.

- S_{λ} is symmetric and positive semi-definite.
- $S_{\lambda}S_{\lambda} \preceq S_{\lambda}$
- S_{λ} has rank n.
- The book defines the effective degrees of freedom of a smoothing spline to be

$$\mathrm{df}_{\lambda} = \mathrm{trace}(S_{\lambda})$$

Effective dof of a smoothing spline

Both curves were fit with $\lambda \approx .00022$. This choice corresponds to about 12 degrees of freedom.

The eigen-decomposition of S_{λ} : S_{λ} in Reinsch form

- Let $N = USV^t$ be the svd of N.
- Using this decomposition it is straightforward to re-write

$$S_{\lambda} = \mathbf{N} (\mathbf{N}^t \mathbf{N} + \lambda \,\Omega_N)^{-1} \mathbf{N}^t$$

as

$$S_{\lambda} = (1 + \lambda K)^{-1}$$

where

$$K = US^{-1}V^t \,\Omega_N VS^{-1}U^t.$$

• It is also easy to show that $\hat{\mathbf{f}} = S_{\lambda} y$ is the solution to the optimization problem

$$\min_{\mathbf{f}} (y - \mathbf{f})^t (y - \mathbf{f}) + \lambda \mathbf{f}^t K \mathbf{f}$$

The eigen-decomposition of S_{λ} : S_{λ} in Reinsch form

- Let $N = USV^t$ be the svd of N.
- Using this decomposition it is straightforward to re-write

$$S_{\lambda} = \mathbf{N} (\mathbf{N}^t \mathbf{N} + \lambda \,\Omega_N)^{-1} \mathbf{N}^t$$

as

$$S_{\lambda} = (1 + \lambda K)^{-1}$$

where

$$K = US^{-1}V^t \,\Omega_N VS^{-1}U^t.$$

• It is also easy to show that $\hat{\mathbf{f}} = S_{\lambda}y$ is the solution to the optimization problem

$$\min_{\mathbf{f}} (y - \mathbf{f})^t (y - \mathbf{f}) + \lambda \mathbf{f}^t K \mathbf{f}$$

The eigen-decomposition of S_{λ}

• Let $K = PDP^{-1}$ be the real eigen-decomposition of K - possible as K symmetric and positive semi-definite.

Then

$$S_{\lambda} = (I + \lambda K)^{-1} = (I + \lambda PDP^{-1})^{-1}$$

= $(PP^{-1} + \lambda PDP^{-1})^{-1}$
= $(P(I + \lambda D)P^{-1})^{-1}$
= $P(I + \lambda D)^{-1}P^{-1}$
= $\sum_{i=1}^{n} \frac{1}{1 + \lambda d_{k}} p_{k} p_{k}^{t}$

where d_k are the elements of diagonal D and e-values of K and p_k are the e-vectors of K.

• p_k are also the e-vectors of S_λ and $1/(1 + \lambda d_k)$ its e-values.

The eigen-decomposition of S_{λ}

• Let $K = PDP^{-1}$ be the real eigen-decomposition of K - possible as K symmetric and positive semi-definite.

• Then

$$S_{\lambda} = (I + \lambda K)^{-1} = (I + \lambda PDP^{-1})^{-1}$$

= $(PP^{-1} + \lambda PDP^{-1})^{-1}$
= $(P(I + \lambda D)P^{-1})^{-1}$
= $P(I + \lambda D)^{-1}P^{-1}$
= $\sum_{i=1}^{n} \frac{1}{1 + \lambda d_{k}} p_{k} p_{k}^{t}$

where d_k are the elements of diagonal D and e-values of K and p_k are the e-vectors of K.

• p_k are also the e-vectors of S_λ and $1/(1 + \lambda d_k)$ its e-values.

Example: Cubic spline smoothing to air pollution data

Daggot Pressure Gradient

- Green curve smoothing spline with $df_{\lambda} = trace(S_{\lambda}) = 11$.
- Red curve smoothing spline with $df_{\lambda} = trace(S_{\lambda}) = 5$.

