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Introduction



Moving beyond linearity

Main idea

• Augment the vector of inputs X with additional variables.

• These are transformations of X

hm(X) : Rp → R

with m = 1, . . . ,M .

• Then model the relationship between X and Y

f(X) =

M∑

m=1

βm hm(X) =

M∑

m=1

βm Zm

as a linear basis expansion in X.

• Have a linear model w.r.t. Z. Can use the same methods as
before.



Which transformations?

Some examples

• Linear:

hm(X) = Xm, m = 1, . . . , p

• Polynomial:

hm(X) = X2
j , or hm(X) = Xj Xk

• Non-linear transformation of single inputs:

hm(X) = log(Xj),
√
Xj , ...

• Non-linear transformation of multiple input:

hm(X) = ‖X‖
• Use of Indicator functions:

hm(X) = Ind(Lm ≤ Xk < Um)



Pros and Cons of this augmentation

Pros

• Can model more complicated decision boundaries.

• Can model more complicated regression relationships.

Cons

• Lack of locality in global basis functions.

• Solution Use local polynomial representations such as
piecewise-polynomials and splines.

• How should one find the correct complexity in the model?

• There is the danger of over-fitting.
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Controlling the complexity of the model

Common approaches taken:

• Restriction Methods
Limit the class of functions considered. Use additive models

f(X) =

p∑

j=1

Mj∑

m=1

βjm hjm(Xj)

• Selection Methods
Scan the set of hm and only include those that contribute
significantly to the fit of the model - Boosting, CART.

• Regularization Methods
Let

f(X) =

M∑

j=1

βj hj(X)

but when learning the βj ’s restrict their values in the manner
of ridge regression and lasso.



Piecewise Polynomials and Splines



Piecewise polynomial function

To obtain a piecewise polynomial function f(X)

• Divide the domain of X into contiguous intervals.

• Represent f by a separate polynomial in each interval.

Examples
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise–
linear basis function, h3(X) = (X − ξ1)+, continuous at ξ1. The black points
indicate the sample evaluations h3(xi), i = 1, . . . , N .

Blue curve - ground truth function.
Green curve - piecewise constant/linear fit to the training data.



Piecewise polynomial function
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise–
linear basis function, h3(X) = (X − ξ1)+, continuous at ξ1. The black points
indicate the sample evaluations h3(xi), i = 1, . . . , N .

Blue curve - ground truth function.
Green curve - piecewise constant/linear fit to the training data.



Example: Piecewise constant function
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise–
linear basis function, h3(X) = (X − ξ1)+, continuous at ξ1. The black points
indicate the sample evaluations h3(xi), i = 1, . . . , N .

• Divide [a, b], the domain of X, into three regions

[a, ξ1), [ξ1, ξ2), [ξ2, b] with ξ1 < ξ2 < ξ3 ξi’s are referred to as knots

• Define three basis functions

h1(X) = Ind(X < ξ1), h2(X) = Ind(ξ1 ≤ X < ξ2), h3(X) = Ind(ξ2 ≤ X)

• The model f(X) =
∑3
m=1 βm hm(X) is fit using least-squares.

• As basis functions don’t overlap =⇒ β̂m = mean of yi’s in
the mth region.



Example: Piecewise linear function
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise–
linear basis function, h3(X) = (X − ξ1)+, continuous at ξ1. The black points
indicate the sample evaluations h3(xi), i = 1, . . . , N .

• In this case define 6 basis functions

h1(X) = Ind(X < ξ1), h2(X) = Ind(ξ1 ≤ X < ξ2), h3(X) = Ind(ξ2 ≤ X)

h4(X) = X h1(X), h5(X) = X h2(X), h6(X) = X h3(X)

• The model f(X) =
∑6
m=1 βm hm(X) is fit using least-squares.

• As basis functions don’t overlap =⇒ fit a separate linear
model to the data in each region.



Example: Continuous piecewise linear function
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise–
linear basis function, h3(X) = (X − ξ1)+, continuous at ξ1. The black points
indicate the sample evaluations h3(xi), i = 1, . . . , N .

