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Introduction



Moving beyond linearity

Main idea

e Augment the vector of inputs X with additional variables.
e These are transformations of X
h(X) :RP - R
withm=1,..., M.

e Then model the relationship between X and Y

M M
FX) = Bnhm(X) = B Zm
m=1 m=1

as a linear basis expansion in X.

e Have a linear model w.r.t. Z. Can use the same methods as
before.



Which transformations?

Some examples

e Linear:

hi(X)=Xpm, m=1,....p

Polynomial:

hn(X) = X7, or hm(X) = X; X},

Non-linear transformation of single inputs:

hm(X) = log(Xj), \/Xj,
Non-linear transformation of multiple input:

him (X)) = || X]]

Use of Indicator functions:

hon(X) = Ind(Ly < Xj < Upn)



Pros and Cons of this augmentation

Pros

e Can model more complicated decision boundaries.

e Can model more complicated regression relationships.



Pros and Cons of this augmentation

Pros

e Can model more complicated decision boundaries.

e Can model more complicated regression relationships.

Cons
e Lack of locality in global basis functions.

e Solution Use local polynomial representations such as
piecewise-polynomials and splines.

e How should one find the correct complexity in the model?

e There is the danger of over-fitting.



Controlling the complexity of the model

Common approaches taken:
e Restriction Methods
Limit the class of functions considered. Use additive models

p M,

Z Bjm ]m j)

j=1m=1
e Selection Methods

Scan the set of h,, and only include those that contribute
significantly to the fit of the model - Boosting, CART.

e Regularization Methods
Let

M
X) = Zﬁ] hJ(X
j=1

but when learning the 3;'s restrict their values in the manner
of ridge regression and lasso.



Piecewise Polynomials and Splines



Piecewise polynomial function

To obtain a piecewise polynomial function f(X)

e Divide the domain of X into contiguous intervals.

e Represent f by a separate polynomial in each interval.

Piecewise Constant Piecewise Linear




Piecewise polynomial function

To obtain a piecewise polynomial function f(X)

e Divide the domain of X into contiguous intervals.

e Represent f by a separate polynomial in each interval.

Examples

Piecewise Constant Piecewise Linear

Blue curve - ground truth function.
Green curve - piecewise constant/linear fit to the training data.



Example: Piecewise constant function

Piecewise Constant

& 3
Divide [a, b], the domain of X, into three regions
[(J,7 61), [51,62), [fz,b] with 51 < 52 < f3 &;'s are referred to as knots

Define three basis functions
hl(X) = Ind(X < 51), hQ(X) = Ind(§1 S X < 52), hg(X) = Ind(fg S X)

The model f(X) = anzl B han (X) is fit using least-squares.

As basis functions don't overlap — 3m = mean of y;'s in
the mth region.



Example: Piecewise linear function

Piecewise Linear

,l

& &2
e |n this case define 6 basis functions

hi(X) =Ind(X < &), ho(X)=Ind(& < X < &), ha(X) =Ind(& < X)
ha(X) = X hy(X), hs(X) = X ha(X), he(X) = X hs(X)

e The model f(X) = anzl B ha (X) is fit using least-squares.

e As basis functions don't overlap = fit a separate linear
model to the data in each region.



Example: Continuous piecewise linear function

Continuous Piecewise Linear

e Additionally impose the constraint that f(X) is continuous as
&1 and &.

e This means

B1 + B2&1 = B3 + B4&1, and
B3 + Paa = b5 + B2
e This reduces the # of dof of f(X) from 6 to 4.



A more compact set of basis functions

e To impose the continuity constraints directly can use this
basis instead:

hi(X) =1 ho(X) = X

ha(X) = (X = &)+ ha(X) = (X = &2)+

Piecewise-linear Basis Function




Smoother f(X)

Can achieve a smoother f(X) by increasing the order
e of the local polynomials

e of the continuity at the knots



Smoother f(X)

Can achieve a smoother f(X) by increasing the order
e of the local polynomials
e of the continuity at the knots
Piecewise-cubic polynomials with increasing orders of continuity

