Chapter 7: Model Assessment and Selection

DD3364

April 20, 2012

Introduction

Regression: Review of our problem

- Have target variable Y to estimate from a vector of inputs X.
- A prediction model $\hat{f}(X)$ has been estimated from training data $\mathcal{T} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- The loss function $L(Y, \widehat{f}(X))$ measures the errors between Y and $\widehat{f}(X).$
- Common loss functions are

$$L(Y, \hat{f}(X)) = egin{cases} (Y - \hat{f}(X))^2 & ext{squared error}, \ |Y - \hat{f}(X)| & ext{absolute error} \end{cases}$$

Regression: Review of our problem

- Have target variable Y to estimate from a vector of inputs X.
- A prediction model $\hat{f}(X)$ has been estimated from training data $\mathcal{T} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- The loss function $L(Y, \widehat{f}(X))$ measures the errors between Y and $\widehat{f}(X).$
- Common loss functions are

$$L(Y, \hat{f}(X)) = egin{cases} (Y - \hat{f}(X))^2 & ext{squared error}, \ |Y - \hat{f}(X)| & ext{absolute error} \end{cases}$$

Regression: Review of our problem

- Have target variable Y to estimate from a vector of inputs X.
- A prediction model $\hat{f}(X)$ has been estimated from training data $\mathcal{T} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- The loss function $L(Y, \widehat{f}(X))$ measures the errors between Y and $\widehat{f}(X).$
- Common loss functions are

$$L(Y, \hat{f}(X)) = egin{cases} (Y - \hat{f}(X))^2 & ext{squared error}, \ |Y - \hat{f}(X)| & ext{absolute error} \end{cases}$$

Definition of Test Error

Test Error a.k.a. generalization error

$$\operatorname{Err}_{\mathcal{T}} = E[L(Y, \hat{f}(X)) \,|\, \mathcal{T}\,]$$

- Prediction error over an independent test sample.
- X and Y are drawn randomly from p(X, Y).
- The training set ${\mathcal T}$ if fixed.

Definition of Expected Prediction Error

Expected Prediction Error (expected test error)

$$\operatorname{Err} = E[L(Y, \hat{f}(X))] = E[\operatorname{Err}_{\mathcal{T}}]$$

• In this case take expectation over all the random quantities including the training set.

Which quantities interest us

- Would like to estimate $Err_{\mathcal{T}}$.
- But in most cases it is easier to estimate Err. Why??

Definition of Expected Prediction Error

Expected Prediction Error (expected test error)

$$\operatorname{Err} = E[L(Y, \hat{f}(X))] = E[\operatorname{Err}_{\mathcal{T}}]$$

• In this case take expectation over all the random quantities including the training set.

Which quantities interest us

- Would like to estimate $Err_{\mathcal{T}}$.
- But in most cases it is easier to estimate Err. Why??

Definition of Training Error

Training error

$$\overline{\operatorname{err}} = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(x_i))$$

Already know as complexity of \hat{f} increases

- then $\overline{\operatorname{err}} \to 0$,
- but there is a tendency to overfit and $Err_{\mathcal{T}}$ increases
- \overline{err} is not a good estimate of $Err_{\mathcal{T}}$ or Err.

We will be revisiting the **Bias-Variance** trade-off.

Issues in assessing generalization ability

Test and training error as model complexity increases.

- 1 Light blue curve: training error err.
- **2** Solid blue curve: expected training error $E[\overline{\text{err}}]$.
- **3** Light red curve: conditional test error $\text{Err}_{\mathcal{T}}$.
- **4** Solid red curve: expected test error Err.

Same story for classification

- Have target categorical variable G ∈ {1,...,K} to estimate from a vector of inputs X.
- Typically model $p_k(X) = P(G = k|X)$ and define

$$\hat{G}(X) = \arg\max_{k} p_k(X)$$

• Common loss functions are

0-1 loss

$$L(G, \hat{G}(X)) = \mathsf{Ind}(G \neq \hat{G}(X))$$

2 log-likelihood a.ka. deviance

$$L(G, \hat{p}(X)) = -2\sum_{k=1}^{K} \operatorname{Ind}(G = k) \hat{p}_k(X) = -2 \log \hat{p}_G(X)$$

Same story for classification

- Have target categorical variable G ∈ {1,...,K} to estimate from a vector of inputs X.
- Typically model $p_k(X) = P(G = k|X)$ and define

$$\hat{G}(X) = \arg\max_{k} p_k(X)$$

• Common loss functions are

0-1 loss

$$L(G, \hat{G}(X)) = \mathsf{Ind}(G \neq \hat{G}(X))$$

2 log-likelihood a.ka. deviance

$$L(G, \hat{p}(X)) = -2\sum_{k=1}^{K} \operatorname{Ind}(G = k) \hat{p}_k(X) = -2 \log \hat{p}_G(X)$$

Same story for classification

- Have target categorical variable G ∈ {1,...,K} to estimate from a vector of inputs X.
- Typically model $p_k(X) = P(G = k|X)$ and define

$$\hat{G}(X) = \arg\max_{k} p_k(X)$$

Common loss functions are

1 0-1 loss

$$L(G,\hat{G}(X)) = \mathsf{Ind}(G \neq \hat{G}(X))$$

2 log-likelihood a.ka. deviance

$$L(G, \hat{p}(X)) = -2\sum_{k=1}^{K} \operatorname{Ind}(G = k) \, \hat{p}_k(X) = -2 \, \log \hat{p}_G(X)$$

• Test Error

$$\mathsf{Err}_{\mathcal{T}} = E[L(G, \hat{G}(X)) \,|\, \mathcal{T}\,]$$

• Training Error one common definition

$$\boxed{\overline{\mathsf{err}} = -\frac{2}{n} \sum_{i=1}^{n} \log \hat{p}_{g_i}(x_i)}$$

Goal of this chapter

- $\hat{f}_{\alpha}(x)$ typically has a tunable parameter α controlling its complexity.
- Want to find the value of α s.t.

$$\hat{\alpha} = \arg\min_{\alpha} E[L(Y, \hat{f}_{\alpha}(X))]$$

- Estimate $E[L(Y, \hat{f}_{\alpha}(X))]$ for different values of α .
- This chapter presents methods how to do this.
- Choose the α with minimum estimate.