• Additionally impose the constraint that f(X) is continuous as
ξ1 and ξ2.

• This means

β1 + β2ξ1 = β3 + β4ξ1, and

β3 + β4ξ2 = β5 + β6ξ2

• This reduces the # of dof of f(X) from 6 to 4.



A more compact set of basis functions

• To impose the continuity constraints directly can use this
basis instead:

h1(X) = 1 h2(X) = X

h3(X) = (X − ξ1)+ h4(X) = (X − ξ2)+
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise–
linear basis function, h3(X) = (X − ξ1)+, continuous at ξ1. The black points
indicate the sample evaluations h3(xi), i = 1, . . . , N .



Smoother f(X)

Can achieve a smoother f(X) by increasing the order

• of the local polynomials

• of the continuity at the knots



Smoother f(X)

Can achieve a smoother f(X) by increasing the order

• of the local polynomials

• of the continuity at the knots

Piecewise-cubic polynomials with increasing orders of continuity
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)
3
+,

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)
3
+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.



Cubic Spline

f(X) is a cubic spline if

• it is a piecewise cubic polynomial and

• has 1st and 2nd continuity at the knots
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)
3
+,

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)
3
+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

A cubic spline



Cubic Spline

A cubic spline
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)
3
+,

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)
3
+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

The following basis represents a cubic spline with knots at ξ1 and
ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)3+

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)3+



Order M spline

• An order M spline with knots ξ1, . . . , ξK is

• a piecewise-polynomial of order M and

• has continuous derivatives up to order M − 2

• The general form for the truncated-power basis set is

hj(X) = Xj−1 j = 1, . . . ,M

hM+l(X) = (X − ξl)M−1+ , l = 1, . . . ,K

• In practice the most widely used orders are M = 1, 2, 4.



Order M spline

• An order M spline with knots ξ1, . . . , ξK is

• a piecewise-polynomial of order M and

• has continuous derivatives up to order M − 2

• The general form for the truncated-power basis set is

hj(X) = Xj−1 j = 1, . . . ,M

hM+l(X) = (X − ξl)M−1+ , l = 1, . . . ,K

• In practice the most widely used orders are M = 1, 2, 4.



Order M spline

• An order M spline with knots ξ1, . . . , ξK is

• a piecewise-polynomial of order M and

• has continuous derivatives up to order M − 2

• The general form for the truncated-power basis set is

hj(X) = Xj−1 j = 1, . . . ,M

hM+l(X) = (X − ξl)M−1+ , l = 1, . . . ,K

• In practice the most widely used orders are M = 1, 2, 4.



Regression Splines

• Fixed-knot splines are known as regression splines.

• For a regression spline one needs to select

• the order of the spline,

• the number of knots and

• the placement of the knots.

• One common approach is to set a knot at each observation xi.

• There are many equivalent bases for representing splines and
the truncated power basis is intuitively attractive but not
computationally attractive.

• A better basis set for implementation is the B-spline basis set.



Regression Splines

• Fixed-knot splines are known as regression splines.

• For a regression spline one needs to select

• the order of the spline,

• the number of knots and

• the placement of the knots.

• One common approach is to set a knot at each observation xi.

• There are many equivalent bases for representing splines and
the truncated power basis is intuitively attractive but not
computationally attractive.

• A better basis set for implementation is the B-spline basis set.



Regression Splines

• Fixed-knot splines are known as regression splines.

• For a regression spline one needs to select

• the order of the spline,

• the number of knots and

• the placement of the knots.

• One common approach is to set a knot at each observation xi.

• There are many equivalent bases for representing splines and
the truncated power basis is intuitively attractive but not
computationally attractive.

• A better basis set for implementation is the B-spline basis set.



Natural Cubic Splines



Natural Cubic Splines

Problem
The polynomials fit beyond the boundary knots behave wildly.

Solution: Natural Cubic Splines

• Have the additional constraints that the function is linear
beyond the boundary knots.

• This frees up 4 dof which can be used by having more knots
in the interior region.

• Near the boundaries one has reduced the variance of the fit
but increased its bias!



Smoothing Splines



Smoothing Splines

• Avoid knot selection problem by using a maximal set of knots.

