Chapter 5: Basis Expansion and Regularization

DD3364

April 1, 2012

Introduction

Moving beyond linearity

Main idea

- Augment the vector of inputs X with additional variables.
- These are transformations of X

$$
h_{m}(X): \mathbb{R}^{p} \rightarrow \mathbb{R}
$$

with $m=1, \ldots, M$.

- Then model the relationship between X and Y

$$
f(X)=\sum_{m=1}^{M} \beta_{m} h_{m}(X)=\sum_{m=1}^{M} \beta_{m} Z_{m}
$$

as a linear basis expansion in X.

- Have a linear model w.r.t. Z. Can use the same methods as before.

Which transformations?

Some examples

- Linear:

$$
h_{m}(X)=X_{m}, m=1, \ldots, p
$$

- Polynomial:

$$
h_{m}(X)=X_{j}^{2}, \quad \text { or } \quad h_{m}(X)=X_{j} X_{k}
$$

- Non-linear transformation of single inputs:

$$
h_{m}(X)=\log \left(X_{j}\right), \sqrt{X_{j}}, \ldots
$$

- Non-linear transformation of multiple input:

$$
h_{m}(X)=\|X\|
$$

- Use of Indicator functions:

$$
h_{m}(X)=\operatorname{Ind}\left(L_{m} \leq X_{k}<U_{m}\right)
$$

Pros and Cons of this augmentation

Pros

- Can model more complicated decision boundaries.
- Can model more complicated regression relationships.
- Lack of locality in global basis functions.
- Solution Use local nolvnomial representations such as piecewise-polynomials and splines.
- How should one find the correct complexity in the model?
- There is the danger of over-fitting

Pros and Cons of this augmentation

Pros

- Can model more complicated decision boundaries.
- Can model more complicated regression relationships.

Cons

- Lack of locality in global basis functions.
- Solution Use local polynomial representations such as piecewise-polynomials and splines.
- How should one find the correct complexity in the model?
- There is the danger of over-fitting.

Controlling the complexity of the model

Common approaches taken:

- Restriction Methods

Limit the class of functions considered. Use additive models

$$
f(X)=\sum_{j=1}^{p} \sum_{m=1}^{M_{j}} \beta_{j m} h_{j m}\left(X_{j}\right)
$$

- Selection Methods

Scan the set of h_{m} and only include those that contribute significantly to the fit of the model - Boosting, CART.

- Regularization Methods

Let

$$
f(X)=\sum_{j=1}^{M} \beta_{j} h_{j}(X)
$$

but when learning the β_{j} 's restrict their values in the manner of ridge regression and lasso.

Piecewise Polynomials and Splines

Piecewise polynomial function

To obtain a piecewise polynomial function $f(X)$

- Divide the domain of X into contiguous intervals.
- Represent f by a separate polynomial in each interval.

Examples

Piecewise Constant

Piecewise Linear

Piecewise polynomial function

To obtain a piecewise polynomial function $f(X)$

- Divide the domain of X into contiguous intervals.
- Represent f by a separate polynomial in each interval.

Examples

Piecewise Constant

Piecewise Linear

Blue curve - ground truth function.
Green curve - piecewise constant/linear fit to the training data.

Example: Piecewise constant function

Piecewise Constant

- Divide $[a, b]$, the domain of X, into three regions

$$
\left[a, \xi_{1}\right),\left[\xi_{1}, \xi_{2}\right),\left[\xi_{2}, b\right] \quad \text { with } \xi_{1}<\xi_{2}<\xi_{3} \quad \xi_{i} \text { 's are referred to as knots }
$$

- Define three basis functions $h_{1}(X)=\operatorname{Ind}\left(X<\xi_{1}\right), h_{2}(X)=\operatorname{Ind}\left(\xi_{1} \leq X<\xi_{2}\right), h_{3}(X)=\operatorname{Ind}\left(\xi_{2} \leq X\right)$
- The model $f(X)=\sum_{m=1}^{3} \beta_{m} h_{m}(X)$ is fit using least-squares.
- As basis functions don't overlap $\Longrightarrow \hat{\beta}_{m}=$ mean of y_{i} 's in the m th region.

Example: Piecewise linear function

Piecewise Linear

- In this case define 6 basis functions

$$
\begin{array}{lll}
h_{1}(X)=\operatorname{Ind}\left(X<\xi_{1}\right), & h_{2}(X)=\operatorname{Ind}\left(\xi_{1} \leq X<\xi_{2}\right), & h_{3}(X)=\operatorname{Ind}\left(\xi_{2} \leq X\right) \\
h_{4}(X)=X h_{1}(X), & h_{5}(X)=X h_{2}(X), & h_{6}(X)=X h_{3}(X)
\end{array}
$$

- The model $f(X)=\sum_{m=1}^{6} \beta_{m} h_{m}(X)$ is fit using least-squares.
- As basis functions don't overlap \Longrightarrow fit a separate linear model to the data in each region.

Example: Continuous piecewise linear function

Continuous Piecewise Linear

- Additionally impose the constraint that $f(X)$ is continuous as ξ_{1} and ξ_{2}.
- This means

$$
\begin{aligned}
& \beta_{1}+\beta_{2} \xi_{1}=\beta_{3}+\beta_{4} \xi_{1}, \text { and } \\
& \beta_{3}+\beta_{4} \xi_{2}=\beta_{5}+\beta_{6} \xi_{2}
\end{aligned}
$$

- This reduces the $\#$ of dof of $f(X)$ from 6 to 4 .