Model selection

Estimate the performance of different models in order to choose the best one.

Model Assessment

Having chosen a final model, estimate its prediction error on new data.

For a data-rich situation

Randomly divide the dataset into 3 parts

Train Validation Test

Common split ratio 50%, 25%, 25%.

Model Selection

- Use training set to fit each model.
- Use validation set to estimate $Err_{\mathcal{T}}$ for each model.
- Choose model with lowest $Err_{\mathcal{T}}$ estimate.

Model Assessment of the chosen model

• Use the **test set** - unseen until this stage - to estimate Err_T.

What if labelled data-sets are small ?

Approximate the validation step either

- analytically with approaches such as
 - 1 Akaike Information Criterion
 - 2 Baysian Information Criterion
 - 3 Minimum Description Length
 - 4 Structural Risk Minimization

or

- with efficient sample re-use
 - cross-validation
 - 2 the bootstrap

Each method also provides estimates of Err or $\mathsf{Err}_{\mathcal{T}}$ of the final chosen model.

What if labelled data-sets are small ?

Approximate the validation step either

- analytically with approaches such as
 - 1 Akaike Information Criterion
 - 2 Baysian Information Criterion
 - **3** Minimum Description Length
 - 4 Structural Risk Minimization

or

- with efficient sample re-use
 - cross-validation
 - 2 the bootstrap

Each method also provides estimates of Err or $\mathsf{Err}_{\mathcal{T}}$ of the final chosen model.

The Bias-Variance Decomposition

• Will assume an additive model

$$Y = f(X) + \epsilon$$

where $E[\epsilon] = 0$ and $Var[\epsilon] = \sigma_{\epsilon}^2$.

• Then the expected prediction error of $\hat{f}(X)$ at $X = x_0$

$$\operatorname{Err}(x_0) = \operatorname{E}[(Y - \hat{f}(x_0))^2 | X = x_0]$$

can be expressed as

 $\operatorname{Err}(x_0) = \operatorname{Irreducible Error} + \operatorname{Bias}^2 + \operatorname{Variance}$

Irreducible error: σ_{ϵ}^2 ,Bias: $\mathrm{E}[\hat{f}(x_0) - f(x_0)],$ Variance: $\mathrm{Var}[\hat{f}(x_0)]$

• Will assume an additive model

$$Y = f(X) + \epsilon$$

where $E[\epsilon] = 0$ and $Var[\epsilon] = \sigma_{\epsilon}^2$.

• Then the **expected prediction error** of $\hat{f}(X)$ at $X = x_0$

$$\operatorname{Err}(x_0) = \operatorname{E}[(Y - \hat{f}(x_0))^2 | X = x_0]$$

can be expressed as

 $\operatorname{Err}(x_0) = \operatorname{Irreducible Error} + \operatorname{Bias}^2 + \operatorname{Variance}$

k-nearest neighbour regression fit

- Complexity of model is inversely related k.
- As k increases the variance decreases.
- As k increases the squared bias increases.

The above expression was computed by assuming the x_i 's are fixed.

Have a linear model

$$\hat{f}_p(x) = x^t \hat{\beta}$$

where $\hat{\beta}$ is p-dimensional and fit by least squares, then

$$\mathsf{Err}(x_0) = \sigma_{\epsilon}^2 + \left[f(x_0) - E[\hat{f}_p(x_0)] \right]^2 + \|h(x_0)\|^2 \sigma_{\epsilon}^2$$

with
$$h(x_0) = \mathbf{X}(\mathbf{X}^t \mathbf{X})^{-1} x_0$$
 and $\hat{f}_p(x_0) = x_0^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t y$.

Linear model - ridge regression fit

Have a linear model

$$\hat{f}_{p,\alpha}(x) = x^t \hat{\beta}_{\alpha}$$

where $\hat{\beta}_{\alpha}$ is *p*-dimensional and fit via ridge regression, then

$$\mathsf{Err}(x_0) = \sigma_{\epsilon}^2 + \left[f(x_0) - E[\hat{f}_{p,\alpha}(x_0)] \right]^2 + \|h_{\alpha}(x_0)\|^2 \sigma_{\epsilon}^2$$

with

$$h_{\alpha}(x_0) = \mathbf{X}(\mathbf{X}^t \mathbf{X} + \alpha I)^{-1} x_0$$
$$\hat{f}_{p,\alpha}(x_0) = x_0^t (\mathbf{X}^t \mathbf{X} + \alpha I)^{-1} \mathbf{X}^t y$$

Therefore this regression fit model has a different bias and variance to the least square fit.

Linear model - ridge regression fit

Have a linear model

$$\hat{f}_{p,\alpha}(x) = x^t \hat{\beta}_{\alpha}$$

where $\hat{\beta}_{\alpha}$ is *p*-dimensional and fit via ridge regression, then

$$\mathsf{Err}(x_0) = \sigma_{\epsilon}^2 + \left[f(x_0) - E[\hat{f}_{p,\alpha}(x_0)] \right]^2 + \|h_{\alpha}(x_0)\|^2 \sigma_{\epsilon}^2$$

with

$$h_{\alpha}(x_0) = \mathbf{X}(\mathbf{X}^t \mathbf{X} + \alpha I)^{-1} x_0$$
$$\hat{f}_{p,\alpha}(x_0) = x_0^t (\mathbf{X}^t \mathbf{X} + \alpha I)^{-1} \mathbf{X}^t y$$

Therefore this regression fit model has a different bias and variance to the least square fit.

Linear model - Finer decomposition of the bias

Let β_* denote the parameters of the best-fitting linear approx to f:

$$\beta_* = \arg\min_{\beta} E[(f(X) - X^t \beta)^2]$$

Can write the averaged squared bias

$$E_{x_0}\left[(f(x_0) - E[\hat{f}_{\alpha}(x_0)])^2\right]$$

as

- Estimation bias is zero for ordinary least sq. estimate.
- Estimation bias is positive for ridge regression estimate.

