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Introduction



Regression: Review of our problem

• Have target variable Y to estimate from a vector of inputs X.

• A prediction model f̂(X) has been estimated from training
data T = {(x1, y1), . . . , (xn, yn)}.

• The loss function L(Y, f̂(X)) measures the errors between Y
and f̂(X).

• Common loss functions are

L(Y, f̂(X)) =





(Y − f̂(X))2 squared error,

|Y − f̂(X)| absolute error
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Definition of Test Error

Test Error a.k.a. generalization error

ErrT = E[L(Y, f̂(X)) | T ]

• Prediction error over an independent test sample.

• X and Y are drawn randomly from p(X,Y ).

• The training set T if fixed.



Definition of Expected Prediction Error

Expected Prediction Error (expected test error)

Err = E[L(Y, f̂(X)) ] = E[ ErrT ]

• In this case take expectation over all the random quantities
including the training set.

Which quantities interest us

• Would like to estimate ErrT .

• But in most cases it is easier to estimate Err. Why??
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Definition of Training Error

Training error

err =
1

n

n∑

i=1

L(yi, f̂(xi))

Already know as complexity of f̂ increases

• then err→ 0,

• but there is a tendency to overfit and ErrT increases

• err is not a good estimate of ErrT or Err.

We will be revisiting the Bias-Variance trade-off.



Issues in assessing generalization ability

Test and training error as model complexity increases.220 7. Model Assessment and Selection
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FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error ErrT for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

Test error, also referred to as generalization error, is the prediction error
over an independent test sample

ErrT = E[L(Y, f̂(X))|T ] (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Here the training set T is fixed, and test error refers to the
error for this specific training set. A related quantity is the expected pre-
diction error (or expected test error)

Err = E[L(Y, f̂(X))] = E[ErrT ]. (7.3)

Note that this expectation averages over everything that is random, includ-
ing the randomness in the training set that produced f̂ .

Figure 7.1 shows the prediction error (light red curves) ErrT for 100
simulated training sets each of size 50. The lasso (Section 3.4.2) was used
to produce the sequence of fits. The solid red curve is the average, and
hence an estimate of Err.

Estimation of ErrT will be our goal, although we will see that Err is
more amenable to statistical analysis, and most methods effectively esti-
mate the expected error. It does not seem possible to estimate conditional

1 Light blue curve: training error err.

2 Solid blue curve: expected training error E[err].

3 Light red curve: conditional test error ErrT .

4 Solid red curve: expected test error Err.



Same story for classification

• Have target categorical variable G ∈ {1, . . . ,K} to estimate
from a vector of inputs X.

• Typically model pk(X) = P (G = k|X) and define

Ĝ(X) = arg max
k

pk(X)

• Common loss functions are

1 0-1 loss

L(G, Ĝ(X)) = Ind(G 6= Ĝ(X))

2 log-likelihood a.ka. deviance

L(G, p̂(X)) = −2

K∑

k=1

Ind(G = k) p̂k(X) = −2 log p̂G(X)
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Performance scores for classification

• Test Error

ErrT = E[L(G, Ĝ(X)) | T ]

• Training Error one common definition

err = − 2

n

n∑

i=1

log p̂gi(xi)



Goal of this chapter

• f̂α(x) typically has a tunable parameter α controlling its
complexity.

• Want to find the value of α s.t.

α̂ = arg min
α

E[L(Y, f̂α(X)) ]

• Estimate E[L(Y, f̂α(X)) ] for different values of α.

• This chapter presents methods how to do this.

• Choose the α with minimum estimate.



Our two separate goals

Model selection

Estimate the performance of different models in order to choose
the best one.

Model Assessment

Having chosen a final model, estimate its prediction error on new
data.



For a data-rich situation

Randomly divide the dataset into 3 parts

Train Validation Test

Common split ratio 50%, 25%, 25%.

Model Selection

• Use training set to fit each model.

• Use validation set to estimate ErrT for each model.

• Choose model with lowest ErrT estimate.