Discontinuous Continuous

& & & &



Cubic Spline

f(X) is a cubic spline if

e it is a piecewise cubic polynomial and

e has 1st and 2nd continuity at the knots

A cubic spline



Cubic Spline

A cubic spline

The following basis represents a cubic spline with knots at & and

&

hi(X) =1, ha(X) = X2, hs(X) = (X — &)}

ha(X) = X, ha(X) = X7, he(X) = (X — &)}



Order M spline

e An order M spline with knots &1,...,&x is

e a piecewise-polynomial of order M and

e has continuous derivatives up to order M — 2



Order M spline

e An order M spline with knots &1,...,&x is

e a piecewise-polynomial of order M and

e has continuous derivatives up to order M — 2

e The general form for the truncated-power basis set is

hM-H(X):(X_gl)y_l? l= 7“'7K



Order M spline

e An order M spline with knots &1,...,&x is

e a piecewise-polynomial of order M and
e has continuous derivatives up to order M — 2
e The general form for the truncated-power basis set is
hi(X)=X1"1 j=1,...,M
hvua(X) =X -&Y ' 1=1,....K

e In practice the most widely used orders are M = 1,2, 4.



Regression Splines

e Fixed-knot splines are known as regression splines.

e For a regression spline one needs to select

e the order of the spline,
e the number of knots and

e the placement of the knots.

e One common approach is to set a knot at each observation x;.



Regression Splines

e Fixed-knot splines are known as regression splines.

e For a regression spline one needs to select

e the order of the spline,
e the number of knots and
e the placement of the knots.
e One common approach is to set a knot at each observation x;.

e There are many equivalent bases for representing splines and
the truncated power basis is intuitively attractive but not
computationally attractive.



Regression Splines

e Fixed-knot splines are known as regression splines.

e For a regression spline one needs to select

e the order of the spline,
e the number of knots and
e the placement of the knots.

e One common approach is to set a knot at each observation x;.

There are many equivalent bases for representing splines and
the truncated power basis is intuitively attractive but not
computationally attractive.

A better basis set for implementation is the B-spline basis set.



Natural Cubic Splines



Natural Cubic Splines

Problem
The polynomials fit beyond the boundary knots behave wildly.

Solution: Natural Cubic Splines

e Have the additional constraints that the function is linear
beyond the boundary knots.

e This frees up 4 dof which can be used by having more knots
in the interior region.

e Near the boundaries one has reduced the variance of the fit
but increased its bias!



Smoothing Splines



Smoothing Splines

e Avoid knot selection problem by using a maximal set of knots.

e Complexity of the fit is controlled by regularization.



Smoothing Splines

e Avoid knot selection problem by using a maximal set of knots.
e Complexity of the fit is controlled by regularization.

e Consider the following problem:

Find the function f(z) with continuous second derivative
which minimizes

n

RSS(f, M) = > (i — f(2:)? + ) / (f"(t)2at

=1




Smoothing Splines

e Avoid knot selection problem by using a maximal set of knots.
e Complexity of the fit is controlled by regularization.

e Consider the following problem:

Find the function f(z) with continuous second derivative
which minimizes

RSS(.N) = > 1 (1))%dt

(g — f(@)* + ) [(
/i:l / / 1
/

smoothing parameter
closeness to data curvature penalty




Smoothing Splines: Smoothing parameter

n

RSS(f,A) = (0 — f(1)? + A / (1))t

=1

e )\ establishes a trade-off between predicting the training data
and minimizing the curvature of f(z).



Smoothing Splines: Smoothing parameter

n

RSS(f,A) = (0 — f(1)? + A / (1))t

=1

e )\ establishes a trade-off between predicting the training data
and minimizing the curvature of f(z).

e The two special cases are

e \=0: f is any function which interpolates the data.

e )\ =o0: f is the simple least squares line fit.



Smoothing Splines: Smoothing parameter

n

RSS(f,A) = (0 — f(1)? + A / (1))t

=1

) establishes a trade-off between predicting the training data
and minimizing the curvature of f(z).

The two special cases are

e \=0: f is any function which interpolates the data.

e )\ =o0: f is the simple least squares line fit.

In these two cases go from very rough to very smooth f(x)

Hope is A € (0,00) indexes an interesting class of functions in
between.



Smoothing Splines: Form of the solution

n

RSS(/.N) = Do = F@)* + 2 [ (" (0)Pa

=1

e Amazingly the above equation has an explicit,
finite-dimensional unique minimizer for a fixed \.



Smoothing Splines: Form of the solution

n

RSS(/.N) = Do = F@)* + 2 [ (" (0)Pa

=1

e Amazingly the above equation has an explicit,
finite-dimensional unique minimizer for a fixed \.

e It is a natural cubic spline with knots as the unique values of
the z;,i=1,...,n.

e That is

where the N;(z) are an N-dimensional set of basis functions
for representing this family of natural splines.



Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

[RSS(e, A) = (y — NO)!(y — N6O) + A6' Q0 ]

where
Ni(z1 Nz(l‘l Nn(xl
Ni(z2) Na(z2) Ny (z2)
N= :

Ni(@n) No(zn) Now(2n)
SNUV@ONT(Ddt - [ NY@NZ (O)de - [ N ()N (8)dt

e — JNS@NY()dt [ NS @)Ng(t)dt -+ [ Ng’(t)N;{(t)dt
J‘N// N//( )dt fN// N//( )dt j‘N// N//( )d

t

y=(1,y2,..., Yn)



Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

[RSS(e, A) = (y — NOY (y — NO) + A6 Qy 0 ]

and its solution is given by

[é = (N'N + AQy) " 'Nty ]




Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

[RSS(H, A) = (y — NOY (y — NO) + A6 Qy 0 ]

and its solution is given by

[é = (N'N + AQy) " 'Nty ]

The fitted smoothing spline is then given by




Degrees of Freedom and Smoother Matrices



A smoothing spline is a linear smoother

e Assume that A has been set.

e Remember the estimated coefficients 6 are a linear
combination of the y;'s

0 = (N'N + \Qy) !Nty



A smoothing spline is a linear smoother

e Assume that A has been set.

e Remember the estimated coefficients 6 are a linear
combination of the y;'s

0 = (N'N + \Qy) !Nty

o Let f be the n-vector of the fitted values f(z;) then

[f‘ = Nf = N(N'N + XQp) !Nty = Sy y ]

where Sy = N(N'N + \Qy) !N



Properties of S

e S is symmetric and positive semi-definite.
° S\Sx 2 Sy
e S, has rank n.

e The book defines the effective degrees of freedom of a
smoothing spline to be

[df)\ = trace(Sy) ]




Effective dof of a smoothing spline

—— Male
—— Female

0.20
|

0.15

0.05
I

Relative Change in Spinal BMD

0.0

-0.05

Age

Both curves were fit with A =~ .00022. This choice corresponds to
about 12 degrees of freedom.



The eigen-decomposition of S): S) in Reinsch form

o Let N = USV" be the svd of N.
e Using this decomposition it is straightforward to re-write
Sy = N(N'N + A\Qp) N

as

($s=+r6)" |

where

K=US"'vtoyvsut.



The eigen-decomposition of S): S) in Reinsch form

Let N = USV? be the svd of N.
Using this decomposition it is straightforward to re-write
Sy = N(N'N + A\Qp) N

as

[S)\ — (14 AK)~! ]

where
K=US"'vtoyvsut.

It is also easy to show that f = Sy is the solution to the
optimization problem

mfin (y —£)(y — £) + M'KF



The eigen-decomposition of S)

e Let K = PDP ! be the real eigen-decomposition of K -
possible as K symmetric and positive semi-definite.

e Then

Sy =T+ \K) ' =(I+PDP 1!
= (PP '+ xPDP !
= (P(I+AD)P~ 17!
P(I+AD)"'p!

t
§1+)\dkp’“p’“

where dj, are the elements of diagonal D and e-values of K
and py are the e-vectors of K.



The eigen-decomposition of S)

e Let K = PDP ! be the real eigen-decomposition of K -
possible as K symmetric and positive semi-definite.

e Then

Sy =T+ \K) ' =(I+PDP 1!
= (PP '+ xPDP !
= (P(I+AD)P~ 17!
P(I+AD)"'p!

t
§1+)\dkp’“p’“

where dj, are the elements of diagonal D and e-values of K
and py are the e-vectors of K.

e pj, are also the e-vectors of Sy and 1/(1 + Ady) its e-values.



Example: Cubic spline smoothing to air pollution data

Ozone Concentration

-50 0 50 100

Daggot Pressure Gradient

e Green curve smoothing spline with dfy = trace(S)) = 11.

e Red curve smoothing spline with dfy = trace(S)) = 5.



Example: Eigenvalues of S,

1.2

Eigenvalues

5 10 15 20 25

e Green curve eigenvalues of Sy with dfy = 11.

e Red curve eigenvalues of Sy with dfy = 5.



Example: Eigenvectors of S
\ /N
\ U \

A A

-50 0 50 100

e Each blue curve is an eigenvector of S plotted against x. Top left
has highest e-value, bottom right samllest.

e Red curve is the eigenvector damped by 1/(1 + Ady).