Linear model - Finer decomposition of the bias

Let β_* denote the parameters of the best-fitting linear approx to f:

$$\beta_* = \arg\min_{\beta} E[(f(X) - X^t \beta)^2]$$

Can write the averaged squared bias

$$E_{x_0}\left[(f(x_0) - E[\hat{f}_{\alpha}(x_0)])^2\right]$$

as

- Estimation bias is zero for ordinary least sq. estimate.
- Estimation bias is positive for ridge regression estimate.

Behaviour of bias and variance

The Set-up

- Have n = 80 observations and p = 20 predictors.
- X is uniformly distributed in $[0,1]^{20}$ and

$$Y = \begin{cases} 0 & \text{if } X_1 \le .5\\ 1 & \text{if } X_1 > .5 \end{cases}$$

- Apply k-nn to perform both the classification and regression tasks.
- Use squared error loss to measure Err for the regression task.
- Use 0-1 loss to measure Err for the classification task.

Expected prediction error as k varies

- Orange curve: expected prediction error
- Green curve: squared bias
- Blue curve: variance

Note prediction error curves are not the same as the loss functions differ.

Expected prediction error as k varies

- Orange curve: expected prediction error
- Green curve: squared bias
- Blue curve: variance

Note prediction error curves are not the same as the loss functions differ.

The Set-up

- Have n = 80 observations and p = 20 predictors.
- X is uniformly distributed in $[0,1]^{20}$ and

$$Y = \begin{cases} 1 & \text{if } \sum_{j=1}^{10} X_j > 5\\ 0 & \text{otherwise} \end{cases}$$

- Use best subset linear regression of size $p\ {\rm for}\ {\rm classification}\ {\rm and}\ {\rm regression}\ {\rm tasks}.$
- Use squared error loss to measure Err for the regression task.
- Use 0-1 loss to measure Err for the classification task.

Expected prediction error as p varies

- Orange curve: expected prediction error
- Green curve: squared bias
- Blue curve: variance

Note prediction error curves are not the same as the loss functions differ.

Optimism of the Training Error Rate

Estimating the optimism of err

- Training error $\overline{err} \ll Err_{\mathcal{T}}$ as it uses $\mathcal T$ for both fitting and assessment.
- One factor is
 - The training and test input vectors
 - for err are the same.
 - while for $Err_{\mathcal{T}}$ they differ.
- Can begin to understand the optimism of err if we focus on in-sample error

$$\mathsf{Err}_{\mathsf{in}} = \frac{1}{n} \sum_{i=1}^{n} E_{Y'}[L(y'_i, \hat{f}(x_i)) | \mathcal{T}]$$

where expectation is over new responses y'_i at each training point x_i .
Estimating the optimism of err

- Training error $\overline{err} \ll Err_{\mathcal{T}}$ as it uses $\mathcal T$ for both fitting and assessment.
- One factor is

The training and test input vectors

- for err are the same.
- while for $Err_{\mathcal{T}}$ they differ.
- Can begin to understand the optimism of err if we focus on in-sample error

$$\operatorname{Err}_{\operatorname{in}} = \frac{1}{n} \sum_{i=1}^{n} E_{Y'}[L(y'_i, \hat{f}(x_i)) | \mathcal{T}]$$

where expectation is over new responses y'_i at each training point x_i .

Estimating the optimism of err

- Training error $\overline{err} \ll Err_{\mathcal{T}}$ as it uses $\mathcal T$ for both fitting and assessment.
- One factor is

The training and test input vectors

- for err are the same.
- while for $Err_{\mathcal{T}}$ they differ.
- Can begin to understand the optimism of err if we focus on in-sample error

$$\mathsf{Err}_{\mathsf{in}} = \frac{1}{n} \sum_{i=1}^{n} E_{Y'}[L(y'_i, \hat{f}(x_i)) | \mathcal{T}]$$

where expectation is over new responses y'_i at each training point x_i .

The optimism of err

• Define the optimism as

$$\mathsf{op} = \mathsf{Err}_{\mathsf{in}} - \overline{\mathsf{err}}$$

• The average optimism is

$$\omega = \mathsf{E}_{\mathbf{y}}[\mathsf{op}]$$

where

- the training input vectors are held fixed,
- the expectation is over the training output values.
- For many loss functions

$$\omega = \frac{1}{n}\sum_{i=1}^{n} \mathsf{Cov}(\hat{y}_i, y_i)$$

The optimism of err

$$\omega = \frac{1}{n} \sum_{i=1}^{n} \mathsf{Cov}(\hat{y}_i, y_i)$$

- The more strongly y_i affects its prediction \hat{y}_i the larger ω .
- The larger ω the greater the optimism of $\overline{\text{err}}$.
- In summary get the important relation

$$\mathsf{E}_{\mathbf{y}}[\mathsf{Err}_{\mathsf{in}}] = \mathsf{E}_{\mathbf{y}}[\overline{\mathsf{err}}] + \frac{1}{n}\sum_{i=1}^{n}\mathsf{Cov}(\hat{y}_{i}, y_{i})$$

Option 1

- Estimate the optimism and add it to err
- The methods C_p , AIC, BIC work in this way for a special class estimates.
- Can use **in-sample** error for model selection but not a good estimate of Err.

Option 1

- Estimate the optimism and add it to err
- The methods C_p , AIC, BIC work in this way for a special class estimates.
- Can use **in-sample** error for model selection but not a good estimate of Err.

Option 2

• Use cross-validation and bootstrap as direct estimates of the extra-sample Err.

Estimates of In-Sample Prediction Error

Err_{in} estimate: C_p statistic

• If \hat{y}_i is obtained by a linear fit with d inputs then

$$\sum_{i=1}^n \operatorname{Cov}(\hat{y}_i, y_i) = d\,\sigma_\epsilon^2$$

for the additive error model $Y = f(X) + \epsilon$.

And so

$$\mathsf{E}_{\mathbf{y}}[\mathsf{Err}_{\mathsf{in}}] = \mathsf{E}_{\mathbf{y}}[\overline{\mathsf{err}}] + 2\frac{d}{n}\sigma_{\epsilon}^{2}$$

• Adapting this expression leads to the C_p statistic

$$C_p = \overline{\operatorname{err}} + 2 \, \frac{d}{n} \hat{\sigma}_{\epsilon}^2$$

where $\hat{\sigma}_{\epsilon}^2$ is an estimate of the noise variance.