Example: Eigenvalues of S_{λ}

- Green curve eigenvalues of S_{λ} with $df_{\lambda} = 11$.
- Red curve eigenvalues of S_{λ} with $df_{\lambda} = 5$.

Example: Eigenvectors of S_{λ}

- Each blue curve is an eigenvector of S_λ plotted against x. Top left has highest e-value, bottom right samllest.
- Red curve is the eigenvector damped by $1/(1 + \lambda d_k)$.

Highlights of the eigenrepresentation

- The eigenvectors of S_{λ} do not depend on λ .
- The smoothing spline decomposes y w.r.t. the basis $\{p_k\}$ and shrinks the contributions using $1/(1+\lambda d_k)$ as

$$S_{\lambda}y = \sum_{k=1}^{n} \frac{1}{1 + \lambda d_k} p_k(p_k^t y)$$

- The first two e-values are always 1 of S_{λ} and correspond to the eigenspace of functions linear in x.
- The sequence of p_k , ordering by decreasing $1/(1 + \lambda d_k)$, appear to increase in complexity.

• df_{$$\lambda$$} = trace(S _{λ}) = $\sum_{k=1}^{n} 1/(1 + \lambda d_k)$.

Highlights of the eigenrepresentation

- The eigenvectors of S_{λ} do not depend on λ .
- The smoothing spline decomposes y w.r.t. the basis $\{p_k\}$ and shrinks the contributions using $1/(1+\lambda d_k)$ as

$$S_{\lambda}y = \sum_{k=1}^{n} \frac{1}{1 + \lambda d_k} p_k(p_k^t y)$$

- The first two e-values are always 1 of S_{λ} and correspond to the eigenspace of functions linear in x.
- The sequence of p_k , ordering by decreasing $1/(1 + \lambda d_k)$, appear to increase in complexity.

•
$$df_{\lambda} = trace(S_{\lambda}) = \sum_{k=1}^{n} 1/(1 + \lambda d_k).$$

Highlights of the eigenrepresentation

- The eigenvectors of S_{λ} do not depend on λ .
- The smoothing spline decomposes y w.r.t. the basis $\{p_k\}$ and shrinks the contributions using $1/(1+\lambda d_k)$ as

$$S_{\lambda}y = \sum_{k=1}^{n} \frac{1}{1 + \lambda d_k} p_k(p_k^t y)$$

- The first two e-values are always 1 of S_λ and correspond to the eigenspace of functions linear in x.
- The sequence of p_k , ordering by decreasing $1/(1 + \lambda d_k)$, appear to increase in complexity.

• df_{$$\lambda$$} = trace(S _{λ}) = $\sum_{k=1}^{n} 1/(1 + \lambda d_k)$.

Visualization of a S_{λ}

Equivalent Kernels

- This is a crucial and tricky problem.
- Will deal with this problem in Chapter 7 when we consider the problem of Model Selection.

Nonparametric Logistic Regression

Back to logistic regression

• Previously considered a binary classifier s.t.

$$\log \frac{P(Y = 1 | X = x)}{P(Y = 0 | X = x)} = \beta_0 + \beta^t x$$

• However, consider the case when

$$\log \frac{P(Y = 1 | X = x)}{P(Y = 0 | X = x)} = f(x)$$

which in turn implies

$$P(Y = 1 | X = x) = \frac{e^{f(x)}}{1 + e^{f(x)}}$$

Fitting f(x) in a smooth fashion leads to a smooth estimate of P(Y = 1|X = x).

Back to logistic regression

• Previously considered a binary classifier s.t.

$$\log \frac{P(Y = 1 | X = x)}{P(Y = 0 | X = x)} = \beta_0 + \beta^t x$$

• However, consider the case when

$$\log \frac{P(Y = 1 | X = x)}{P(Y = 0 | X = x)} = f(x)$$

which in turn implies

$$P(Y = 1 | X = x) = \frac{e^{f(x)}}{1 + e^{f(x)}}$$

• Fitting f(x) in a smooth fashion leads to a smooth estimate of P(Y = 1|X = x).