Model Assessment of the chosen model

• Use the test set - unseen until this stage - to estimate ErrT .



What if labelled data-sets are small ?

Approximate the validation step either

• analytically with approaches such as

1 Akaike Information Criterion

2 Baysian Information Criterion

3 Minimum Description Length

4 Structural Risk Minimization

or

• with efficient sample re-use

1 cross-validation

2 the bootstrap

Each method also provides estimates of Err or ErrT of the final
chosen model.
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The Bias-Variance Decomposition



The bias-variance decomposition

• Will assume an additive model

Y = f(X) + ε

where E[ε] = 0 and Var[ε] = σ2ε .

• Then the expected prediction error of f̂(X) at X = x0

Err(x0) = E[(Y − f̂(x0))
2|X = x0]

can be expressed as

Err(x0) = Irreducible Error + Bias2 + Variance

Irreducible error: σ2
ε ,

Bias: E[f̂(x0)− f(x0)],

Variance: Var[f̂(x0)]
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k-nearest neighbour regression fit

Err(x0) = σ2ε+

[
f(x0)−

1

k

k∑

l=1

f(x(l))

]2
+
σ2ε
k

squared bias variance

• Complexity of model is inversely related k.

• As k increases the variance decreases.

• As k increases the squared bias increases.

The above expression was computed by assuming the xi’s are fixed.



Linear model - least square fit

Have a linear model

f̂p(x) = xtβ̂

where β̂ is p-dimensional and fit by least squares, then

Err(x0) = σ2ε+
[
f(x0)− E[ f̂p(x0) ]

]2
+ ‖h(x0)‖2 σ2ε

with h(x0) = X(XtX)−1x0 and f̂p(x0) = xt0(X
tX)−1Xty.



Linear model - ridge regression fit

Have a linear model

f̂p,α(x) = xtβ̂α

where β̂α is p-dimensional and fit via ridge regression, then

Err(x0) = σ2ε+
[
f(x0)− E[ f̂p,α(x0) ]

]2
+ ‖hα(x0)‖2 σ2ε

with

hα(x0) = X(XtX + αI)−1x0

f̂p,α(x0) = xt0(XtX + αI)−1Xt y

Therefore this regression fit model has a different bias and variance
to the least square fit.
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Linear model - Finer decomposition of the bias

Let β∗ denote the parameters of the best-fitting linear approx to f :

β∗ = arg min
β

E[ (f(X)−Xtβ)2 ]

Can write the averaged squared bias

Ex0

[
(f(x0)− E[ f̂α(x0) ])

2
]

as

Ex0
[ (f(x0)− xt0β∗)2 ] + Ex0

[ (xt0β∗ − E[xt0β̂α])2 ]

Ave[Model Bias]2 Ave[Estimation Bias]2

• Estimation bias is zero for ordinary least sq. estimate.

• Estimation bias is positive for ridge regression estimate.
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Behaviour of bias and variance

7.3 The Bias–Variance Decomposition 225
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FIGURE 7.2. Schematic of the behavior of bias and variance. The model space
is the set of all possible predictions from the model, with the “closest fit” labeled
with a black dot. The model bias from the truth is shown, along with the variance,
indicated by the large yellow circle centered at the black dot labeled “closest fit
in population.” A shrunken or regularized fit is also shown, having additional
estimation bias, but smaller prediction error due to its decreased variance.



Bias-variance trade-off: Example 1

The Set-up

• Have n = 80 observations and p = 20 predictors.

• X is uniformly distributed in [0, 1]20 and

Y =

{
0 if X1 ≤ .5
1 if X1 > .5

• Apply k-nn to perform both the classification and regression tasks.

• Use squared error loss to measure Err for the regression task.

• Use 0-1 loss to measure Err for the classification task.