Err_{in} estimate: C_p statistic

• If \hat{y}_i is obtained by a linear fit with d inputs then

$$\sum_{i=1}^n \operatorname{Cov}(\hat{y}_i, y_i) = d\,\sigma_\epsilon^2$$

for the additive error model $Y = f(X) + \epsilon$.

And so

$$\mathsf{E}_{\mathbf{y}}[\mathsf{Err}_{\mathsf{in}}] = \mathsf{E}_{\mathbf{y}}[\overline{\mathsf{err}}] + 2\frac{d}{n}\sigma_{\epsilon}^{2}$$

Adapting this expression leads to the C_p statistic

$$C_p = \overline{\operatorname{err}} + 2 \, \frac{d}{n} \hat{\sigma}_{\epsilon}^2$$

where $\hat{\sigma}_{\epsilon}^2$ is an estimate of the noise variance.

Err_{in} estimate: C_p statistic

• If \hat{y}_i is obtained by a linear fit with d inputs then

$$\sum_{i=1}^n \operatorname{Cov}(\hat{y}_i, y_i) = d\,\sigma_\epsilon^2$$

for the additive error model $Y = f(X) + \epsilon$.

And so

$$\mathsf{E}_{\mathbf{y}}[\mathsf{Err}_{\mathsf{in}}] = \mathsf{E}_{\mathbf{y}}[\overline{\mathsf{err}}] + 2\frac{d}{n}\sigma_{\epsilon}^{2}$$

• Adapting this expression leads to the C_p statistic

$$C_p = \overline{\operatorname{err}} + 2 \, \frac{d}{n} \hat{\sigma}_{\epsilon}^2$$

where $\hat{\sigma}_{\epsilon}^2$ is an estimate of the noise variance.

Akaike Information Criterion

rewards the fit between the model and the data

$$AIC = -\frac{2}{n}loglik + 2\frac{d}{n}$$
penalty for including extra predictors in the model

where

$$\mathsf{loglik} = \sum_{i=1}^n \log P_{\hat{\theta}}(y_i)$$

and $\hat{\theta}$ is the MLE of θ .

Note: AIC can be seen as an estimate of $\mathrm{Err}_{\mathsf{in}}$ in this case with a log-likelihood loss.

Akaike Information Criterion: using training error

- Have a set of models $f_{\alpha}(x)$ indexed by α ,
- err is the training error,
- $d(\alpha)$ the # of parameters for each model.

then

$$\mathsf{AIC}(\alpha) = \overline{\mathrm{err}}(\alpha) + 2\frac{d(\alpha)}{n}\hat{\sigma}_{\epsilon}^2$$

Note: AIC can be seen as an estimate of $\mathrm{Err}_{\mathsf{in}}$ in this case with a squared-error loss.

AIC used for model selection

• Classifier is a logistic regression function with an expansion of ${\cal M}$ spline basis functions.

- AIC is used to estimate Errin with a log-likelihood loss,
- AIC does well except when M = 256 is large and n = 1000.

How well AIC and BIC perform wrt model selection

- Boxplots show $100 \frac{\operatorname{Err}(\hat{\alpha}) \min_{\alpha} \operatorname{Err}(\alpha)}{\max_{\alpha} \operatorname{Err}(\alpha) \min_{\alpha} \operatorname{Err}(\alpha)}$ where $\hat{\alpha}$ is the best parameter found via the selection method under investigation.
- 100 training sets were used.

The Effective Number of Parameters

Generalization of the number of parameters

- For **regularized fitting** need to generalize the concept of *number of parameters*.
- Consider regularized linear fitting ridge regression, cubic smoothing splines

$$\hat{y} = \mathbf{S} y$$

where

- 1 $y = (y_1, y_2, \dots, y_n)^t$ is the vector of training outputs,
- **2** $\hat{y} = (\hat{y}_1, \dots, \hat{y}_n)$ is the vector of predictions,
- S is an n×n matrix depends on x₁,..., x_n but not y₁,..., y_n.
- Then the effective number of parameters is defined as

$$\mathsf{df}(\mathbf{S}) = \mathsf{trace}(\mathbf{S})$$

Generalization of the number of parameters

- For **regularized fitting** need to generalize the concept of *number of parameters*.
- Consider regularized linear fitting ridge regression, cubic smoothing splines

$$\hat{y} = \mathbf{S} y$$

where

- 1 $y = (y_1, y_2, \dots, y_n)^t$ is the vector of training outputs,
- **2** $\hat{y} = (\hat{y}_1, \dots, \hat{y}_n)$ is the vector of predictions,
- S is an n×n matrix depends on x₁,..., x_n but not y₁,..., y_n.
- Then the effective number of parameters is defined as

 $\mathsf{df}(\mathbf{S}) = \mathsf{trace}(\mathbf{S})$

General definition: Effective degrees-of-freedom

• If y arises from an additive-error model

$$Y = f(X) + \epsilon$$

with ${\rm Var}(\epsilon)=\sigma_{\epsilon}^2$ then

$$\sum_{i=1}^{n} \mathsf{Cov}(\hat{y}_{i}, y_{i}) = \mathsf{trace}(\mathbf{S})\sigma_{\epsilon}^{2}$$

• The more general definition of effective dof is then

$$df(\hat{y}) = \frac{\sum_{i=1}^{n} Cov(\hat{y}_i, y_i)}{\sigma_{\epsilon}^2}$$

General definition: Effective degrees-of-freedom

• If y arises from an additive-error model

$$Y = f(X) + \epsilon$$

with ${\rm Var}(\epsilon)=\sigma_{\epsilon}^2$ then

$$\sum_{i=1}^{n} \mathsf{Cov}(\hat{y}_{i}, y_{i}) = \mathsf{trace}(\mathbf{S})\sigma_{\epsilon}^{2}$$

• The more general definition of effective dof is then

$$\mathsf{df}(\hat{y}) = \frac{\sum_{i=1}^{n} \mathsf{Cov}(\hat{y}_{i}, y_{i})}{\sigma_{\epsilon}^{2}}$$

The Bayesian Approach and BIC

Generic form of BIC

Bayesian Information Criterion

$$\mathsf{BIC} = -2 \operatorname{loglik} + \log(n) \, d$$

• Assuming Gaussian model and known variance σ_{ϵ}^2 then

$$-2 \operatorname{loglik} = \frac{1}{\sigma_{\epsilon}^2} \sum_{i=1}^n (y_i - \hat{h}(x_i))^2 = \frac{n \operatorname{\overline{err}}}{\sigma_{\epsilon}^2}$$

and

$$\mathsf{BIC} = \frac{n}{\sigma_{\epsilon}^2} \left(\overline{\mathsf{err}} + \log(n) \, \frac{d}{n} \sigma_{\epsilon}^2 \right)$$

- Note BIC \propto AIC, but BIC penalizes complex model more heavily than AIC.