A more compact set of basis functions

- To impose the continuity constraints directly can use this basis instead:

$$
\begin{array}{ll}
h_{1}(X)=1 & h_{2}(X)=X \\
h_{3}(X)=\left(X-\xi_{1}\right)_{+} & h_{4}(X)=\left(X-\xi_{2}\right)_{+}
\end{array}
$$

Piecewise-linear Basis Function

Smoother $f(X)$

Can achieve a smoother $f(X)$ by increasing the order

- of the local polynomials
- of the continuity at the knots

Smoother $f(X)$

Can achieve a smoother $f(X)$ by increasing the order

- of the local polynomials
- of the continuity at the knots

Piecewise-cubic polynomials with increasing orders of continuity

Discontinuous

Continuous First Derivative

Continuous

Continuous Second Derivative

$f(X)$ is a cubic spline if

- it is a piecewise cubic polynomial and
- has 1st and 2nd continuity at the knots

A cubic spline

Cubic Spline

A cubic spline

The following basis represents a cubic spline with knots at ξ_{1} and ξ_{2} :

$$
\begin{array}{lll}
h_{1}(X)=1, & h_{3}(X)=X^{2}, & h_{5}(X)=\left(X-\xi_{1}\right)_{+}^{3} \\
h_{2}(X)=X, & h_{4}(X)=X^{3}, & h_{6}(X)=\left(X-\xi_{2}\right)_{+}^{3}
\end{array}
$$

Order M spline

- An order M spline with knots ξ_{1}, \ldots, ξ_{K} is
- a piecewise-polynomial of order M and
- has continuous derivatives up to order $M-2$
- The general form for the truncated-power basis set is

$$
h_{j}(X)=X^{j-1} \quad j=1, \ldots, M
$$

- In practice the most widely used orders are $M=1,2,4$.

Order M spline

- An order M spline with knots ξ_{1}, \ldots, ξ_{K} is
- a piecewise-polynomial of order M and
- has continuous derivatives up to order $M-2$
- The general form for the truncated-power basis set is

$$
\begin{aligned}
h_{j}(X) & =X^{j-1} \quad j=1, \ldots, M \\
h_{M+l}(X) & =\left(X-\xi_{l}\right)_{+}^{M-1}, \quad l=1, \ldots, K
\end{aligned}
$$

- In practice the most widely used orders are $M=1,2,4$.

Order M spline

- An order M spline with knots ξ_{1}, \ldots, ξ_{K} is
- a piecewise-polynomial of order M and
- has continuous derivatives up to order $M-2$
- The general form for the truncated-power basis set is

$$
\begin{aligned}
h_{j}(X) & =X^{j-1} \quad j=1, \ldots, M \\
h_{M+l}(X) & =\left(X-\xi_{l}\right)_{+}^{M-1}, \quad l=1, \ldots, K
\end{aligned}
$$

- In practice the most widely used orders are $M=1,2,4$.

Regression Splines

- Fixed-knot splines are known as regression splines.
- For a regression spline one needs to select
- the order of the spline,
- the number of knots and
- the placement of the knots.
- One common approach is to set a knot at each observation x_{i}.
- There are many equivalent bases for representing splines and the truncated power basis is intuitively attractive but not computationally attractive.
- A better basis set for implementation is the B-spline basis set.

Regression Splines

- Fixed-knot splines are known as regression splines.
- For a regression spline one needs to select
- the order of the spline,
- the number of knots and
- the placement of the knots.
- One common approach is to set a knot at each observation x_{i}.
- There are many equivalent bases for representing splines and the truncated power basis is intuitively attractive but not computationally attractive.
- A better basis set for implementation is the B-spline basis set.

Regression Splines

- Fixed-knot splines are known as regression splines.
- For a regression spline one needs to select
- the order of the spline,
- the number of knots and
- the placement of the knots.
- One common approach is to set a knot at each observation x_{i}.
- There are many equivalent bases for representing splines and the truncated power basis is intuitively attractive but not computationally attractive.
- A better basis set for implementation is the B-spline basis set.

Natural Cubic Splines

Natural Cubic Splines

Problem

The polynomials fit beyond the boundary knots behave wildly.
Solution: Natural Cubic Splines

- Have the additional constraints that the function is linear beyond the boundary knots.
- This frees up 4 dof which can be used by having more knots in the interior region.
- Near the boundaries one has reduced the variance of the fit but increased its bias!

Smoothing Splines

Smoothing Splines

- Avoid knot selection problem by using a maximal set of knots.
- Complexity of the fit is controlled by regularization.
- Consider the following problem:

Find the function $f(x)$ with continuous second derivative which minimizes

Smoothing Splines

- Avoid knot selection problem by using a maximal set of knots.
- Complexity of the fit is controlled by regularization.
- Consider the following problem:

Find the function $f(x)$ with continuous second derivative which minimizes

$$
\operatorname{RSS}(f, \lambda)=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int\left(f^{\prime \prime}(t)\right)^{2} \mathrm{~d} t
$$

Smoothing Splines

- Avoid knot selection problem by using a maximal set of knots.
- Complexity of the fit is controlled by regularization.
- Consider the following problem:

Find the function $f(x)$ with continuous second derivative which minimizes

Smoothing Splines: Smoothing parameter

$$
\operatorname{RSS}(f, \lambda)=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int\left(f^{\prime \prime}(t)\right)^{2} \mathrm{~d} t
$$

- λ establishes a trade-off between predicting the training data and minimizing the curvature of $f(x)$.
- The two special cases are
- $\lambda=0: \hat{f}$ is any function which interpolates the data. - $\lambda=\infty: \hat{f}$ is the simple least squares line fit.
- In these two cases go from very rough to very smooth $\hat{f}(x)$.
- Hope is $\lambda \in(0, \infty)$ indexes an interesting class of functions in between.

Smoothing Splines: Smoothing parameter

$$
\operatorname{RSS}(f, \lambda)=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int\left(f^{\prime \prime}(t)\right)^{2} \mathrm{~d} t
$$

- λ establishes a trade-off between predicting the training data and minimizing the curvature of $f(x)$.
- The two special cases are
- $\lambda=0: \hat{f}$ is any function which interpolates the data.
- $\lambda=\infty: \hat{f}$ is the simple least squares line fit.
- In these two cases go from very rough to very smooth $\hat{f}(x)$.
- Hope is $\lambda \in(0, \infty)$ indexes an interesting class of functions in between.

Smoothing Splines: Smoothing parameter

$$
\operatorname{RSS}(f, \lambda)=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int\left(f^{\prime \prime}(t)\right)^{2} \mathrm{~d} t
$$

- λ establishes a trade-off between predicting the training data and minimizing the curvature of $f(x)$.
- The two special cases are
- $\lambda=0: \hat{f}$ is any function which interpolates the data.
- $\lambda=\infty: \hat{f}$ is the simple least squares line fit.
- In these two cases go from very rough to very smooth $\hat{f}(x)$.
- Hope is $\lambda \in(0, \infty)$ indexes an interesting class of functions in between.