Bias-variance trade-off: Example 1

Expected prediction error as k varies
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FIGURE 7.3. Expected prediction error (orange), squared bias (green) and vari-
ance (blue) for a simulated example. The top row is regression with squared error
loss; the bottom row is classification with 0–1 loss. The models are k-nearest
neighbors (left) and best subset regression of size p (right). The variance and bias
curves are the same in regression and classification, but the prediction error curve
is different.
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ance (blue) for a simulated example. The top row is regression with squared error
loss; the bottom row is classification with 0–1 loss. The models are k-nearest
neighbors (left) and best subset regression of size p (right). The variance and bias
curves are the same in regression and classification, but the prediction error curve
is different.

• Orange curve: expected prediction error

• Green curve: squared bias

• Blue curve: variance

Note prediction error curves are not the same as the loss functions differ.
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• Orange curve: expected prediction error

• Green curve: squared bias

• Blue curve: variance

Note prediction error curves are not the same as the loss functions differ.



Bias-variance trade-off: Example 2

The Set-up

• Have n = 80 observations and p = 20 predictors.

• X is uniformly distributed in [0, 1]20 and

Y =

{
1 if

∑10
j=1Xj > 5

0 otherwise

• Use best subset linear regression of size p for classification and
regression tasks.

• Use squared error loss to measure Err for the regression task.

• Use 0-1 loss to measure Err for the classification task.



Bias-variance trade-off: Example 2

Expected prediction error as p varies
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loss; the bottom row is classification with 0–1 loss. The models are k-nearest
neighbors (left) and best subset regression of size p (right). The variance and bias
curves are the same in regression and classification, but the prediction error curve
is different.
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Note prediction error curves are not the same as the loss functions differ.



Optimism of the Training Error Rate



Estimating the optimism of err

• Training error err� ErrT as it uses T for both fitting and
assessment.

• One factor is

The training and test input vectors

• for err are the same.

• while for ErrT they differ.

• Can begin to understand the optimism of err if we focus on
in-sample error

Errin =
1

n

n∑

i=1

EY ′ [L(y′i, f̂(xi))|T ]

where expectation is over new responses y′i at each training
point xi.
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The optimism of err

• Define the optimism as

op = Errin − err

• The average optimism is

ω = Ey[op]

where
• the training input vectors are held fixed,

• the expectation is over the training output values.

• For many loss functions

ω =
1

n

n∑

i=1

Cov(ŷi, yi)



The optimism of err

ω =
1

n

n∑

i=1

Cov(ŷi, yi)

• The more strongly yi affects its prediction ŷi the larger ω.

• The larger ω the greater the optimism of err.

• In summary get the important relation

Ey[Errin] = Ey[err] +
1

n

n∑

i=1

Cov(ŷi, yi)



How to estimate prediction error?

Option 1

• Estimate the optimism and add it to err

• The methods Cp,AIC,BIC work in this way for a special class
estimates.

• Can use in-sample error for model selection but not a good
estimate of Err.



How to estimate prediction error?

Option 1

• Estimate the optimism and add it to err

• The methods Cp,AIC,BIC work in this way for a special class
estimates.

• Can use in-sample error for model selection but not a good
estimate of Err.

Option 2

• Use cross-validation and bootstrap as direct estimates of the
extra-sample Err.



Estimates of In-Sample Prediction Error



Errin estimate: Cp statistic

• If ŷi is obtained by a linear fit with d inputs then

n∑

i=1

Cov(ŷi, yi) = d σ2ε

for the additive error model Y = f(X) + ε.

• And so

Ey[Errin] = Ey[err] + 2
d

n
σ2ε

• Adapting this expression leads to the Cp statistic

Cp = err + 2
d

n
σ̂2ε

where σ̂2ε is an estimate of the noise variance.
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Akaike Information Criterion

rewards the fit between the model and the data

AIC = − 2

n
loglik + 2

d

n

penalty for including extra predictors in the model
where

loglik =

n∑

i=1

logPθ̂(yi)

and θ̂ is the MLE of θ.

Note: AIC can be seen as an estimate of Errin in this case with a

log-likelihood loss.



Akaike Information Criterion: using training error

• Have a set of models fα(x) indexed by α,

• err is the training error,

• d(α) the # of parameters for each model.

then

AIC(α) = err(α) + 2
d(α)

n
σ̂2ε

Note: AIC can be seen as an estimate of Errin in this case with a

squared-error loss.