Generic form of BIC

Bayesian Information Criterion

$$\mathsf{BIC} = -2 \operatorname{loglik} + \log(n) \, d$$

• Assuming Gaussian model and known variance σ_{ϵ}^2 then

$$-2\log \mathsf{lik} = \frac{1}{\sigma_{\epsilon}^2} \sum_{i=1}^n (y_i - \hat{h}(x_i))^2 = \frac{n \,\overline{\mathsf{err}}}{\sigma_{\epsilon}^2}$$

and

$$\mathsf{BIC} = \frac{n}{\sigma_{\epsilon}^2} \left(\overline{\mathsf{err}} + \log(n) \, \frac{d}{n} \sigma_{\epsilon}^2 \right)$$

- Note BIC \propto AIC, but BIC penalizes complex model more heavily than AIC.

• Starting point:

Have $\{\mathcal{M}_1, \ldots, \mathcal{M}_M\}$ a set of candidate models and their corresponding parameters $\theta_1, \ldots, \theta_m$.

• Goal:

```
Choose the best model \mathcal{M}_i.
```

- How:
 - Have training data $\mathbf{Z} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - Have priors $p(\theta_m | \mathcal{M}_m)$.
 - The posterior of model \mathcal{M}_m is

 $P(\mathcal{M}_m | \mathbf{Z}) \propto P(\mathcal{M}_m) p(\mathbf{Z} | \mathcal{M}_m)$ $\propto P(\mathcal{M}_m) \int p(\mathbf{Z} | \theta_m, \mathcal{M}_m) p(\theta_m | \mathcal{M}_m) \, d\theta_m$

• Starting point:

Have $\{\mathcal{M}_1, \ldots, \mathcal{M}_M\}$ a set of candidate models and their corresponding parameters $\theta_1, \ldots, \theta_m$.

• Goal:

Choose the best model \mathcal{M}_i .

- How:
 - Have training data $\mathbf{Z} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - Have priors $p(\theta_m | \mathcal{M}_m)$.
 - The posterior of model \mathcal{M}_m is

 $P(\mathcal{M}_m | \mathbf{Z}) \propto P(\mathcal{M}_m) p(\mathbf{Z} | \mathcal{M}_m)$ $\propto P(\mathcal{M}_m) \int p(\mathbf{Z} | \theta_m, \mathcal{M}_m) p(\theta_m | \mathcal{M}_m) \, d\theta_m$

• Starting point:

Have $\{\mathcal{M}_1, \ldots, \mathcal{M}_M\}$ a set of candidate models and their corresponding parameters $\theta_1, \ldots, \theta_m$.

• Goal:

Choose the best model \mathcal{M}_i .

• How:

- Have training data $\mathbf{Z} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
- Have priors $p(\theta_m | \mathcal{M}_m)$.
- The posterior of model \mathcal{M}_m is

$$P(\mathcal{M}_m | \mathbf{Z}) \propto P(\mathcal{M}_m) p(\mathbf{Z} | \mathcal{M}_m)$$
$$\propto P(\mathcal{M}_m) \int p(\mathbf{Z} | \theta_m, \mathcal{M}_m) p(\theta_m | \mathcal{M}_m) \, d\theta_m$$

• The posterior of model
$$\mathcal{M}_m$$
 is

$$P(\mathcal{M}_m | \theta_m) \propto P(\mathcal{M}_m) \int p(\mathbf{Z} | \theta_m, \mathcal{M}_m) \, p(\theta_m | \mathcal{M}_m) \, d\theta_m$$

• Usually assume uniform prior: $P(\mathcal{M}_m) = 1/M$.

• Approximate the above integral by simplification and Laplace approximation to get

$$\log P(\mathbf{Z}|\mathcal{M}_m) = \log P(\mathbf{Z}|\hat{\theta}_m, \mathcal{M}_m) - \frac{d_m}{2} \log n + O(1)$$

where $\hat{ heta}_m$ is a MLE and d_m is # free parameters in $\mathcal{M}_m.$

• Then BIC $\propto -2\log P(\mathcal{M}_m|\mathbf{Z})$

• The posterior of model \mathcal{M}_m is

$$P(\mathcal{M}_m|\theta_m) \propto P(\mathcal{M}_m) \int p(\mathbf{Z}|\theta_m, \mathcal{M}_m) \, p(\theta_m|\mathcal{M}_m) \, d\theta_m$$

- Usually assume uniform prior: $P(\mathcal{M}_m) = 1/M$.
- Approximate the above integral by simplification and Laplace approximation to get

$$\log P(\mathbf{Z}|\mathcal{M}_m) = \log P(\mathbf{Z}|\hat{\theta}_m, \mathcal{M}_m) - \frac{d_m}{2} \log n + O(1)$$

where $\hat{ heta}_m$ is a MLE and d_m is # free parameters in $\mathcal{M}_m.$

• Then BIC $\propto -2\log P(\mathcal{M}_m|\mathbf{Z})$

• The posterior of model \mathcal{M}_m is

$$P(\mathcal{M}_m|\theta_m) \propto P(\mathcal{M}_m) \int p(\mathbf{Z}|\theta_m, \mathcal{M}_m) \, p(\theta_m|\mathcal{M}_m) \, d\theta_m$$

- Usually assume uniform prior: $P(\mathcal{M}_m) = 1/M$.
- Approximate the above integral by simplification and Laplace approximation to get

$$\log P(\mathbf{Z}|\mathcal{M}_m) = \log P(\mathbf{Z}|\hat{\theta}_m, \mathcal{M}_m) - \frac{d_m}{2} \log n + O(1)$$

where $\hat{\theta}_m$ is a MLE and d_m is # free parameters in \mathcal{M}_m .