The penalized log-likelihood criterion

Construct the penalized log-likelihood criterion

$$\ell(f;\lambda) = \sum_{i=1}^{n} [y_i \log P(Y=1|x_i) + (1-y_i) \log(1-P(Y=1|x_i))] - .5\lambda \int (f''(t))^2 dt$$
$$= \sum_{i=1}^{n} [y_i f(x_i) - \log(1+e^{f(x_i)})] - .5\lambda \int (f''(t))^2 dt$$

Regularization and Reproducing Kernel Hilbert Spaces

General class of regularization problems

There is a class of generalization problems which have the form

$$\min_{f \in \mathcal{H}} \left[\sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda J(f) \right]$$

where

- $L(y_i, f(x_i))$ is a loss function,
- J(f) is a penalty functional,
- \mathcal{H} is a space of functions on which J(f) is defined.

Important subclass of problems of this form

- These are generated by a positive definite kernel K(x,y) and
- the corresponding space of functions \mathcal{H}_K called a reproducing kernel Hilbert space (RKHS),
- the penalty functional J is defined in terms of the kernel as well.

What does all this mean??

What follows is mainly based on the notes of Nuno Vasconcelos.

Types of Kernels

Definition

A kernel is a mapping $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

These three types of kernels are equivalent

Definition A mapping

 $k:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$

is a dot-product kernel if and only if

 $k(x,y) = \langle \Phi(x), \Phi(y) \rangle$

where

$$\Phi: \mathcal{X} \to \mathcal{H}$$

and \mathcal{H} is a vector space and $\langle \cdot, \cdot \rangle$ is an inner-product on \mathcal{H} .

Definition A mapping

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

is a **positive semi-definite kernel** on $\mathcal{X} \times \mathcal{X}$ if $\forall m \in \mathbb{N}$ and $\forall x_1, \ldots, x_m$ with each $x_i \in \mathcal{X}$ the *Gram* matrix

$$\mathbf{K} = \begin{pmatrix} k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_m) \\ k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_m) \\ \vdots & \vdots & \ddots & \vdots \\ k(x_m, x_1) & k(x_m, x_2) & \cdots & k(x_m, x_m) \end{pmatrix}$$

is positive semi-definite.

Mercer kernel

Definition

A symmetric mapping $k:\mathcal{X}\times\mathcal{X}\rightarrow R$ such that

$$\int \int k(x,y) f(x) f(y) \, \mathrm{d}x \, \mathrm{d}y \ge 0$$

for all functions f s.t.

$$\int f(x)^2 \, \mathrm{d}x < \infty$$

is a Mercer kernel.

Two different pictures

These different definitions lead to different interpretations of what the kernel does:

Interpretation I **Reproducing kernel map:** $\mathcal{H}_{k} = \left\{ f(.) \mid f(\cdot) = \sum_{i=1}^{m} \alpha_{i} k(\cdot, x_{i}) \right\}$ $\langle f, g \rangle_* = \sum_{i=1}^m \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)$ $\Phi : \mathcal{X} \to k(\cdot, x)$

Two different pictures

These different definitions lead to different interpretations of what the kernel does:

Interpretation II Mercer kernel map: $\mathcal{H}_M = \ell_2 = \left\{ x \mid \sum_i x_i^2 < \infty \right\}$ $\langle f, g \rangle_* = f^t g$ $\Phi: \mathcal{X} \to (\sqrt{\lambda_1}\phi_1(x), \sqrt{\lambda_2}\phi_2(x), \ldots)^t$ where λ_i, ϕ_i are the e-values and eigenfunctions of k(x, y) with $\lambda_i > 0$.

where ℓ_2 is the space of vectors s.t. $\sum_i a_i^2 < \infty$.

Interpretation I: The dot-product picture

When a Gaussian kernel $k(x, x_i) = \exp(-\|x - x_i\|^2 / \sigma)$ is used

- the point $x_i \in \mathcal{X}$ is mapped into the Gaussian $G(\cdot, x_i, \sigma I)$
- \mathcal{H}_k is the space of all functions that are linear combinations of Gaussians.
- the kernel is a dot product in \mathcal{H}_k and a non-linear similarity on \mathcal{X} .