• Complexity of the fit is controlled by regularization.

• Consider the following problem:

Find the function f(x) with continuous second derivative

which minimizes

RSS(f, λ) =

n∑

i=1

(yi − f(xi))
2 + λ

∫
(f ′′(t))2dt
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Smoothing Splines

• Avoid knot selection problem by using a maximal set of knots.

• Complexity of the fit is controlled by regularization.

• Consider the following problem:

Find the function f(x) with continuous second derivative

which minimizes

RSS(f, λ) =

n∑

i=1

(yi − f(xi))
2 + λ

∫
(f ′′(t))2dt

closeness to data
smoothing parameter

curvature penalty



Smoothing Splines: Smoothing parameter

RSS(f, λ) =

n∑

i=1

(yi − f(xi))
2 + λ

∫
(f ′′(t))2dt

• λ establishes a trade-off between predicting the training data
and minimizing the curvature of f(x).

• The two special cases are

• λ = 0: f̂ is any function which interpolates the data.

• λ =∞: f̂ is the simple least squares line fit.

• In these two cases go from very rough to very smooth f̂(x).

• Hope is λ ∈ (0,∞) indexes an interesting class of functions in
between.
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Smoothing Splines: Form of the solution

RSS(f, λ) =

n∑

i=1

(yi − f(xi))
2 + λ

∫
(f ′′(t))2dt

• Amazingly the above equation has an explicit,
finite-dimensional unique minimizer for a fixed λ.

• It is a natural cubic spline with knots as the unique values of
the xi, i = 1, . . . , n.

• That is

f̂(x) =

n∑

j=1

Nj(x)θj

where the Nj(x) are an N -dimensional set of basis functions
for representing this family of natural splines.
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Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

RSS(θ, λ) = (y −Nθ)t(y −Nθ) + λ θt ΩN θ

where

N =


N1(x1) N2(x1) · · · Nn(x1)
N1(x2) N2(x2) · · · Nn(x2)

...
...

. . .
...

N1(xn) N2(xn) · · · Nn(xn)



ΩN =


∫
N ′′

1 (t)N ′′
1 (t)dt

∫
N ′′

1 (t)N ′′
2 (t)dt · · ·

∫
N ′′

1 (t)N ′′
n (t)dt∫

N ′′
2 (t)N ′′

1 (t)dt
∫
N ′′

2 (t)N ′′
2 (t)dt · · ·

∫
N ′′

2 (t)N ′′
n (t)dt

...
...

. . .
...∫

N ′′
n (t)N ′′

1 (t)dt
∫
N ′′
n (t)N ′′

2 (t)dt · · ·
∫
N ′′
n (t)N ′′

n (t)dt


y = (y1, y2, . . . , yn)t



Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

RSS(θ, λ) = (y −Nθ)t(y −Nθ) + λ θt ΩN θ

and its solution is given by

θ̂ = (NtN + λΩN )−1Nty

The fitted smoothing spline is then given by

f̂(x) =

n∑

j=1

Nj(x)θ̂j
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Degrees of Freedom and Smoother Matrices



A smoothing spline is a linear smoother

• Assume that λ has been set.

• Remember the estimated coefficients θ̂ are a linear
combination of the yi’s

θ̂ = (NtN + λΩN )−1Nty

• Let f̂ be the n-vector of the fitted values f̂(xi) then

f̂ = Nθ̂ = N(NtN + λΩN )−1Nty = Sλ y

where Sλ = N(NtN + λΩN )−1Nt.



A smoothing spline is a linear smoother

• Assume that λ has been set.

• Remember the estimated coefficients θ̂ are a linear
combination of the yi’s

θ̂ = (NtN + λΩN )−1Nty

• Let f̂ be the n-vector of the fitted values f̂(xi) then

f̂ = Nθ̂ = N(NtN + λΩN )−1Nty = Sλ y

where Sλ = N(NtN + λΩN )−1Nt.



Properties of Sλ

• Sλ is symmetric and positive semi-definite.

• SλSλ � Sλ

• Sλ has rank n.