Highlights of the eigenrepresentation

e The eigenvectors of S do not depend on A.

e The smoothing spline decomposes y w.r.t. the basis {px} and
shrinks the contributions using 1/(1 + Adg) as

n

1 |
Shy = ; mﬁk(ﬁky)




Highlights of the eigenrepresentation

e The eigenvectors of S do not depend on A.

e The smoothing spline decomposes y w.r.t. the basis {px} and
shrinks the contributions using 1/(1 + Adg) as

n

1 |
Shy = ; mﬁk(pky)

e The first two e-values are always 1 of S and correspond to
the eigenspace of functions linear in z.

e The sequence of py, ordering by decreasing 1/(1 + Ady),
appear to increase in complexity.



Highlights of the eigenrepresentation

e The eigenvectors of S do not depend on A.

e The smoothing spline decomposes y w.r.t. the basis {px} and
shrinks the contributions using 1/(1 + Adg) as

n

1 |
Shy = ; mﬁk(pky)

e The first two e-values are always 1 of S and correspond to
the eigenspace of functions linear in z.

e The sequence of py, ordering by decreasing 1/(1 + Ady),
appear to increase in complexity.

n

o dfy = trace(S)) = Z 1/(1+ Ady).
k=1



100

15

Smoother Matrix

Visualization of a S,

Equivalent Kernels

Row 12




Choosing A 777

e This is a crucial and tricky problem.

e Will deal with this problem in Chapter 7 when we consider the
problem of Model Selection.



Nonparametric Logistic Regression



Back to logistic regression

e Previously considered a binary classifier s.t.

PY =1|X =z)
PY =0|X =)

log

Zﬁo-i—ﬁtﬂ?]

e However, consider the case when

PY =1X=gz)
[log PY—o0x=g '@ ]

which in turn implies




Back to logistic regression

e Previously considered a binary classifier s.t.

PY =1|X =z)
PY =0|X =)

log

Zﬁo-i—ﬁtﬂ?]

e However, consider the case when

PY =1X=gz)
[log PY—o0x=g '@ ]

which in turn implies

e Fitting f(x) in a smooth fashion leads to a smooth estimate
of P(Y = 1|X = x).



The penalized log-likelihood criterion

Construct the penalized log-likelihood criterion

n

UFA) = lyilog P(Y = 1ai) + (1 = yi) log(1 = P(Y = 1]z:))] -5>\/(f”(t))2dt

=3 i () — log(1+ /)] — 5 / (" (1))%dt

i=1



Regularization and Reproducing Kernel
Hilbert Spaces



General class of regularization problems

There is a class of generalization problems which have the form

min [Z L(ys, f(x;)) + )\J(f)]
=1

feH

where

e L(y;, f(z;)) is a loss function,
e J(f) is a penalty functional,

e H is a space of functions on which J(f) is defined.



Important subclass of problems of this form

e These are generated by a positive definite kernel K (x,y) and

e the corresponding space of functions H called a reproducing
kernel Hilbert space (RKHS),

e the penalty functional J is defined in terms of the kernel as
well.

What does all this mean??

What follows is mainly based on the notes of Nuno Vasconcelos.


http://www.svcl.ucsd.edu/courses/ece271B-F09

Types of Kernels

Definition
A kernel is a mapping k: X x X - R.

These three types of kernels are equivalent

[dot-product kernel ]
T

[positive definite kernel ]

)

[Mercer kernel ]




Dot-product kernel

Definition
A mapping

E:XxX =R
is a dot-product kernel if and only if
k(z,y) = (®(x), 2(y))
where
X > H

and H is a vector space and (-, ) is an inner-product on H.



Positive definite kernel

Definition
A mapping
k:XxX—>R

is a positive semi-definite kernel on X x X if Vm € N and
Vi,..., %, with each x; € X the Gram matrix

k(z1,21) k(zi,x0) -+ k(z1,2m)

k(zo,z1) k(xe,me) -+ k(ze,zm)

K =
E(xm,x1) k(zm,z2) - k(Tm,Tm)

is positive semi-definite.



Mercer kernel

Definition
A symmetric mapping k : X x X — R such that

[ [ #ew) @) 1) dwdy 0

for all functions f s.t.
/ f(2)? dz < oo

is a Mercer kernel.



Two different pictures

These different definitions lead to different interpretations of what
the kernel does:

(Interpretation |
Reproducing kernel map:

Hy = {f(~) | f() = Zaik(',xi)}
=1

(F,9)s =D ciBjk(as,«})

=1 j=1

R Sy )




Two different pictures

These different definitions lead to different interpretations of what
the kernel does:

(Interpretation 0l
Mercer kernel map:

HM:€2={$|Z$?<OO}

(fr9)«=1r'9
®: X = (VMo1(@), vVAsda(x),...)"

where \;, ¢; are the e-values and eigenfunctions
of k(z,y) with A; > 0.