The reproducing property

• With the definition of \mathcal{H}_k and $\langle \cdot, \cdot
angle_*$ one has

$$\langle k(\cdot, x), f(\cdot) \rangle_* = f(x) \qquad \forall f \in \mathcal{H}_k$$

- This is called the reproducing property.
- Leads to the reproducing Kernel Hilbert Spaces

Definition A **Hilbert Space** is a complete dot-product space. (vector space + dot product + limit points of all Cauchy sequences)

The reproducing property

• With the definition of \mathcal{H}_k and $\langle \cdot, \cdot
angle_*$ one has

$$\langle k(\cdot, x), f(\cdot) \rangle_* = f(x) \qquad \forall f \in \mathcal{H}_k$$

- This is called the reproducing property.
- Leads to the reproducing Kernel Hilbert Spaces

Definition A **Hilbert Space** is a complete dot-product space. (vector space + dot product + limit points of all Cauchy sequences) Definition Let \mathcal{H} be a Hilbert space of functions $f : \mathcal{X} \to \mathbb{R}$. \mathcal{H} is a Reproducing Kernel Hilbert Space (rkhs) with inner-product $\langle \cdot, \cdot \rangle_*$ if there exists a

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

- s. t.
 - $k(\cdot, \cdot)$ spans ${\mathcal H}$ that is

 $\mathcal{H} = \{ f(\overline{\cdot) \mid f(\cdot) = \sum_{i} \alpha_i \, k(\cdot, x_i) \text{ for } \alpha_i \in \mathbb{R} \text{ and } x_i \in \mathcal{X} \}$

• $k(\cdot, \cdot)$ is a reproducing kernel of $\mathcal H$

$$f(x) = \langle f(\cdot), k(\cdot, x) \rangle_* \quad \forall f \in \mathcal{H}$$
Theorem

Let $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a Mercer kernel. Then there exists an orthonormal set of functions

$$\int \phi_i(x)\phi_j(x)\,dx = \delta_{ij}$$

and a set of $\lambda_i \geq 0$ such that

1
$$\sum_{i}^{\infty} \lambda_{i}^{2} = \int \int k^{2}(x, y) dx dy < \infty$$
 and

2
$$k(x,y) = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(y)$$

This eigen-decomposition gives another way to design the feature transformation induced by the kernel $k(\cdot, \cdot)$.

• Let

$$\Phi: \mathcal{X} \to \ell_2$$

be defined by

$$\Phi(x) = (\sqrt{\lambda_1} \phi_1(x), \sqrt{\lambda_2} \phi_2(x), \ldots)$$

where ℓ_2 is the space of square summable sequences. \bullet Clearly

$$\begin{split} \langle \Phi(x), \Phi(y) \rangle &= \sum_{i=1}^{\infty} \sqrt{\lambda_i} \phi_i(x) \sqrt{\lambda_i} \phi_i(y) \\ &= \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(y) = k(x, y) \end{split}$$

Therefore there is a vector space ℓ_2 other than \mathcal{H}_k such that k(x, y) is a dot product in that space.

- Have two very different interpretations of what the kernel does
 - 1 Reproducing kernel map
 - Mercer kernel map
- They are in fact more or less the same.

rkhs Vs Mercer maps

• For \mathcal{H}_M we write

$$\Phi(x) = \sum_i \sqrt{\lambda_i} \phi_i(x) \mathbf{e}_i$$

• As the ϕ_i 's are orthonormal there is a 1-1 map

$$\Gamma: \ell_2 \to \operatorname{span}\{\phi_k\} \qquad \mathbf{e}_k = \sqrt{\lambda_k} \, \phi_k(\cdot)$$

Can write

$$(\Gamma \circ \Phi)(x) = \sum_{i} \sqrt{\lambda_i} \phi_i(x) \phi_i(\cdot) = k(\cdot, x)$$

• Hence $k(\cdot, x)$ maps x into $\mathcal{M} = \operatorname{span}\{\phi_k(\cdot)\}$