• The book defines the effective degrees of freedom of a
smoothing spline to be

dfλ = trace(Sλ)



Effective dof of a smoothing spline

152 5. Basis Expansions and Regularization
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FIGURE 5.6. The response is the relative change in bone mineral density mea-
sured at the spine in adolescents, as a function of age. A separate smoothing spline
was fit to the males and females, with λ ≈ 0.00022. This choice corresponds to
about 12 degrees of freedom.

where the Nj(x) are an N -dimensional set of basis functions for repre-
senting this family of natural splines (Section 5.2.1 and Exercise 5.4). The
criterion thus reduces to

RSS(θ,λ) = (y − Nθ)T (y − Nθ) + λθT ΩNθ, (5.11)

where {N}ij = Nj(xi) and {ΩN}jk =
∫

N ′′
j (t)N ′′

k (t)dt. The solution is
easily seen to be

θ̂ = (NT N + λΩN )−1NT y, (5.12)

a generalized ridge regression. The fitted smoothing spline is given by

f̂(x) =
N∑

j=1

Nj(x)θ̂j . (5.13)

Efficient computational techniques for smoothing splines are discussed in
the Appendix to this chapter.

Figure 5.6 shows a smoothing spline fit to some data on bone mineral
density (BMD) in adolescents. The response is relative change in spinal
BMD over two consecutive visits, typically about one year apart. The data
are color coded by gender, and two separate curves were fit. This simple

Both curves were fit with λ ≈ .00022. This choice corresponds to
about 12 degrees of freedom.



The eigen-decomposition of Sλ: Sλ in Reinsch form

• Let N = USV t be the svd of N .

• Using this decomposition it is straightforward to re-write

Sλ = N(NtN + λΩN )−1Nt

as

Sλ = (1 + λK)−1

where

K = US−1V t ΩNV S
−1U t.

• It is also easy to show that f̂ = Sλy is the solution to the
optimization problem

min
f

(y − f)t(y − f) + λf tKf
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The eigen-decomposition of Sλ

• Let K = PDP−1 be the real eigen-decomposition of K -
possible as K symmetric and positive semi-definite.

• Then

Sλ = (I + λK)−1 = (I + λPDP−1)−1

= (PP−1 + λPDP−1)−1

= (P (I + λD)P−1)−1

= P (I + λD)−1P−1

=

n∑

i=1

1

1 + λdk
pk p

t
k

where dk are the elements of diagonal D and e-values of K
and pk are the e-vectors of K.

• pk are also the e-vectors of Sλ and 1/(1 + λdk) its e-values.
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Example: Cubic spline smoothing to air pollution data5.4 Smoothing Splines 155

Daggot Pressure Gradient
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FIGURE 5.7. (Top:) Smoothing spline fit of ozone concentration versus Daggot
pressure gradient. The two fits correspond to different values of the smoothing
parameter, chosen to achieve five and eleven effective degrees of freedom, defined
by dfλ = trace(Sλ). (Lower left:) First 25 eigenvalues for the two smoothing-spline
matrices. The first two are exactly 1, and all are ≥ 0. (Lower right:) Third to
sixth eigenvectors of the spline smoother matrices. In each case, uk is plotted
against x, and as such is viewed as a function of x. The rug at the base of the
plots indicate the occurrence of data points. The damped functions represent the
smoothed versions of these functions (using the 5 df smoother).

• Green curve smoothing spline with dfλ = trace(Sλ) = 11.

• Red curve smoothing spline with dfλ = trace(Sλ) = 5.



Example: Eigenvalues of Sλ
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FIGURE 5.7. (Top:) Smoothing spline fit of ozone concentration versus Daggot
pressure gradient. The two fits correspond to different values of the smoothing
parameter, chosen to achieve five and eleven effective degrees of freedom, defined
by dfλ = trace(Sλ). (Lower left:) First 25 eigenvalues for the two smoothing-spline
matrices. The first two are exactly 1, and all are ≥ 0. (Lower right:) Third to
sixth eigenvectors of the spline smoother matrices. In each case, uk is plotted
against x, and as such is viewed as a function of x. The rug at the base of the
plots indicate the occurrence of data points. The damped functions represent the
smoothed versions of these functions (using the 5 df smoother).