Smoothing Splines: Form of the solution

$$
\operatorname{RSS}(f, \lambda)=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int\left(f^{\prime \prime}(t)\right)^{2} \mathrm{~d} t
$$

- Amazingly the above equation has an explicit, finite-dimensional unique minimizer for a fixed λ.
- It is a natural cubic spline with knots as the unique values of the $x_{i}, i=1$

where the $N_{j}(x)$ are an N-dimensional set of basis functions for renresenting this family of natural solines

Smoothing Splines: Form of the solution

$$
\operatorname{RSS}(f, \lambda)=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int\left(f^{\prime \prime}(t)\right)^{2} \mathrm{~d} t
$$

- Amazingly the above equation has an explicit, finite-dimensional unique minimizer for a fixed λ.
- It is a natural cubic spline with knots as the unique values of the $x_{i}, i=1, \ldots, n$.
- That is

$$
\hat{f}(x)=\sum_{j=1}^{n} N_{j}(x) \theta_{j}
$$

where the $N_{j}(x)$ are an N-dimensional set of basis functions for representing this family of natural splines.

Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

$$
\operatorname{RSS}(\theta, \lambda)=(y-\mathbf{N} \theta)^{t}(y-\mathbf{N} \theta)+\lambda \theta^{t} \Omega_{N} \theta
$$

where

$$
\begin{aligned}
\mathbf{N} & =\left(\begin{array}{cccc}
N_{1}\left(x_{1}\right) & N_{2}\left(x_{1}\right) & \cdots & N_{n}\left(x_{1}\right) \\
N_{1}\left(x_{2}\right) & N_{2}\left(x_{2}\right) & \cdots & N_{n}\left(x_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
N_{1}\left(x_{n}\right) & N_{2}\left(x_{n}\right) & \cdots & N_{n}\left(x_{n}\right)
\end{array}\right) \\
\Omega_{N} & =\left(\begin{array}{cccc}
\int N_{1}^{\prime \prime}(t) N_{1}^{\prime \prime}(t) \mathrm{d} t & \int N_{1}^{\prime \prime}(t) N_{2}^{\prime \prime}(t) \mathrm{d} t & \cdots & \int N_{1}^{\prime \prime}(t) N_{n}^{\prime \prime}(t) \mathrm{d} t \\
\int N_{2}^{\prime \prime}(t) N_{1}^{\prime \prime}(t) \mathrm{d} t & \int N_{2}^{\prime \prime}(t) N_{2}^{\prime \prime}(t) \mathrm{d} t & \cdots & \int N_{2}^{\prime \prime}(t) N_{n}^{\prime \prime}(t) \mathrm{d} t \\
\vdots & \vdots & \ddots & \vdots \\
\int N_{n}^{\prime \prime}(t) N_{1}^{\prime \prime}(t) \mathrm{d} t & \int N_{n}^{\prime \prime}(t) N_{2}^{\prime \prime}(t) \mathrm{d} t & \cdots & \int N_{n}^{\prime \prime}(t) N_{n}^{\prime \prime}(t) \mathrm{d} t
\end{array}\right) \\
y & =\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{t}
\end{aligned}
$$

Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

$$
\operatorname{RSS}(\theta, \lambda)=(y-\mathbf{N} \theta)^{t}(y-\mathbf{N} \theta)+\lambda \theta^{t} \Omega_{N} \theta
$$

and its solution is given by

$$
\hat{\theta}=\left(\mathbf{N}^{t} \mathbf{N}+\lambda \Omega_{N}\right)^{-1} \mathbf{N}^{t} y
$$

Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

$$
\operatorname{RSS}(\theta, \lambda)=(y-\mathbf{N} \theta)^{t}(y-\mathbf{N} \theta)+\lambda \theta^{t} \Omega_{N} \theta
$$

and its solution is given by

$$
\hat{\theta}=\left(\mathbf{N}^{t} \mathbf{N}+\lambda \Omega_{N}\right)^{-1} \mathbf{N}^{t} y
$$

The fitted smoothing spline is then given by

$$
\hat{f}(x)=\sum_{j=1}^{n} N_{j}(x) \hat{\theta}_{j}
$$

Degrees of Freedom and Smoother Matrices

A smoothing spline is a linear smoother

- Assume that λ has been set.
- Remember the estimated coefficients $\hat{\theta}$ are a linear combination of the y_{i} 's

$$
\hat{\theta}=\left(\mathbf{N}^{t} \mathbf{N}+\lambda \Omega_{N}\right)^{-1} \mathbf{N}^{t} y
$$

- Let $\hat{\mathbf{f}}$ be the n-vector of the fitted values $\hat{f}\left(x_{i}\right)$ then

where $S_{\lambda}=\mathbf{N}\left(\mathbf{N}^{t} \mathbf{N}+\lambda \Omega_{N}\right)^{-1} \mathbf{N}^{t}$

A smoothing spline is a linear smoother

- Assume that λ has been set.
- Remember the estimated coefficients $\hat{\theta}$ are a linear combination of the y_{i} 's

$$
\hat{\theta}=\left(\mathbf{N}^{t} \mathbf{N}+\lambda \Omega_{N}\right)^{-1} \mathbf{N}^{t} y
$$

- Let $\hat{\mathbf{f}}$ be the n-vector of the fitted values $\hat{f}\left(x_{i}\right)$ then

$$
\hat{\mathbf{f}}=\mathbf{N} \hat{\theta}=\mathbf{N}\left(\mathbf{N}^{t} \mathbf{N}+\lambda \Omega_{N}\right)^{-1} \mathbf{N}^{t} y=S_{\lambda} y
$$

where $S_{\lambda}=\mathbf{N}\left(\mathbf{N}^{t} \mathbf{N}+\lambda \Omega_{N}\right)^{-1} \mathbf{N}^{t}$.