The Mercer picture

Define the inner-product in $\ensuremath{\mathcal{M}}$ as

$$\langle f,g\rangle_{\rm m} = \int f(x)g(x)\,dx$$

Note we will normalize the eigenfunctions ϕ_l such that

$$\int \phi_l(x)\phi_k(x)\,\mathrm{d}x = \frac{\delta_{lk}}{\lambda_l}$$

Any function $f\in \mathcal{M}$ can be written as

$$f(x) = \sum_{k=1}^{\infty} \alpha_k \, \phi_k(x)$$

then

Mercer map

$$\begin{split} \langle f(\cdot), k(\cdot, y) \rangle_{\mathsf{m}} &= \int f(x) k(x, y) \, dx \\ &= \int \sum_{k=1}^{\infty} \alpha_k \phi_k(x) \sum_{l=1}^{\infty} \lambda_l \, \phi_l(x) \phi_l(y) \, dx \\ &= \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \lambda_k \, \lambda_l \, \phi_l(y) \int \phi_k(x) \phi_l(x) \, dx \\ &= \sum_{l=1}^{\infty} \lambda_l \, \lambda_l \, \phi_l(y) \, \frac{1}{\lambda_l} \\ &= \sum_{l=1}^{\infty} \lambda_l \, \phi_l(y) = f(y) \end{split}$$

 \therefore k is a reproducing kernel on \mathcal{M} .

Mercer map Vs Reproducing kernel map

We want to check if

- the space $\mathcal{M} = \mathcal{H}_k$
- $\langle f,g \rangle_{\rm m}$ and $\langle f,g \rangle_{*}$ are equivalent.

To do this will involve the following steps

Show H_k ⊂ M.
Show ⟨f,g⟩_m = ⟨f,g⟩_{*} for f,g ∈ H_k.

3 Show $\mathcal{M} \subset \mathcal{H}_k$.

$\mathcal{H}_k \subset \mathcal{M}$

If $f \in \mathcal{H}_k$ then there exists $m \in \mathbb{N}$, $\{\alpha_i\}$ and $\{x_i\}$ such that

$$f(\cdot) = \sum_{i=1}^{m} \alpha_i k(\cdot, x_i)$$

= $\sum_{i=1}^{m} \alpha_i \sum_{l=1}^{\infty} \lambda_l \phi_l(x_i) \phi_l(\cdot)$
= $\sum_{l=1}^{\infty} \left(\sum_{i=1}^{m} \alpha_i \lambda_l \phi_l(x_i) \right) \phi_l(\cdot)$
= $\sum_{l=1}^{\infty} \gamma_l \phi_l(\cdot)$

Thus f is a linear combination of the ϕ_i 's and $f \in \mathcal{M}$.

This shows that if $f \in \mathcal{H}$ then $f \in \mathcal{M}$ and therefore $\mathcal{H} \subset \mathcal{M}$.

Equivalence of the inner-products

Let $f,g \in \mathcal{H}$ with

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i), \qquad g(\cdot) = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$$

Then by definition

$$\langle f,g \rangle_* = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j)$$

While

$$f,g\rangle_{\mathsf{m}} = \int f(x)g(x) \, dx$$

=
$$\int \sum_{i=1}^{n} \alpha_i k(x,x_i) \sum_{j=1}^{m} \beta_j k(x,y_j) \, dx$$

=
$$\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \, \beta_j \int k(x,x_i) \, k(x,y_j) \, dx$$

Equivalence of the inner-products ctd

$$\begin{split} \langle f,g \rangle_{\mathfrak{m}} &= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} \int \sum_{l=1}^{\infty} \lambda_{l} \phi_{l}(x) \phi_{l}(x_{i}) \sum_{s=1}^{\infty} \lambda_{s} \phi_{s}(x) \phi_{s}(y_{j}) \, dx \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} \sum_{l=1}^{\infty} \lambda_{l} \phi_{l}(x_{i}) \phi_{l}(y_{j}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} \, k(x_{i}, y_{j}) \\ &= \langle f,g \rangle_{*} \end{split}$$

Thus for all $f,g \in \mathcal{H}$

$$\langle f,g\rangle_{\rm m}=\langle f,g\rangle_*$$

$\mathcal{M}\subset \mathcal{H}$

- Can also show that if $f \in \mathcal{M}$ then also $f \in \mathcal{H}_k$.
- Will not prove that here.
- But it implies $\mathcal{M} \subset \mathcal{H}_k$

The reproducing kernel map and the Mercer Kernel map lead to the same RKHS, Mercer gives us an orthonormal basis.