• Green curve eigenvalues of Sλ with dfλ = 11.

• Red curve eigenvalues of Sλ with dfλ = 5.
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FIGURE 5.7. (Top:) Smoothing spline fit of ozone concentration versus Daggot
pressure gradient. The two fits correspond to different values of the smoothing
parameter, chosen to achieve five and eleven effective degrees of freedom, defined
by dfλ = trace(Sλ). (Lower left:) First 25 eigenvalues for the two smoothing-spline
matrices. The first two are exactly 1, and all are ≥ 0. (Lower right:) Third to
sixth eigenvectors of the spline smoother matrices. In each case, uk is plotted
against x, and as such is viewed as a function of x. The rug at the base of the
plots indicate the occurrence of data points. The damped functions represent the
smoothed versions of these functions (using the 5 df smoother).

• Each blue curve is an eigenvector of Sλ plotted against x. Top left
has highest e-value, bottom right samllest.

• Red curve is the eigenvector damped by 1/(1 + λdk).



Highlights of the eigenrepresentation

• The eigenvectors of Sλ do not depend on λ.

• The smoothing spline decomposes y w.r.t. the basis {pk} and
shrinks the contributions using 1/(1 + λdk) as

Sλy =

n∑

k=1

1

1 + λdk
pk(p

t
ky)

• The first two e-values are always 1 of Sλ and correspond to
the eigenspace of functions linear in x.

• The sequence of pk, ordering by decreasing 1/(1 + λdk),
appear to increase in complexity.

• dfλ = trace(Sλ) =

n∑

k=1

1/(1 + λdk).
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Visualization of a Sλ
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Equivalent Kernels

FIGURE 5.8. The smoother matrix for a smoothing spline is nearly banded,
indicating an equivalent kernel with local support. The left panel represents the
elements of S as an image. The right panel shows the equivalent kernel or weight-
ing function in detail for the indicated rows.



Choosing λ ???

• This is a crucial and tricky problem.

• Will deal with this problem in Chapter 7 when we consider the
problem of Model Selection.



Nonparametric Logistic Regression



Back to logistic regression

• Previously considered a binary classifier s.t.

log
P (Y = 1|X = x)

P (Y = 0|X = x)
= β0 + βtx

• However, consider the case when

log
P (Y = 1|X = x)

P (Y = 0|X = x)
= f(x)

which in turn implies

P (Y = 1|X = x) =
ef(x)

1 + ef(x)

• Fitting f(x) in a smooth fashion leads to a smooth estimate
of P (Y = 1|X = x).
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The penalized log-likelihood criterion

Construct the penalized log-likelihood criterion

`(f ;λ) =

n∑
i=1

[yi logP (Y = 1|xi) + (1− yi) log(1− P (Y = 1|xi))]− .5λ
∫

(f ′′(t))2dt

=

n∑
i=1

[yif(xi)− log(1 + ef(xi))]− .5λ
∫

(f ′′(t))2dt



Regularization and Reproducing Kernel
Hilbert Spaces



General class of regularization problems

There is a class of generalization problems which have the form

min
f∈H

[
n∑

i=1

L(yi, f(xi)) + λJ(f)

]

where

• L(yi, f(xi)) is a loss function,

• J(f) is a penalty functional,

• H is a space of functions on which J(f) is defined.



Important subclass of problems of this form

• These are generated by a positive definite kernel K(x, y) and

• the corresponding space of functions HK called a reproducing
kernel Hilbert space (RKHS),

• the penalty functional J is defined in terms of the kernel as
well.

What does all this mean??

What follows is mainly based on the notes of Nuno Vasconcelos.

http://www.svcl.ucsd.edu/courses/ece271B-F09


Types of Kernels

Definition
A kernel is a mapping k : X × X → R.

These three types of kernels are equivalent

dot-product kernel

m

positive definite kernel

m

Mercer kernel



Dot-product kernel

Definition
A mapping

k : X × X → R

is a dot-product kernel if and only if

k(x, y) = 〈Φ(x),Φ(y)〉

where

Φ : X → H

and H is a vector space and 〈·, ·〉 is an inner-product on H.