- S_{λ} is symmetric and positive semi-definite.
- $S_{\lambda} S_{\lambda} \preceq S_{\lambda}$
- S_{λ} has rank n.
- The book defines the effective degrees of freedom of a smoothing spline to be

$$
\mathrm{df}_{\lambda}=\operatorname{trace}\left(S_{\lambda}\right)
$$

Effective dof of a smoothing spline

Both curves were fit with $\lambda \approx .00022$. This choice corresponds to about 12 degrees of freedom.

The eigen-decomposition of $S_{\lambda}: S_{\lambda}$ in Reinsch form

- Let $N=U S V^{t}$ be the svd of N.
- Using this decomposition it is straightforward to re-write

$$
S_{\lambda}=\mathbf{N}\left(\mathbf{N}^{t} \mathbf{N}+\lambda \Omega_{N}\right)^{-1} \mathbf{N}^{t}
$$

as

$$
S_{\lambda}=(1+\lambda K)^{-1}
$$

where

$$
K=U S^{-1} V^{t} \Omega_{N} V S^{-1} U^{t}
$$

- It is also easy to show that $\hat{\mathrm{f}}=S_{\lambda y}$ is the solution to the optimization problem

The eigen-decomposition of $S_{\lambda}: S_{\lambda}$ in Reinsch form

- Let $N=U S V^{t}$ be the svd of N.
- Using this decomposition it is straightforward to re-write

$$
S_{\lambda}=\mathbf{N}\left(\mathbf{N}^{t} \mathbf{N}+\lambda \Omega_{N}\right)^{-1} \mathbf{N}^{t}
$$

as

$$
S_{\lambda}=(1+\lambda K)^{-1}
$$

where

$$
K=U S^{-1} V^{t} \Omega_{N} V S^{-1} U^{t}
$$

- It is also easy to show that $\hat{\mathbf{f}}=S_{\lambda} y$ is the solution to the optimization problem

$$
\min _{\mathbf{f}}(y-\mathbf{f})^{t}(y-\mathbf{f})+\lambda \mathbf{f}^{t} K \mathbf{f}
$$

The eigen-decomposition of S_{λ}

- Let $K=P D P^{-1}$ be the real eigen-decomposition of K possible as K symmetric and positive semi-definite.
- Then

$$
\begin{aligned}
S_{\lambda}=(I+\lambda K)^{-1} & =\left(I+\lambda P D P^{-1}\right)^{-1} \\
& =\left(P P^{-1}+\lambda P D P^{-1}\right)^{-1} \\
& =\left(P(I+\lambda D) P^{-1}\right)^{-1} \\
& =P(I+\lambda D)^{-1} P^{-1} \\
& =\sum_{i=1}^{n} \frac{1}{1+\lambda d_{k}} p_{k} p_{k}^{t}
\end{aligned}
$$

where d_{k} are the elements of diagonal D and e-values of K and p_{k} are the e-vectors of K.

The eigen-decomposition of S_{λ}

- Let $K=P D P^{-1}$ be the real eigen-decomposition of K possible as K symmetric and positive semi-definite.
- Then

$$
\begin{aligned}
S_{\lambda}=(I+\lambda K)^{-1} & =\left(I+\lambda P D P^{-1}\right)^{-1} \\
& =\left(P P^{-1}+\lambda P D P^{-1}\right)^{-1} \\
& =\left(P(I+\lambda D) P^{-1}\right)^{-1} \\
& =P(I+\lambda D)^{-1} P^{-1} \\
& =\sum_{i=1}^{n} \frac{1}{1+\lambda d_{k}} p_{k} p_{k}^{t}
\end{aligned}
$$

where d_{k} are the elements of diagonal D and e-values of K and p_{k} are the e-vectors of K.

- p_{k} are also the e-vectors of S_{λ} and $1 /\left(1+\lambda d_{k}\right)$ its e-values.

Example: Cubic spline smoothing to air pollution data

- Green curve smoothing spline with $\mathrm{df}_{\lambda}=\operatorname{trace}\left(S_{\lambda}\right)=11$.
- Red curve smoothing spline with $\mathrm{df}_{\lambda}=\operatorname{trace}\left(S_{\lambda}\right)=5$.

Example: Eigenvalues of S_{λ}

- Green curve eigenvalues of S_{λ} with $\mathrm{df}_{\lambda}=11$.
- Red curve eigenvalues of S_{λ} with $\mathrm{df}_{\lambda}=5$.

Example: Eigenvectors of S_{λ}

- Each blue curve is an eigenvector of S_{λ} plotted against x. Top left has highest e-value, bottom right samllest.
- Red curve is the eigenvector damped by $1 /\left(1+\lambda d_{k}\right)$.

Highlights of the eigenrepresentation

- The eigenvectors of S_{λ} do not depend on λ.
- The smoothing spline decomposes y w.r.t. the basis $\left\{p_{k}\right\}$ and shrinks the contributions using $1 /\left(1+\lambda d_{k}\right)$ as

$$
S_{\lambda} y=\sum_{k=1}^{n} \frac{1}{1+\lambda d_{k}} p_{k}\left(p_{k}^{t} y\right)
$$

- The first two e-values are always 1 of S_{λ} and correspond to the eigenspace of functions linear in x
- The sequence of p_{k}, ordering by decreasing $1 /\left(1+\lambda d_{k}\right)$, appear to increase in complexity.

Highlights of the eigenrepresentation

- The eigenvectors of S_{λ} do not depend on λ.
- The smoothing spline decomposes y w.r.t. the basis $\left\{p_{k}\right\}$ and shrinks the contributions using $1 /\left(1+\lambda d_{k}\right)$ as

$$
S_{\lambda} y=\sum_{k=1}^{n} \frac{1}{1+\lambda d_{k}} p_{k}\left(p_{k}^{t} y\right)
$$

- The first two e-values are always 1 of S_{λ} and correspond to the eigenspace of functions linear in x.
- The sequence of p_{k}, ordering by decreasing $1 /\left(1+\lambda d_{k}\right)$, appear to increase in complexity.