Interpretation I Reproducing kernel map: $\mathcal{H}_{k} = \left\{ f(.) \mid f(\cdot) = \sum_{i=1}^{m} \alpha_{i} k(\cdot, x_{i}) \right\}$ $\langle f,g \rangle_* = \sum_{i=1}^m \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)$ $\Phi_r : \mathcal{X} \to k(\cdot, x)$

The reproducing kernel map and the Mercer Kernel map lead to the same RKHS, Mercer gives us an orthonormal basis.

Interpretation II Mercer kernel map: $\mathcal{H}_M = \ell_2 = \left\{ x \mid \sum_i x_i^2 < \infty \right\}$ $\langle f, g \rangle_* = f^t g$ $\Phi_M: \mathcal{X} \to (\sqrt{\lambda_1}\phi_1(x), \sqrt{\lambda_2}\phi_2(x), ...)^t$ $\Gamma: \ell_2 \to \operatorname{span}\{\phi_k(\cdot)\}$ $\Gamma \circ \Phi_M = \Phi_r$

Back to Regularization

Back to regularization

We to solve

$$\min_{f \in \mathcal{H}_k} \left[\sum_{i=1}^n L(y_i, f(x_i)) + \lambda J(f) \right]$$

where \mathcal{H}_k is the RKHS of some appropriate Mercer kernel $k(\cdot, \cdot)$.

What is a good regularizer ?

- Intuition: *wigglier* functions have larger norm than smoother functions.
- For $f \in \mathcal{H}_k$ we have

$$f(x) = \sum_{i} \alpha_{i} k(x, x_{i})$$
$$= \sum_{i} \alpha_{i} \sum_{l} \lambda_{l} \phi_{l}(x) \phi_{l}(x_{i})$$
$$= \sum_{l} \left[\lambda_{l} \sum_{i} \alpha_{i} \phi_{l}(x_{i}) \right] \phi_{l}(x)$$
$$= \sum_{l} c_{l} \phi_{l}(x)$$

What is a good regularizer ?

and therefore

$$||f(x)||^{2} = \sum_{lk} c_{l} c_{k} \langle \phi_{l}(x), \phi_{k}(x) \rangle_{m} = \sum_{lk} \frac{1}{\lambda_{l}} c_{l} c_{k} \delta_{lk} = \sum_{l} \frac{c_{l}^{2}}{\lambda_{l}}$$

with $c_l = \lambda_l \sum_i \alpha_i \phi_l(x_i)$.

- Hence
 - $||f||^2$ grows with the number of c_i different than zero.
 - · functions with large e-values get penalized less and vice versa
 - more coefficients means more high frequencies or less smoothness.

Theorem

Let

- $\Omega:[0,\infty)\to\mathbb{R}$ be a strictly monotonically increasing function
- \mathcal{H} is the RKHS associated with a kernel k(x, y)
- L(y, f(x)) be a loss function

then

$$\hat{f} = \arg\min_{f \in \mathcal{H}_k} \left[\sum_{i=1}^n L(y_i, f(x_i)) + \lambda \Omega(\|f\|^2) \right]$$

has a representation of the form

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i)$$

- The remarkable consequence of the theorem is that
 - Can reduce the minimization over the infinite dimensional space of functions to a minimization over a finite dimensional space.
- This is because as $\hat{f} = \sum_{i=1}^n lpha_i k(\cdot, x_i)$ then

$$\begin{split} \|\hat{f}\|^2 &= \langle \hat{f}, \hat{f} \rangle = \sum_{ij} \alpha_i \alpha_j \langle k(\cdot, x_i), k(\cdot, x_j) \rangle \\ &= \sum_{ij} \alpha_i \alpha_j k(x_i, x_j) = \alpha^t \mathbf{K} \alpha \end{split}$$

and

$$\hat{f}(x_i) = \sum_j \alpha_j k(x_i, x_j) = \mathbf{K}_i \, \alpha$$

where $\mathbf{K} = (k(x_i, x_j))$, Gram matrix, and \mathbf{K}_i is its *i*th row.