J

where {5 is the space of vectors s.t. ), a? < .



Interpretation |: The dot-product picture

When a Gaussian kernel k(z, z;) = exp(—||z — ;]|*/o) is used

e the point z; € X' is mapped into the Gaussian G(-,z;,01)

e Hy is the space of all functions that are linear combinations of
Gaussians.

e the kernel is a dot product in Hjy and a non-linear similarity
on X.



The reproducing property

o With the definition of Hy and (-, -). one has

((k(2),FO)e = f@)  Vf € My

e This is called the reproducing property.

e Leads to the reproducing Kernel Hilbert Spaces



The reproducing property

o With the definition of Hy and (-, -). one has

((k(2),FO)e = f@)  Vf € My

e This is called the reproducing property.

e Leads to the reproducing Kernel Hilbert Spaces

Definition
A Hilbert Space is a complete dot-product space.
(vector space + dot product + limit points of all Cauchy

sequences)



Reproducing kernel Hilbert spaces

Definition

Let H be a Hilbert space of functions f: X — R. H is a
Reproducing Kernel Hilbert Space (rkhs) with inner-product (-, -).
if there exists a

E:AxX—R

s. t.

e k(-,-) spans H that is

H={fC)] f()=>, i k(-,x;) for &; € R and z; € X'}
e k(-,-) is a reproducing kernel of H

fle) = (FC)k(2))e VeH



Interpretation |lI: Mercer Kernels

Theorem
Letk: X x X = R be a Mercer kernel. Then there exists an
orthonormal set of functions

/@@%@MZ%

and a set of \; > 0 such that

o) N ://kz(m,y)dxdy<oo and

® k(z,y) => Nioi(2)di(y)
=1



Transformation induced by a Mercer kernel

This eigen-decomposition gives another way to design the feature
transformation induced by the kernel &(-,-).
o Let

P: X — 52
be defined by
P(z) = (VA ¢1(2), VA2 p2(2), .. )

where /5 is the space of square summable sequences.
e Clearly

(@(2), ®(y)) = > VNidi(@) v/ Nid(y)
i=1

= Z)\z‘(ﬁi(x)@(y) = k(z,y)
i—1



Issues

Therefore there is a vector space 5 other than Hj such that
k(z,y) is a dot product in that space.

e Have two very different interpretations of what the kernel
does

@ Reproducing kernel map
@® Mercer kernel map

e They are in fact more or less the same.



rkhs Vs Mercer maps

e For H s we write

O(x) =375 Vi di(x)e

e As the ¢;'s are orthonormal there is a 1-1 map

[F 1l — span{g}  er =/ oi() ]

e Can write

(Co®)@) = % VRi6i@)oi() = k(o) |

e Hence k(-,z) maps x into M = span{¢x(-)}



The Mercer picture




Mercer map

Define the inner-product in M as

~ [s@gta)ds

Note we will normalize the eigenfunctions ¢; such that

/ d1(z)pr( 5lk

Any function f € M can be written as

7) =Y g dp()
k=1

then



Mercer map

)R 9))m = / f(@)k(z,y) de
= /iamﬁk i)\l o
k=1 =1

.. k is a reproducing kernel on M.



Mercer map Vs Reproducing kernel map

We want to check if
e the space M = H;,
e (f,9)m and (f, g). are equivalent.

To do this will involve the following steps
@ Show H; C M.

@ Show (f,g)m = (f,9)« for f,g € H.
©® Show M C H;.



If f € Hj then there exists m € N, {«a;} and {z;} such that

f) i k(- z;)

.

@
Il
—

Mg

A o) du(-)

Qv

;

"

I

@
I
—

1

i N\ ¢l($i)> oi(-)

I
e
&MS T

M

<

1)

~

1

Thus f is a linear combination of the ¢;'s and f € M.

This shows that if f € H then f € M and therefore H C M.