Highlights of the eigenrepresentation

- The eigenvectors of S_{λ} do not depend on λ.
- The smoothing spline decomposes y w.r.t. the basis $\left\{p_{k}\right\}$ and shrinks the contributions using $1 /\left(1+\lambda d_{k}\right)$ as

$$
S_{\lambda} y=\sum_{k=1}^{n} \frac{1}{1+\lambda d_{k}} p_{k}\left(p_{k}^{t} y\right)
$$

- The first two e-values are always 1 of S_{λ} and correspond to the eigenspace of functions linear in x.
- The sequence of p_{k}, ordering by decreasing $1 /\left(1+\lambda d_{k}\right)$, appear to increase in complexity.
- $\mathrm{df}_{\lambda}=\operatorname{trace}\left(S_{\lambda}\right)=\sum_{k=1}^{n} 1 /\left(1+\lambda d_{k}\right)$.

Visualization of a S_{λ}

Equivalent Kernels

Smoother Matrix

Choosing λ ???

- This is a crucial and tricky problem.
- Will deal with this problem in Chapter 7 when we consider the problem of Model Selection.

Nonparametric Logistic Regression

Back to logistic regression

- Previously considered a binary classifier s.t.

$$
\log \frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}=\beta_{0}+\beta^{t} x
$$

- However, consider the case when

$$
\log \frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}=f(x)
$$

which in turn implies

$$
P(Y=1 \mid X=x)=\frac{e^{f(x)}}{1+e^{f(x)}}
$$

Back to logistic regression

- Previously considered a binary classifier s.t.

$$
\log \frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}=\beta_{0}+\beta^{t} x
$$

- However, consider the case when

$$
\log \frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}=f(x)
$$

which in turn implies

$$
P(Y=1 \mid X=x)=\frac{e^{f(x)}}{1+e^{f(x)}}
$$

- Fitting $f(x)$ in a smooth fashion leads to a smooth estimate of $P(Y=1 \mid X=x)$.

The penalized log-likelihood criterion

Construct the penalized log-likelihood criterion

$$
\begin{aligned}
\ell(f ; \lambda) & =\sum_{i=1}^{n}\left[y_{i} \log P\left(Y=1 \mid x_{i}\right)+\left(1-y_{i}\right) \log \left(1-P\left(Y=1 \mid x_{i}\right)\right)\right]-.5 \lambda \int\left(f^{\prime \prime}(t)\right)^{2} \mathrm{~d} t \\
& =\sum_{i=1}^{n}\left[y_{i} f\left(x_{i}\right)-\log \left(1+e^{f\left(x_{i}\right)}\right)\right]-.5 \lambda \int\left(f^{\prime \prime}(t)\right)^{2} \mathrm{~d} t
\end{aligned}
$$

Regularization and Reproducing Kernel Hilbert Spaces

General class of regularization problems

There is a class of generalization problems which have the form

$$
\min _{f \in \mathcal{H}}\left[\sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda J(f)\right]
$$

where

- $L\left(y_{i}, f\left(x_{i}\right)\right)$ is a loss function,
- $J(f)$ is a penalty functional,
- \mathcal{H} is a space of functions on which $J(f)$ is defined.

Important subclass of problems of this form

- These are generated by a positive definite kernel $K(x, y)$ and
- the corresponding space of functions \mathcal{H}_{K} called a reproducing kernel Hilbert space (RKHS),
- the penalty functional J is defined in terms of the kernel as well.

What does all this mean??

What follows is mainly based on the notes of Nuno Vasconcelos.

Types of Kernels

Definition

A kernel is a mapping $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$.

These three types of kernels are equivalent

dot-product kernel

I

positive definite kernel

I

Mercer kernel

Dot-product kernel

Definition

A mapping

$$
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

is a dot-product kernel if and only if

$$
k(x, y)=\langle\Phi(x), \Phi(y)\rangle
$$

where

$$
\Phi: \mathcal{X} \rightarrow \mathcal{H}
$$

and \mathcal{H} is a vector space and $\langle\cdot, \cdot\rangle$ is an inner-product on \mathcal{H}.

Positive definite kernel

Definition

A mapping

$$
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

is a positive semi-definite kernel on $\mathcal{X} \times \mathcal{X}$ if $\forall m \in \mathbb{N}$ and $\forall x_{1}, \ldots, x_{m}$ with each $x_{i} \in \mathcal{X}$ the Gram matrix

$$
\mathbf{K}=\left(\begin{array}{cccc}
k\left(x_{1}, x_{1}\right) & k\left(x_{1}, x_{2}\right) & \cdots & k\left(x_{1}, x_{m}\right) \\
k\left(x_{2}, x_{1}\right) & k\left(x_{2}, x_{2}\right) & \cdots & k\left(x_{2}, x_{m}\right) \\
\ldots & \ldots & \ddots & \ldots \\
k\left(x_{m}, x_{1}\right) & k\left(x_{m}, x_{2}\right) & \cdots & k\left(x_{m}, x_{m}\right)
\end{array}\right)
$$

is positive semi-definite.

Definition

A symmetric mapping $k: \mathcal{X} \times \mathcal{X} \rightarrow R$ such that

$$
\iint k(x, y) f(x) f(y) \mathrm{d} x \mathrm{~d} y \geq 0
$$

for all functions f s.t.

$$
\int f(x)^{2} \mathrm{~d} x<\infty
$$

is a Mercer kernel.

Two different pictures

These different definitions lead to different interpretations of what the kernel does:

Interpretation I
Reproducing kernel map:

$$
\begin{aligned}
\mathcal{H}_{k} & =\left\{f(.) \mid f(\cdot)=\sum_{j=1}^{m} \alpha_{i} k\left(\cdot, x_{i}\right)\right\} \\
\langle f, g\rangle_{*} & =\sum_{i=1}^{m} \sum_{j=1}^{m^{\prime}} \alpha_{i} \beta_{j} k\left(x_{i}, x_{j}^{\prime}\right) \\
\Phi: \mathcal{X} & \rightarrow k(\cdot, x)
\end{aligned}
$$

Two different pictures

These different definitions lead to different interpretations of what the kernel does:

Interpretation II

Mercer kernel map:

$$
\begin{aligned}
\mathcal{H}_{M} & =\ell_{2}=\left\{x \mid \sum_{i} x_{i}^{2}<\infty\right\} \\
\langle f, g\rangle_{*} & =f^{t} g \\
\Phi: \mathcal{X} & \rightarrow\left(\sqrt{\lambda_{1}} \phi_{1}(x), \sqrt{\lambda_{2}} \phi_{2}(x), \ldots\right)^{t}
\end{aligned}
$$

where λ_{i}, ϕ_{i} are the e-values and eigenfunctions of $k(x, y)$ with $\lambda_{i}>0$.
where ℓ_{2} is the space of vectors s.t. $\sum_{i} a_{i}^{2}<\infty$.