- The remarkable consequence of the theorem is that
 - Can reduce the minimization over the infinite dimensional space of functions to a minimization over a finite dimensional space.
- This is because as $\hat{f} = \sum_{i=1}^n lpha_i k(\cdot, x_i)$ then

$$\begin{split} |\hat{f}||^2 &= \langle \hat{f}, \hat{f} \rangle = \sum_{ij} \alpha_i \alpha_j \langle k(\cdot, x_i), k(\cdot, x_j) \rangle \\ &= \sum_{ij} \alpha_i \alpha_j k(x_i, x_j) = \alpha^t \mathbf{K} \alpha \end{split}$$

and

$$\hat{f}(x_i) = \sum_j \alpha_j k(x_i, x_j) = \mathbf{K}_i \, \alpha$$

where $\mathbf{K} = (k(x_i, x_j))$, Gram matrix, and \mathbf{K}_i is its *i*th row.

Theorem Let

- $\Omega:[0,\infty)\to\mathbb{R}$ be a strictly monotonically increasing function
- \mathcal{H} is the RKHS associated with a kernel k(x, y)
- L(y, f(x)) be a loss function

then

$$\hat{f} = \arg \min_{f \in \mathcal{H}_k} \left[\sum_{i=1}^n L(y_i, f(x_i)) + \lambda \Omega(\|f\|^2) \right]$$

has a representation of the form

$$\hat{f}(x) = \sum_{i=1}^{n} \hat{\alpha}_i k(x, x_i)$$

where

$$\hat{\alpha} = \arg\min_{\alpha} \left[\sum_{i=1}^{n} L(y_i, \mathbf{K}_i \, \alpha) + \lambda \, \Omega(\alpha^t \mathbf{K} \alpha) \right]$$

Regularization and SVM

Rejigging the formulation of the SVM

• When given linearly separable data $\{(x_i, y_i)\}$ the optimal separating hyperplane is given by

$$\min_{\beta_0,\beta} \|\beta\|^2 \quad \text{subject to} \quad y_i(\beta_0+\beta^t x_i) \geq 1 \; \forall i$$

• The constraints are fulfilled when

$$\max(0, 1 - y_i(\beta_0 + \beta^t x_i)) = (1 - y_i(\beta_0 + \beta^t x_i)_+ = 0 \quad \forall i$$

• Hence we can re-write the optimization problem as

$$\min_{\beta_0,\beta} \left[\sum_{i=1}^n (1 - y_i(\beta_0 + \beta^t x_i))_+ + \|\beta\|^2 \right]$$

SVM's connections to regularization

Finding the optimal separating hyperplane

$$\min_{\beta_{0},\beta} \left[\sum_{i=1}^{n} (1 - y_{i}(\beta_{0} + \beta^{t} x_{i}))_{+} + \|\beta\|^{2} \right]$$

can be seen as a regularization problem

$$\min_{f} \left[\sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda \,\Omega(\|f\|^2) \right]$$

where

•
$$L(y, f(x)) = (1 - y_i f(x_i))_+$$

•
$$\Omega(\|f\|^2) = \|f\|^2$$

SVM's connections to regularization

 From the Representor theorem know the solution to the latter problem is

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i x_i^t x$$

if the basic kernel $k(x,y) = x^t y$ is used.

- Therefore $\|f\|^2 = \alpha^t \mathbf{K} \alpha$
- This is the same form of the solution found via the KKT conditions

$$\hat{\beta} = \sum_{i=1}^{n} \alpha_i \, y_i \, x_i$$