• Then BIC $\propto -2\log P(\mathcal{M}_m|\mathbf{Z})$

• The posterior of model \mathcal{M}_m is

$$P(\mathcal{M}_m|\theta_m) \propto P(\mathcal{M}_m) \int p(\mathbf{Z}|\theta_m, \mathcal{M}_m) \, p(\theta_m|\mathcal{M}_m) \, d\theta_m$$

- Usually assume uniform prior: $P(\mathcal{M}_m) = 1/M$.
- Approximate the above integral by simplification and Laplace approximation to get

$$\log P(\mathbf{Z}|\mathcal{M}_m) = \log P(\mathbf{Z}|\hat{\theta}_m, \mathcal{M}_m) - \frac{d_m}{2} \log n + O(1)$$

where $\hat{\theta}_m$ is a MLE and d_m is # free parameters in \mathcal{M}_m .

• Then BIC $\propto -2\log P(\mathcal{M}_m | \mathbf{Z})$

AIC Vs BIC

- If $\mathcal{M}_{\mathsf{true}} \in \{\mathcal{M}_1, \dots, \mathcal{M}_M\}$ then as $n \to \infty$
 - BIC will select \mathcal{M}_{true} . \checkmark
 - AIC will not. It tends to choose too complex models as $n \to \infty.$ X
- However, when *n* is small
 - BIC often chooses models which are too simple. X

AIC Vs BIC

- If $\mathcal{M}_{\mathsf{true}} \in \{\mathcal{M}_1, \dots, \mathcal{M}_M\}$ then as $n \to \infty$
 - BIC will select \mathcal{M}_{true} . \checkmark
 - AIC will not. It tends to choose too complex models as $n \to \infty$. X
- However, when n is small
 - BIC often chooses models which are too simple. X

Cross-Validation

K-Fold Cross-Validation

General Approach

• Split the data into K roughly equal-size parts.

- For the kth part calculate the prediction error of the model fit using the other K 1 parts.
- Do this for k = 1, 2, ..., K and combine the K estimates of the prediction error.

General Approach

• Split the data into K roughly equal-size parts.

- For the kth part calculate the prediction error of the model fit using the other K 1 parts.
- Do this for k = 1, 2, ..., K and combine the K estimates of the prediction error.

When and why

- It is applied when labelled training data is relatively sparse.
- This method directly estimates $Err = E[L(Y, \hat{f}(X))].$

K-Fold Cross-validation: Detailed description

- The mapping $\kappa : \{1, ..., n\} \rightarrow \{1, ..., K\}$ indicates observation i belongs to partition $\kappa(i)$.
- $\hat{f}^{-k}(x)$ is the function fitted with the kth part of the data removed.
- Cross-validation estimate of the prediction error is

$$\operatorname{CV}(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}^{-\kappa(i)}(x_i))$$

- Typical choices for *K* are 5 or 10.
- The case K = n is known as leave-one-out cross-validation.
K-Fold Cross-validation: Detailed description

- The mapping $\kappa : \{1, ..., n\} \rightarrow \{1, ..., K\}$ indicates observation i belongs to partition $\kappa(i)$.
- $\hat{f}^{-k}(x)$ is the function fitted with the $k{\rm th}$ part of the data removed.
- Cross-validation estimate of the prediction error is

$$\operatorname{CV}(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}^{-\kappa(i)}(x_i))$$

- Typical choices for K are 5 or 10.
- The case K = n is known as leave-one-out cross-validation.

K-Fold Cross-validation: Detailed description

- The mapping $\kappa : \{1, ..., n\} \rightarrow \{1, ..., K\}$ indicates observation i belongs to partition $\kappa(i)$.
- $\hat{f}^{-k}(x)$ is the function fitted with the $k{\rm th}$ part of the data removed.
- Cross-validation estimate of the prediction error is

$$\operatorname{CV}(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}^{-\kappa(i)}(x_i))$$

- Typical choices for K are 5 or 10.
- The case K = n is known as leave-one-out cross-validation.

K-Fold Cross-validation: Model selection

- Have models $f(x, \alpha)$ indexed by a parameter α .
- $\hat{f}^{-k}(x, \alpha)$ is α th model fit with kth part of the data removed.
- Then define

$$CV(\hat{f},\alpha) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}^{-\kappa(i)}(x_i,\alpha))$$

Choose the model

$$\hat{\alpha} = \arg\min_{\alpha} \operatorname{CV}(\hat{f}, \alpha)$$

K-Fold Cross-validation: Model selection

- Have models $f(x, \alpha)$ indexed by a parameter α .
- $\hat{f}^{-k}(x, \alpha)$ is α th model fit with kth part of the data removed.
- Then define

$$CV(\hat{f},\alpha) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}^{-\kappa(i)}(x_i,\alpha))$$

Choose the model

$$\hat{\alpha} = \arg\min_{\alpha} \operatorname{CV}(\hat{f}, \alpha)$$

What quantity does K-fold validation estimate?

Intuition says

- When K = 5 or 10 then $CV(\hat{f}) \approx Err$ as training sets for each fold are fairly different.
- When K = n then $CV(\hat{f}) \approx \text{Err}_{\mathcal{T}}$ as training sets for each fold are almost identical.

What quantity does K-fold validation estimate?

Intuition says

- When K = 5 or 10 then $CV(\hat{f}) \approx Err$ as training sets for each fold are fairly different.
- When K = n then $CV(\hat{f}) \approx Err_T$ as training sets for each fold are almost identical.

Book's simulation experiments say

• Cross-validation, really only effectively estimates Err.

What quantity does *K*-fold validation estimate?