Interpretation I: The dot-product picture

When a Gaussian kernel $k\left(x, x_{i}\right)=\exp \left(-\left\|x-x_{i}\right\|^{2} / \sigma\right)$ is used

- the point $x_{i} \in \mathcal{X}$ is mapped into the Gaussian $G\left(\cdot, x_{i}, \sigma I\right)$
- \mathcal{H}_{k} is the space of all functions that are linear combinations of Gaussians.
- the kernel is a dot product in \mathcal{H}_{k} and a non-linear similarity on \mathcal{X}.

The reproducing property

- With the definition of \mathcal{H}_{k} and $\langle\cdot, \cdot\rangle_{*}$ one has

$$
\langle k(\cdot, x), f(\cdot)\rangle_{*}=f(x) \quad \forall f \in \mathcal{H}_{k}
$$

- This is called the reproducing property.
- Leads to the reproducing Kernel Hilbert Spaces

Definition
A Hilbert Space is a complete dot-product space. (vector space + dot product + limit points of all Cauchy sequences)

The reproducing property

- With the definition of \mathcal{H}_{k} and $\langle\cdot, \cdot\rangle_{*}$ one has

$$
\langle k(\cdot, x), f(\cdot)\rangle_{*}=f(x) \quad \forall f \in \mathcal{H}_{k}
$$

- This is called the reproducing property.
- Leads to the reproducing Kernel Hilbert Spaces

Definition

A Hilbert Space is a complete dot-product space.
(vector space + dot product + limit points of all Cauchy sequences)

Reproducing kernel Hilbert spaces

Definition

Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \rightarrow \mathbb{R}$. \mathcal{H} is a Reproducing Kernel Hilbert Space (rkhs) with inner-product $\langle\cdot, \cdot\rangle_{*}$ if there exists a

$$
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

s. t .

- $k(\cdot, \cdot)$ spans \mathcal{H} that is

$$
\mathcal{H}=\overline{\left\{f(\cdot) \mid f(\cdot)=\sum_{i} \alpha_{i} k\left(\cdot, x_{i}\right) \text { for } \alpha_{i} \in \mathbb{R} \text { and } x_{i} \in \mathcal{X}\right\}}
$$

- $k(\cdot, \cdot)$ is a reproducing kernel of \mathcal{H}

$$
f(x)=\langle f(\cdot), k(\cdot, x)\rangle_{*} \quad \forall f \in \mathcal{H}
$$

Interpretation II: Mercer Kernels

Theorem
Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a Mercer kernel. Then there exists an orthonormal set of functions

$$
\int \phi_{i}(x) \phi_{j}(x) d x=\delta_{i j}
$$

and a set of $\lambda_{i} \geq 0$ such that
(1) $\sum_{i}^{\infty} \lambda_{i}^{2}=\iint k^{2}(x, y) d x d y<\infty$ and
(2) $k(x, y)=\sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(x) \phi_{i}(y)$

Transformation induced by a Mercer kernel

This eigen-decomposition gives another way to design the feature transformation induced by the kernel $k(\cdot, \cdot)$.

- Let

$$
\Phi: \mathcal{X} \rightarrow \ell_{2}
$$

be defined by

$$
\Phi(x)=\left(\sqrt{\lambda_{1}} \phi_{1}(x), \sqrt{\lambda_{2}} \phi_{2}(x), \ldots\right)
$$

where ℓ_{2} is the space of square summable sequences.

- Clearly

$$
\begin{aligned}
\langle\Phi(x), \Phi(y)\rangle & =\sum_{i=1}^{\infty} \sqrt{\lambda_{i}} \phi_{i}(x) \sqrt{\lambda_{i}} \phi_{i}(y) \\
& =\sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(x) \phi_{i}(y)=k(x, y)
\end{aligned}
$$

Therefore there is a vector space ℓ_{2} other than \mathcal{H}_{k} such that $k(x, y)$ is a dot product in that space.

- Have two very different interpretations of what the kernel does
(1) Reproducing kernel map
(2) Mercer kernel map
- They are in fact more or less the same.

rkhs Vs Mercer maps

- For \mathcal{H}_{M} we write

$$
\Phi(x)=\sum_{i} \sqrt{\lambda_{i}} \phi_{i}(x) \mathbf{e}_{i}
$$

- As the ϕ_{i} 's are orthonormal there is a 1-1 map

$$
\Gamma: \ell_{2} \rightarrow \operatorname{span}\left\{\phi_{k}\right\} \quad \mathbf{e}_{k}=\sqrt{\lambda_{k}} \phi_{k}(\cdot)
$$

- Can write

$$
(\Gamma \circ \Phi)(x)=\sum_{i} \sqrt{\lambda_{i}} \phi_{i}(x) \phi_{i}(\cdot)=k(\cdot, x)
$$

- Hence $k(\cdot, x)$ maps x into $\mathcal{M}=\operatorname{span}\left\{\phi_{k}(\cdot)\right\}$

The Mercer picture

Define the inner-product in \mathcal{M} as

$$
\langle f, g\rangle_{\mathrm{m}}=\int f(x) g(x) d x
$$

Note we will normalize the eigenfunctions ϕ_{l} such that

$$
\int \phi_{l}(x) \phi_{k}(x) \mathrm{d} x=\frac{\delta_{l k}}{\lambda_{l}}
$$

Any function $f \in \mathcal{M}$ can be written as

$$
f(x)=\sum_{k=1}^{\infty} \alpha_{k} \phi_{k}(x)
$$

then

$$
\begin{aligned}
\langle f(\cdot), k(\cdot, y)\rangle_{\mathrm{m}} & =\int f(x) k(x, y) d x \\
& =\int \sum_{k=1}^{\infty} \alpha_{k} \phi_{k}(x) \sum_{l=1}^{\infty} \lambda_{l} \phi_{l}(x) \phi_{l}(y) d x \\
& =\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \lambda_{k} \lambda_{l} \phi_{l}(y) \int \phi_{k}(x) \phi_{l}(x) d x \\
& =\sum_{l=1}^{\infty} \lambda_{l} \lambda_{l} \phi_{l}(y) \frac{1}{\lambda_{l}} \\
& =\sum_{l=1}^{\infty} \lambda_{l} \phi_{l}(y)=f(y)
\end{aligned}
$$

$\therefore k$ is a reproducing kernel on \mathcal{M}.