Positive definite kernel

Definition
A mapping

k : X × X → R

is a positive semi-definite kernel on X × X if ∀m ∈ N and
∀x1, . . . , xm with each xi ∈ X the Gram matrix

K =




k(x1, x1) k(x1, x2) · · · k(x1, xm)
k(x2, x1) k(x2, x2) · · · k(x2, xm)

. . . . . .
. . . . . .

k(xm, x1) k(xm, x2) · · · k(xm, xm)




is positive semi-definite.



Mercer kernel

Definition
A symmetric mapping k : X × X → R such that

∫ ∫
k(x, y) f(x) f(y) dx dy ≥ 0

for all functions f s.t.

∫
f(x)2 dx <∞

is a Mercer kernel.



Two different pictures

These different definitions lead to different interpretations of what
the kernel does:

Interpretation I

Reproducing kernel map:

Hk =



f(.) | f(·) =

m∑

j=1

αik(·, xi)





〈f, g〉∗ =

m∑

i=1

m′∑

j=1

αiβjk(xi, x
′
j)

Φ : X → k(·, x)



Two different pictures

These different definitions lead to different interpretations of what
the kernel does:

Interpretation II

Mercer kernel map:

HM = `2 =

{
x |
∑

i

x2i <∞
}

〈f, g〉∗ = f tg

Φ : X → (
√
λ1φ1(x),

√
λ2φ2(x), ...)t

where λi, φi are the e-values and eigenfunctions

of k(x, y) with λi > 0.

where `2 is the space of vectors s.t.
∑
i a

2
i <∞.



Interpretation I: The dot-product picture

When a Gaussian kernel k(x, xi) = exp(−‖x− xi‖2/σ) is used

• the point xi ∈ X is mapped into the Gaussian G(·, xi, σI)

• Hk is the space of all functions that are linear combinations of
Gaussians.

• the kernel is a dot product in Hk and a non-linear similarity
on X .



The reproducing property

• With the definition of Hk and 〈·, ·〉∗ one has

〈k(·, x), f(·)〉∗ = f(x) ∀f ∈ Hk

• This is called the reproducing property.

• Leads to the reproducing Kernel Hilbert Spaces

Definition
A Hilbert Space is a complete dot-product space.
(vector space + dot product + limit points of all Cauchy
sequences)
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Reproducing kernel Hilbert spaces

Definition
Let H be a Hilbert space of functions f : X → R. H is a
Reproducing Kernel Hilbert Space (rkhs) with inner-product 〈·, ·〉∗
if there exists a

k : X × X → R

s. t.

• k(·, ·) spans H that is

H = {f(·) | f(·) =
∑

i αi k(·, xi) for αi ∈ R and xi ∈ X}

• k(·, ·) is a reproducing kernel of H

f(x) = 〈f(·), k(·, x)〉∗ ∀ f ∈ H



Interpretation II: Mercer Kernels

Theorem
Let k : X × X → R be a Mercer kernel. Then there exists an
orthonormal set of functions

∫
φi(x)φj(x)dx = δij

and a set of λi ≥ 0 such that

1

∞∑

i

λ2i =

∫ ∫
k2(x, y)dx dy <∞ and

2 k(x, y) =
∞∑

i=1

λiφi(x)φi(y)



Transformation induced by a Mercer kernel

This eigen-decomposition gives another way to design the feature
transformation induced by the kernel k(·, ·).

• Let

Φ : X → `2

be defined by

Φ(x) = (
√
λ1 φ1(x),

√
λ2 φ2(x), . . .)

where `2 is the space of square summable sequences.

• Clearly

〈Φ(x),Φ(y)〉 =

∞∑

i=1

√
λiφi(x)

√
λiφi(y)

=

∞∑

i=1

λiφi(x)φi(y) = k(x, y)



Issues

Therefore there is a vector space `2 other than Hk such that
k(x, y) is a dot product in that space.