20

- Thick red curve: Err
- Thick black curve: $\mathbf{E}_{\mathcal{T}}[\mathbf{C}\mathbf{V}_K]$

- When K = n
 - $CV(\hat{f})$ is approx an unbiased estimate of Err. \checkmark
 - $CV(\hat{f})$ has high variance as the n training sets are similar. X
 - Computational burden is high. X (except for a few exceptions)
- When K = 5 (is lowish)
 - $CV(\hat{f})$ has low variance. \checkmark
 - CV(f̂) is potentially an upward biased estimate of Err. ✗
 Only occurs if at each fold there is not enough training data to fit a good model.

Example of a K-fold cross validation curve

- Orange curve: $\operatorname{Err}_{\mathcal{T}}$
- Blue curve: $CV_{10}(\hat{f})$

Right & Wrong way to do Cross-validation

What's wrong with this strategy?

Screen the predictors Find a subset of good predictors that are correlated with the class labels.

- 2 Build a classifier based on the subset of good predictors.
- Perform cross-validation to estimate the unknown tuning parameters and to estimate Err of the final model.

What's wrong with this strategy?

Screen the predictors Find a subset of good predictors that are correlated with the class labels.

2 Build a classifier based on the subset of good predictors.

Perform cross-validation to estimate the unknown tuning parameters and to estimate Err of the final model.

What's wrong with this strategy?

Screen the predictors Find a subset of good predictors that are correlated with the class labels.

2 Build a classifier based on the subset of good predictors.

3 Perform cross-validation to estimate the unknown tuning parameters and to estimate Err of the final model.

What's wrong with this strategy?

Screen the predictors Find a subset of good predictors that are correlated with the class labels.

2 Build a classifier based on the subset of good predictors.

3 Perform cross-validation to estimate the unknown tuning parameters and to estimate Err of the final model.

The good predictors were chosen after seeing all the data.

Should have done this

- 1 Divide the samples into K groups randomly.
- **2** For each fold $k = 1, \ldots, K$
 - Find a subset of *good* predictors using all the samples minus the *k*th fold.
 - Build a classifier using all the samples minus the *k*th fold.
 - Use the classifier to predict the labels for the samples in the *k*th fold.

Set-up

- Have a binary classification problem.
- n = 50 with an equal number of points from each class.
- Have p = 5000 quantitative predictors that are independent of the class labels.
- The true error rate of any classifier is 50%.

x If one performs pre-selection of 100 predictors and then builds a 1-nn classifier the average CV error rate was 3% over 50 simulations ! x

Example: correlation of class labels with predictors

Correlations of Selected Predictors with Outcome

Correlations of Selected Predictors with Outcome

To perform Multistep Modelling

- Cross-validation must be applied to the entire sequence of modelling steps.
- Samples must be **left out** before any selection or filtering is applied which uses the labels.
- One exception: An unsupervised screening step can use all the samples.

To perform Multistep Modelling

- Cross-validation must be applied to the entire sequence of modelling steps.
- Samples must be **left out** before any selection or filtering is applied which uses the labels.
- One exception: An unsupervised screening step can use all the samples.

Bootstrap Method

- Have a training set $\mathbf{Z} = (z_1, z_2, \dots, z_n)$ with each $z_i = (x_i, y_i)$.
- The **bootstrap** idea is

for b = 1, 2, ..., B

 Randomly draw n samples with replacement from Z to get Z^{*b} that is

 $\mathbb{Z}^{*b} = (z_{b_1}, z_{b_2}, \dots, z_{b_n}) \text{ with } b_i \in \{1, \dots, n\}$

2 Refit the model using \mathbf{Z}^{*b} to get $S(\mathbf{Z}^{*b})$

Examine the behaviour of the B fits

 $S(\mathbf{Z}^{*1}), S(\mathbf{Z}^{*2}), \ldots, S(\mathbf{Z}^{*B}).$

- Have a training set $\mathbf{Z} = (z_1, z_2, \dots, z_n)$ with each $z_i = (x_i, y_i)$.
- The **bootstrap** idea is

for b = 1, 2, ..., B

 Randomly draw n samples with replacement from Z to get Z^{*b} that is

$$\mathbf{Z}^{*b} = (z_{b_1}, z_{b_2}, \dots, z_{b_n}) \text{ with } b_i \in \{1, \dots, n\}$$

2 Refit the model using \mathbf{Z}^{*b} to get $S(\mathbf{Z}^{*b})$

Examine the behaviour of the B fits

 $S(\mathbf{Z}^{*1}), S(\mathbf{Z}^{*2}), \dots, S(\mathbf{Z}^{*B}).$

Can estimate any aspect of the distribution of $S(\mathbf{Z})$

• For example its variance

$$\widehat{\operatorname{Var}}[S(\mathbf{Z})] = \frac{1}{B-1} \sum_{b=1}^{B} (S(Z^{*b}) - \bar{S}^{*})^2$$

where

$$\bar{S}^* = \frac{1}{B} \sum_{b=1}^{B} S(Z^{*b})$$

Attempt 1

$$\widehat{\operatorname{Err}}_{\operatorname{boot}} = \frac{1}{B} \frac{1}{n} \sum_{b=1}^{B} \sum_{i=1}^{n} L(y_i, \widehat{f}^{*b}(x_i))$$

- Why is this not a good estimate??
 - Overlap between training and test sets
- How could we do better?
 - Mimic cross-validation

Attempt 1

$$\widehat{\operatorname{Err}}_{\operatorname{boot}} = \frac{1}{B} \frac{1}{n} \sum_{b=1}^{B} \sum_{i=1}^{n} L(y_i, \widehat{f}^{*b}(x_i))$$

- Why is this not a good estimate??
 - Overlap between training and test sets
- How could we do better?
 - Mimic cross-validation

Attempt 1

$$\widehat{\operatorname{Err}}_{\operatorname{boot}} = \frac{1}{B} \frac{1}{n} \sum_{b=1}^{B} \sum_{i=1}^{n} L(y_i, \widehat{f}^{*b}(x_i))$$

- Why is this not a good estimate??
 - Overlap between training and test sets
- How could we do better?
 - Mimic cross-validation

Attempt 1

$$\widehat{\operatorname{Err}}_{\operatorname{boot}} = \frac{1}{B} \frac{1}{n} \sum_{b=1}^{B} \sum_{i=1}^{n} L(y_i, \widehat{f}^{*b}(x_i))$$

- Why is this not a good estimate??
 - Overlap between training and test sets
- How could we do better?
 - Mimic cross-validation

Attempt 2: Leave-one-out bootstrap

$$\widehat{\operatorname{Err}}^{(1)} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{|C^{-i}|} \sum_{b \in C^{-i}} L(y_i, \widehat{f}^{*b}(x_i))$$

where ${\cal C}^{-i}$ is the set of bootstrap samples b not containing observation i.