Mercer map Vs Reproducing kernel map

We want to check if

- the space $\mathcal{M}=\mathcal{H}_{k}$
- $\langle f, g\rangle_{\mathrm{m}}$ and $\langle f, g\rangle_{*}$ are equivalent.

To do this will involve the following steps
(1) Show $\mathcal{H}_{k} \subset \mathcal{M}$.
(2) Show $\langle f, g\rangle_{\mathrm{m}}=\langle f, g\rangle_{*}$ for $f, g \in \mathcal{H}_{k}$.
(3) Show $\mathcal{M} \subset \mathcal{H}_{k}$.

If $f \in \mathcal{H}_{k}$ then there exists $m \in \mathbb{N},\left\{\alpha_{i}\right\}$ and $\left\{x_{i}\right\}$ such that

$$
\begin{aligned}
f(\cdot) & =\sum_{i=1}^{m} \alpha_{i} k\left(\cdot, x_{i}\right) \\
& =\sum_{i=1}^{m} \alpha_{i} \sum_{l=1}^{\infty} \lambda_{l} \phi_{l}\left(x_{i}\right) \phi_{l}(\cdot) \\
& =\sum_{l=1}^{\infty}\left(\sum_{i=1}^{m} \alpha_{i} \lambda_{l} \phi_{l}\left(x_{i}\right)\right) \phi_{l}(\cdot) \\
& =\sum_{l=1}^{\infty} \gamma_{l} \phi_{l}(\cdot)
\end{aligned}
$$

Thus f is a linear combination of the ϕ_{i} 's and $f \in \mathcal{M}$.
This shows that if $f \in \mathcal{H}$ then $f \in \mathcal{M}$ and therefore $\mathcal{H} \subset \mathcal{M}$.

Equivalence of the inner-products

Let $f, g \in \mathcal{H}$ with

$$
f(\cdot)=\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right), \quad g(\cdot)=\sum_{j=1}^{m} \beta_{j} k\left(\cdot, y_{j}\right)
$$

Then by definition

$$
\langle f, g\rangle_{*}=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} k\left(x_{i}, y_{j}\right)
$$

While

$$
\begin{aligned}
\langle f, g\rangle_{\mathrm{m}} & =\int f(x) g(x) d x \\
& =\int \sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right) \sum_{j=1}^{m} \beta_{j} k\left(x, y_{j}\right) d x \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} \int k\left(x, x_{i}\right) k\left(x, y_{j}\right) d x
\end{aligned}
$$

Equivalence of the inner-products ctd

$$
\begin{aligned}
\langle f, g\rangle_{\mathrm{m}} & =\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} \int \sum_{l=1}^{\infty} \lambda_{l} \phi_{l}(x) \phi_{l}\left(x_{i}\right) \sum_{s=1}^{\infty} \lambda_{s} \phi_{s}(x) \phi_{s}\left(y_{j}\right) d x \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} \sum_{l=1}^{\infty} \lambda_{l} \phi_{l}\left(x_{i}\right) \phi_{l}\left(y_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} k\left(x_{i}, y_{j}\right) \\
& =\langle f, g\rangle_{*}
\end{aligned}
$$

Thus for all $f, g \in \mathcal{H}$

$$
\langle f, g\rangle_{\mathrm{m}}=\langle f, g\rangle_{*}
$$

- Can also show that if $f \in \mathcal{M}$ then also $f \in \mathcal{H}_{k}$.
- Will not prove that here.
- But it implies $\mathcal{M} \subset \mathcal{H}_{k}$

Summary

The reproducing kernel map and the Mercer Kernel map lead to the same RKHS, Mercer gives us an orthonormal basis.

$$
\begin{aligned}
& \text { Interpretation I } \\
& \text { Reproducing kernel map: } \\
& \qquad \begin{aligned}
\mathcal{H}_{k} & =\left\{f(\cdot) \mid f(\cdot)=\sum_{j=1}^{m} \alpha_{i} k\left(\cdot, x_{i}\right)\right\} \\
\langle f, g\rangle_{*} & =\sum_{i=1}^{m} \sum_{j=1}^{m^{\prime}} \alpha_{i} \beta_{j} k\left(x_{i}, x_{j}^{\prime}\right) \\
\Phi_{r}: \mathcal{X} & \rightarrow k(\cdot, x)
\end{aligned}
\end{aligned}
$$

Summary

The reproducing kernel map and the Mercer Kernel map lead to the same RKHS, Mercer gives us an orthonormal basis.

Interpretation II

Mercer kernel map:

$$
\begin{aligned}
\mathcal{H}_{M} & =\ell_{2}=\left\{x \mid \sum_{i} x_{i}^{2}<\infty\right\} \\
\langle f, g\rangle_{*} & =f^{t} g \\
\Phi_{M}: \mathcal{X} & \rightarrow\left(\sqrt{\lambda_{1}} \phi_{1}(x), \sqrt{\lambda_{2}} \phi_{2}(x), \ldots\right)^{t} \\
\Gamma: \ell_{2} & \rightarrow \operatorname{span}\left\{\phi_{k}(\cdot)\right\} \\
\Gamma \circ \Phi_{M} & =\Phi_{r}
\end{aligned}
$$

Back to Regularization

Back to regularization

We to solve

$$
\min _{f \in \mathcal{H}_{k}}\left[\sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda J(f)\right]
$$

where \mathcal{H}_{k} is the RKHS of some appropriate Mercer kernel $k(\cdot, \cdot)$.