• Have two very different interpretations of what the kernel
does

1 Reproducing kernel map
2 Mercer kernel map

• They are in fact more or less the same.



rkhs Vs Mercer maps

• For HM we write

Φ(x) =
∑

i

√
λi φi(x)ei

• As the φi’s are orthonormal there is a 1-1 map

Γ : `2 → span{φk} ek =
√
λk φk(·)

• Can write

(Γ ◦ Φ)(x) =
∑
i

√
λi φi(x)φi(·) = k(·, x)

• Hence k(·, x) maps x into M = span{φk(·)}



The Mercer pictureThe Mercer picture
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Mercer map

Define the inner-product in M as

〈f, g〉m =

∫
f(x)g(x) dx

Note we will normalize the eigenfunctions φl such that

∫
φl(x)φk(x) dx =

δlk
λl

Any function f ∈M can be written as

f(x) =

∞∑

k=1

αk φk(x)

then



Mercer map

〈f(·), k(·, y)〉m =

∫
f(x)k(x, y) dx

=

∫ ∞∑

k=1

αkφk(x)

∞∑

l=1

λl φl(x)φl(y) dx

=

∞∑

k=1

∞∑

l=1

λk λl φl(y)

∫
φk(x)φl(x) dx

=

∞∑

l=1

λl λl φl(y)
1

λl

=

∞∑

l=1

λl φl(y) = f(y)

∴ k is a reproducing kernel on M.



Mercer map Vs Reproducing kernel map

We want to check if

• the space M = Hk
• 〈f, g〉m and 〈f, g〉∗ are equivalent.

To do this will involve the following steps

1 Show Hk ⊂M.

2 Show 〈f, g〉m = 〈f, g〉∗ for f, g ∈ Hk.

3 Show M⊂ Hk.



Hk ⊂M

If f ∈ Hk then there exists m ∈ N, {αi} and {xi} such that

f(·) =

m∑

i=1

αi k(·, xi)

=

m∑

i=1

αi

∞∑

l=1

λl φl(xi)φl(·)

=

∞∑

l=1

(
m∑

i=1

αi λl φl(xi)

)
φl(·)

=

∞∑

l=1

γl φl(·)

Thus f is a linear combination of the φi’s and f ∈M.

This shows that if f ∈ H then f ∈M and therefore H ⊂M.



Equivalence of the inner-products

Let f, g ∈ H with

f(·) =

n∑

i=1

αik(·, xi), g(·) =

m∑

j=1

βjk(·, yj)

Then by definition

〈f, g〉∗ =

n∑

i=1

m∑

j=1

αiβjk(xi, yj)

While

〈f, g〉m =

∫
f(x)g(x) dx

=

∫ n∑

i=1

αik(x, xi)

m∑

j=1

βjk(x, yj) dx

=

n∑

i=1

m∑

j=1

αi βj

∫
k(x, xi) k(x, yj) dx



Equivalence of the inner-products ctd

〈f, g〉m =

n∑

i=1

m∑

j=1

αi βj

∫ ∞∑

l=1

λlφl(x)φl(xi)

∞∑

s=1

λsφs(x)φs(yj) dx

=

n∑

i=1

m∑

j=1

αi βj

∞∑

l=1

λl φl(xi)φl(yj)

=
n∑

i=1

m∑

j=1

αi βj k(xi, yj)

= 〈f, g〉∗

Thus for all f, g ∈ H

〈f, g〉m = 〈f, g〉∗



M⊂ H

• Can also show that if f ∈M then also f ∈ Hk.

• Will not prove that here.

• But it implies M⊂ Hk



Summary

The reproducing kernel map and the Mercer Kernel map lead to
the same RKHS, Mercer gives us an orthonormal basis.

Interpretation I

Reproducing kernel map:

Hk =



f(.) | f(·) =

m∑

j=1

αik(·, xi)





〈f, g〉∗ =

m∑

i=1

m′∑

j=1

αiβjk(xi, x
′
j)

Φr : X → k(·, x)



Summary

The reproducing kernel map and the Mercer Kernel map lead to
the same RKHS, Mercer gives us an orthonormal basis.