- Either make
- Make B large enough so $|C^{-i}| > 0$ for all i or
- Omit observation *i* from testing if $|C^{-i}| = 0$.

Attempt 2: Leave-one-out bootstrap

$$\widehat{\operatorname{Err}}^{(1)} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{|C^{-i}|} \sum_{b \in C^{-i}} L(y_i, \widehat{f}^{*b}(x_i))$$

where C^{-i} is the set of bootstrap samples b not containing observation i.

- Either make
- Make B large enough so $|{\cal C}^{-i}|>0$ for all i or
- Omit observation *i* from testing if $|C^{-i}| = 0$.

Is the leave-one-out prediction any good?

• Pros:

() avoids the overfitting problem of $\widehat{\mathrm{Err}}_{\scriptscriptstyle \mathsf{boot}}$

• Cons:

1 Has the training-set-size bias of cross-validation

2 The $P(\text{observation } i \in \mathbf{Z}^{*b})$ is

$$1 - \left(1 - \frac{1}{n}\right)^n \approx 1 - e^{-1} = .632$$

Therefore the average number of distinct observations in \mathbf{Z}^{*b} is .632 n.

3 $\widehat{\mathrm{Err}}^{(1)}$'s bias is thus similar to twofold cross-validation.

To alleviate this bias

Attempt 3: The .632 estimator

$$\widehat{\mathrm{Err}}^{(.632)} = .368 \,\overline{\mathrm{err}} + .632 \,\widehat{\mathrm{Err}}^{(1)}$$

- Compromise between the **training error** err and the **leave-one-out bootstrap** estimate.
- Its derivation is not easy.
- Obviously the constant .632 relates to $P(\text{observation } i \in \mathbf{Z}^{*b})$.

The .632 estimator does not do well if predictor overfits.

To alleviate this bias

Attempt 3: The .632 estimator

$$\widehat{\mathrm{Err}}^{(.632)} = .368 \,\overline{\mathrm{err}} + .632 \,\widehat{\mathrm{Err}}^{(1)}$$

- Compromise between the **training error** err and the **leave-one-out bootstrap** estimate.
- Its derivation is not easy.
- Obviously the constant .632 relates to $P(\text{observation } i \in \mathbf{Z}^{*b})$.

The .632 estimator does not do well if predictor overfits.

Estimate the degree of overfitting

No-information error rate:

$$\hat{\gamma} = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n L(y_i, \hat{f}(x_j))$$

- Estimate of the error rate of \hat{f} if inputs and outputs were independent.
- Note the prediction rule, \hat{f} , is evaluated on all possible combinations of targets y_i and predictors x_j .

Estimate the degree of overfitting

No-information error rate:

$$\hat{\gamma} = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n L(y_i, \hat{f}(x_j))$$

- Estimate of the error rate of \hat{f} if inputs and outputs were independent.
- Note the prediction rule, \hat{f} , is evaluated on all possible combinations of targets y_i and predictors x_j .

Estimate the degree of overfitting

Relative overfitting rate:

$$\hat{R} = \frac{\widehat{\mathrm{Err}}^{(1)} - \overline{\mathrm{err}}}{\hat{\gamma} - \overline{\mathrm{err}}}$$

•
$$0 \le \hat{R} \le 1$$

- $\hat{R} = 0 \implies$ no overfitting.
- $\hat{R} = 1 \implies$ overfitting equals no-information value $\hat{\gamma} \overline{\text{err}}$.

Attempt 4: The .632+ estimator

$$\widehat{\operatorname{Err}}^{(.632+)} = (1 - \hat{w})\,\overline{\operatorname{err}} + \hat{w}\,\widehat{\operatorname{Err}}^{(1)}$$

with

$$\hat{w} = \frac{.632}{1 - .368\hat{R}}$$

- $.632 \le \hat{w} \le 1$ as \hat{R} ranges from 0 to 1.
- $\widehat{\mathrm{Err}}^{(.632+)}$ ranges from $\widehat{\mathrm{Err}}^{(.632)}$ to $\widehat{\mathrm{Err}}^{(1)}$.

• $\widehat{\operatorname{Err}}^{(.632+)}$ is a compromise between $\widehat{\operatorname{Err}}^{(.632)}$ and $\overline{\operatorname{err}}$ that depends on the amount of overfitting.

• Derivation of the above eqn is non-trivial.
Use Bootstrap to estimate Prediction Error

Attempt 4: The .632+ estimator

$$\widehat{\operatorname{Err}}^{(.632+)} = (1 - \hat{w})\,\overline{\operatorname{err}} + \hat{w}\,\widehat{\operatorname{Err}}^{(1)}$$

with

$$\hat{w} = \frac{.632}{1 - .368\hat{R}}$$

- $.632 \le \hat{w} \le 1$ as \hat{R} ranges from 0 to 1.
- $\widehat{\operatorname{Err}}^{(.632+)}$ ranges from $\widehat{\operatorname{Err}}^{(.632)}$ to $\widehat{\operatorname{Err}}^{(1)}$.
- $\widehat{\mathrm{Err}}^{(.632+)}$ is a compromise between $\widehat{\mathrm{Err}}^{(.632)}$ and $\overline{\mathrm{err}}$ that depends on the amount of overfitting.
- Derivation of the above eqn is non-trivial.

How bootstrap and cv perform wrt model selection

- Boxplots show $100 \frac{\operatorname{Err}(\hat{\alpha}) \min_{\alpha} \operatorname{Err}(\alpha)}{\max_{\alpha} \operatorname{Err}(\alpha) \min_{\alpha} \operatorname{Err}(\alpha)}$ where $\hat{\alpha}$ is the best parameter found via the selection method under investigation.
- 100 training sets were used.