What is a good regularizer ?

- Intuition: wigglier functions have larger norm than smoother functions.
- For $f \in \mathcal{H}_{k}$ we have

$$
\begin{aligned}
f(x) & =\sum_{i} \alpha_{i} k\left(x, x_{i}\right) \\
& =\sum_{i} \alpha_{i} \sum_{l} \lambda_{l} \phi_{l}(x) \phi_{l}\left(x_{i}\right) \\
& =\sum_{l}\left[\lambda_{l} \sum_{i} \alpha_{i} \phi_{l}\left(x_{i}\right)\right] \phi_{l}(x) \\
& =\sum_{l} c_{l} \phi_{l}(x)
\end{aligned}
$$

What is a good regularizer ?

- and therefore

$$
\|f(x)\|^{2}=\sum_{l k} c_{l} c_{k}\left\langle\phi_{l}(x), \phi_{k}(x)\right\rangle_{m}=\sum_{l k} \frac{1}{\lambda_{l}} c_{l} c_{k} \delta_{l k}=\sum_{l} \frac{c_{l}^{2}}{\lambda_{l}}
$$

with $c_{l}=\lambda_{l} \sum_{i} \alpha_{i} \phi_{l}\left(x_{i}\right)$.

- Hence
- $\|f\|^{2}$ grows with the number of c_{i} different than zero.
- functions with large e-values get penalized less and vice versa
- more coefficients means more high frequencies or less smoothness.

Representer Theorem

Theorem

Let

- $\Omega:[0, \infty) \rightarrow \mathbb{R}$ be a strictly monotonically increasing function
- \mathcal{H} is the RKHS associated with a kernel $k(x, y)$
- $L(y, f(x))$ be a loss function
then

$$
\hat{f}=\arg \min _{f \in \mathcal{H}_{k}}\left[\sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \Omega\left(\|f\|^{2}\right)\right]
$$

has a representation of the form

$$
\hat{f}(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)
$$

Relevance

- The remarkable consequence of the theorem is that
- Can reduce the minimization over the infinite dimensional space of functions to a minimization over a finite dimensional space.
- This is because as $\hat{f}=\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right)$ then

and

Relevance

- The remarkable consequence of the theorem is that
- Can reduce the minimization over the infinite dimensional space of functions to a minimization over a finite dimensional space.
- This is because as $\hat{f}=\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right)$ then

$$
\begin{aligned}
\|\hat{f}\|^{2} & =\langle\hat{f}, \hat{f}\rangle=\sum_{i j} \alpha_{i} \alpha_{j}\left\langle k\left(\cdot, x_{i}\right), k\left(\cdot, x_{j}\right)\right\rangle \\
& =\sum_{i j} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right)=\alpha^{t} \mathbf{K} \alpha
\end{aligned}
$$

and

$$
\hat{f}\left(x_{i}\right)=\sum_{j} \alpha_{j} k\left(x_{i}, x_{j}\right)=\mathbf{K}_{i} \alpha
$$

where $\mathbf{K}=\left(k\left(x_{i}, x_{j}\right)\right)$, Gram matrix, and \mathbf{K}_{i} is its i th row.

Representer Theorem

Theorem
Let

- $\Omega:[0, \infty) \rightarrow \mathbb{R}$ be a strictly monotonically increasing function
- \mathcal{H} is the RKHS associated with a kernel $k(x, y)$
- $L(y, f(x))$ be a loss function
then

$$
\hat{f}=\arg \min _{f \in \mathcal{H}_{k}}\left[\sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \Omega\left(\|f\|^{2}\right)\right]
$$

has a representation of the form

$$
\hat{f}(x)=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(x, x_{i}\right)
$$

where

$$
\hat{\alpha}=\arg \min _{\alpha}\left[\sum_{i=1}^{n} L\left(y_{i}, \mathbf{K}_{i} \alpha\right)+\lambda \Omega\left(\alpha^{t} \mathbf{K} \alpha\right)\right]
$$

Regularization and SVM

Rejigging the formulation of the SVM

- When given linearly separable data $\left\{\left(x_{i}, y_{i}\right)\right\}$ the optimal separating hyperplane is given by

$$
\min _{\beta_{0}, \beta}\|\beta\|^{2} \quad \text { subject to } \quad y_{i}\left(\beta_{0}+\beta^{t} x_{i}\right) \geq 1 \forall i
$$

- The constraints are fulfilled when

$$
\max \left(0,1-y_{i}\left(\beta_{0}+\beta^{t} x_{i}\right)\right)=\left(1-y_{i}\left(\beta_{0}+\beta^{t} x_{i}\right)_{+}=0 \quad \forall i\right.
$$

- Hence we can re-write the optimization problem as

$$
\min _{\beta_{0}, \beta}\left[\sum_{i=1}^{n}\left(1-y_{i}\left(\beta_{0}+\beta^{t} x_{i}\right)\right)_{+}+\|\beta\|^{2}\right]
$$

SVM's connections to regularization

Finding the optimal separating hyperplane

$$
\min _{\beta_{0}, \beta}\left[\sum_{i=1}^{n}\left(1-y_{i}\left(\beta_{0}+\beta^{t} x_{i}\right)\right)_{+}+\|\beta\|^{2}\right]
$$

can be seen as a regularization problem

$$
\min _{f}\left[\sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \Omega\left(\|f\|^{2}\right)\right]
$$

where

- $L(y, f(x))=\left(1-y_{i} f\left(x_{i}\right)\right)_{+}$
- $\Omega\left(\|f\|^{2}\right)=\|f\|^{2}$

SVM's connections to regularization

- From the Representor theorem know the solution to the latter problem is

$$
\hat{f}(x)=\sum_{i=1}^{n} \alpha_{i} x_{i}^{t} x
$$

if the basic kernel $k(x, y)=x^{t} y$ is used.

- Therefore $\|f\|^{2}=\alpha^{t} \mathbf{K} \alpha$
- This is the same form of the solution found via the KKT conditions

$$
\hat{\beta}=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}
$$