Interpretation II

Mercer kernel map:

HM = `2 =

{
x |
∑

i

x2i <∞
}

〈f, g〉∗ = f tg

ΦM : X → (
√
λ1φ1(x),

√
λ2φ2(x), ...)t

Γ : `2 → span{φk(·)}

Γ ◦ ΦM = Φr



Back to Regularization



Back to regularization

We to solve

min
f∈Hk

[
n∑

i=1

L(yi, f(xi)) + λJ(f)

]

where Hk is the RKHS of some appropriate Mercer kernel k(·, ·).



What is a good regularizer ?

• Intuition: wigglier functions have larger norm than smoother
functions.

• For f ∈ Hk we have

f(x) =
∑

i

αik(x, xi)

=
∑

i

αi
∑

l

λlφl(x)φl(xi)

=
∑

l

[
λl
∑

i

αiφl(xi)

]
φl(x)

=
∑

l

clφl(x)



What is a good regularizer ?

• and therefore

‖f(x)‖2 =
∑

lk

cl ck 〈φl(x), φk(x)〉m =
∑

lk

1

λl
cl ck δlk =

∑

l

c2l
λl

with cl = λl
∑

i αiφl(xi).

• Hence

• ‖f‖2 grows with the number of ci different than zero.

• functions with large e-values get penalized less and vice versa

• more coefficients means more high frequencies or less
smoothness.



Representer Theorem

Theorem
Let

• Ω : [0,∞)→ R be a strictly monotonically increasing function

• H is the RKHS associated with a kernel k(x, y)

• L(y, f(x)) be a loss function

then

f̂ = arg min
f∈Hk

[
n∑

i=1

L(yi, f(xi)) + λΩ(‖f‖2)
]

has a representation of the form

f̂(x) =

n∑

i=1

αik(x, xi)



Relevance

• The remarkable consequence of the theorem is that

• Can reduce the minimization over the infinite dimensional
space of functions to a minimization over a finite dimensional
space.

• This is because as f̂ =
∑n

i=1 αik(·, xi) then

‖f̂‖2 = 〈f̂ , f̂〉 =
∑

ij

αiαj〈k(·, xi), k(·, xj)〉

=
∑

ij

αiαjk(xi, xj) = αtKα

and

f̂(xi) =
∑

j

αjk(xi, xj) = Ki α

where K = (k(xi, xj)), Gram matrix, and Ki is its ith row.
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Representer Theorem

Theorem
Let

• Ω : [0,∞)→ R be a strictly monotonically increasing function

• H is the RKHS associated with a kernel k(x, y)

• L(y, f(x)) be a loss function

then

f̂ = arg min
f∈Hk

[
n∑
i=1

L(yi, f(xi)) + λΩ(‖f‖2)

]
has a representation of the form

f̂(x) =
∑n
i=1 α̂i k(x, xi)

where

α̂ = arg min
α

[
n∑

i=1

L(yi,Ki α) + λΩ(αtKα)

]



Regularization and SVM



Rejigging the formulation of the SVM

• When given linearly separable data {(xi, yi)} the optimal
separating hyperplane is given by

min
β0,β
‖β‖2 subject to yi(β0 + βtxi) ≥ 1 ∀i

• The constraints are fulfilled when

max(0, 1− yi(β0 + βtxi)) = (1− yi(β0 + βtxi)+ = 0 ∀i

• Hence we can re-write the optimization problem as

min
β0,β

[
n∑

i=1

(1− yi(β0 + βtxi))+ + ‖β‖2
]



SVM’s connections to regularization

Finding the optimal separating hyperplane

min
β0,β

[
n∑

i=1

(1− yi(β0 + βtxi))+ + ‖β‖2
]

can be seen as a regularization problem

min
f

[
n∑

i=1

L(yi, f(xi)) + λΩ(‖f‖2)

]

where

• L(y, f(x)) = (1− yif(xi))+

• Ω(‖f‖2) = ‖f‖2



SVM’s connections to regularization

• From the Representor theorem know the solution to the latter
problem is

f̂(x) =

n∑

i=1

αix
t
ix

if the basic kernel k(x, y) = xty is used.

• Therefore ‖f‖2 = αtKα

• This is the same form of the solution found via the KKT
conditions

β̂ =

n∑

i=1

αi yi xi