Equivalence of the inner-products

Let f,g € H with

Zaz z g() :Z/Bjk("yj)

Then by definition

9 =Y > ibik(zi,y;)

i=1 j=1

= [ £@)g(a) de

:/zn:aik(x,xi) 2
—ZZalﬂj/ (x,2;) k(z,y;) dx

i=1 j=1

While

m

Bik(z,y;) dx
1



Equivalence of the inner-products ctd

(fm =D B / D M@ di(w) D Nets(2)bs(y;) da
=1 s=1

i=1 j=1
n m

i=1 j=1

:Z aiﬁj k(xmy])

a; 3 Z A1 du(xi) di(yy)
=1

Thus for all f,g e H

<f7g>m = <f7g>*



e Can also show that if f € M then also f € Hy.

e Will not prove that here.

e But it implies M C H,,



The reproducing kernel map and the Mercer Kernel map lead to
the same RKHS, Mercer gives us an orthonormal basis.

~N

(Interpretation |
Reproducing kernel map:

Hk:{ Zaz T }
_ZZ Bk (s, 3)
&, : X = k()




The reproducing kernel map and the Mercer Kernel map lead to
the same RKHS, Mercer gives us an orthonormal basis.

N\

(Interpretation Il
Mercer kernel map:

’HM:ZQZ{.T|Z$Z2<OO}

(f,9)«=r'g

By X = (VMbi(@), VAgda(z),...)!
T : ¢y — span{op(-)}
Tody =,




Back to Regularization



Back to regularization

We to solve

min lz L(y;, f(z;)) + )\J(f)]

fere i3

where H, is the RKHS of some appropriate Mercer kernel k(-,-).



What is a good regularizer ?

e Intuition: wigglier functions have larger norm than smoother
functions.

e For f € Hi we have

= Z a@-k(w, ."E@)

— ZO" ZAlfﬁl o1 (4)

— Z [)\l Zamz(ﬂfi)] ¢1(x)
l A

= ZCN%(%)
!



What is a good regularizer ?

e and therefore

1 c?
2 — = L
If(@))” = E crer (i), dr(T))m E W Ck Ol Y

Ik
with ¢; = N 32, iy ().

e Hence
e ||f]|* grows with the number of ¢; different than zero.
e functions with large e-values get penalized less and vice versa

e more coefficients means more high frequencies or less
smoothness.



Representer Theorem

Theorem
Let

e 2:]0,00) — R be a strictly monotonically increasing function
e H is the RKHS associated with a kernel k(x,y)

e L(y, f(x)) be a loss function
then

f=argmin | Ly, f(x:)) + AQ(| f]%)
i=1

feMk

has a representation of the form




Relevance

e The remarkable consequence of the theorem is that

e Can reduce the minimization over the infinite dimensional
space of functions to a minimization over a finite dimensional
space.



Relevance

e The remarkable consequence of the theorem is that

e Can reduce the minimization over the infinite dimensional
space of functions to a minimization over a finite dimensional
space.

e This is because as f = o aik(-, ;) then

A~

112 = (f. /) = Zaza] ),k 7))
= Z aiajk:(:vl-, z;) = o' Ka
j
and

i) = Zajk(mi,xj) =K«

where K = (k(z;,2;)), Gram matrix, and K; is its ith row.



Representer Theorem

Theorem
Let

e O :[0,00) = R be a strictly monotonically increasing function
e H is the RKHS associated with a kernel k(z,y)
e L(y, f(x)) be a loss function

then

f = arg min [Z L(yi, f(z:)) + /\Q(llflﬂ

has a representation of the form

flw) = 32y Qi k(@)

where

& = arg min lz Ly, K; @) + )\Q(atKoz)]

i=1




Regularization and SVM



Rejigging the formulation of the SVM

e When given linearly separable data {(x;,y;)} the optimal
separating hyperplane is given by

[glig 18I subject to vi(Bo+ Alai) = 1Vi ]
05,

e The constraints are fulfilled when

max(0,1 — y;(Bo + B'zi)) = (1 — yi(Bo + B'ai)y =0 Vi

e Hence we can re-write the optimization problem as

iy [2(1 ~ yilBo + Bz)s + IAIP
’ i=1




SVM's connections to regularization

Finding the optimal separating hyperplane

i=1

[g})uﬁl lZ(l —yi(Bo + B'x:))+ + 18?

| E——
—_

can be seen as a regularization problem

[mfin [Z L(ys, f(z:)) + )‘Q(”f”z)} ]

=1

where
o L(y, f(x)) = (1 —yif(zi))+
o QP = 1117



SVM's connections to regularization

e From the Representor theorem know the solution to the latter
problem is

f(x) = Z aixﬁa:
i=1

if the basic kernel k(z,y) = z'y is used.
e Therefore || f||? = o' K a

e This is the same form of the solution found via the KKT
conditions

n
B = § oG Y T
=1