AIC used for model selection232 7. Model Assessment and Selection
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FIGURE 7.4. AIC used for model selection for the phoneme recogni-
tion example of Section 5.2.3. The logistic regression coefficient function
β(f) =

PM
m=1 hm(f)θm is modeled as an expansion in M spline basis functions.

In the left panel we see the AIC statistic used to estimate Errin using log-likeli-
hood loss. Included is an estimate of Err based on an independent test sample. It
does well except for the extremely over-parametrized case (M = 256 parameters
for N = 1000 observations). In the right panel the same is done for 0–1 loss.
Although the AIC formula does not strictly apply here, it does a reasonable job in
this case.

7.6 The Effective Number of Parameters

The concept of “number of parameters” can be generalized, especially to
models where regularization is used in the fitting. Suppose we stack the
outcomes y1, y2, . . . , yN into a vector y, and similarly for the predictions
ŷ. Then a linear fitting method is one for which we can write

ŷ = Sy, (7.31)

where S is an N × N matrix depending on the input vectors xi but not on
the yi. Linear fitting methods include linear regression on the original fea-
tures or on a derived basis set, and smoothing methods that use quadratic
shrinkage, such as ridge regression and cubic smoothing splines. Then the
effective number of parameters is defined as

df(S) = trace(S), (7.32)

the sum of the diagonal elements of S (also known as the effective degrees-
of-freedom). Note that if S is an orthogonal-projection matrix onto a basis

• Classifier is a logistic regression function with an expansion of M
spline basis functions.

• AIC is used to estimate Errin with a log-likelihood loss,

• AIC does well except when M = 256 is large and n = 1000.
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FIGURE 7.7. Boxplots show the distribution of the relative error
100 × [ErrT (α̂) − minα ErrT (α)]/[maxα ErrT (α) − minα ErrT (α)] over the four
scenarios of Figure 7.3. This is the error in using the chosen model relative to
the best model. There are 100 training sets each of size 80 represented in each
boxplot, with the errors computed on test sets of size 10, 000.

• Boxplots show 100
Err(α̂)−minα Err(α)

maxα Err(α)−minα Err(α)
where α̂ is the best parameter

found via the selection method under investigation.

• 100 training sets were used.



The Effective Number of Parameters



Generalization of the number of parameters

• For regularized fitting need to generalize the concept of
number of parameters.

• Consider regularized linear fitting - ridge regression, cubic

smoothing splines

ŷ = S y

where
1 y = (y1, y2, . . . , yn)t is the vector of training outputs,

2 ŷ = (ŷ1, . . . , ŷn) is the vector of predictions,

3 S is an n× n matrix - depends on x1, . . . , xn but not
y1, . . . , yn.

• Then the effective number of parameters is defined as

df(S) = trace(S)
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General definition: Effective degrees-of-freedom

• If y arises from an additive-error model

Y = f(X) + ε

with Var(ε) = σ2ε then

n∑

i=1

Cov(ŷi, yi) = trace(S)σ2ε

• The more general definition of effective dof is then

df(ŷ) =

∑n
i=1 Cov(ŷi, yi)

σ2ε
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The Bayesian Approach and BIC



Generic form of BIC

Bayesian Information Criterion

BIC = −2 loglik + log(n) d

• Assuming Gaussian model and known variance σ2ε then

−2 loglik =
1

σ2ε

n∑

i=1

(yi − ĥ(xi))
2 =

n err

σ2ε

and

BIC =
n

σ2ε

(
err + log(n)

d

n
σ2ε

)

• Note BIC ∝ AIC, but BIC penalizes complex model more
heavily than AIC.
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Derivation of BIC

• Starting point:

Have {M1, . . . ,MM} a set of candidate models and their
corresponding parameters θ1, . . . , θm.

• Goal:

Choose the best model Mi.

• How:

• Have training data Z = {(x1, y1), . . . , (xn, yn)}

• Have priors p(θm|Mm).

• The posterior of model Mm is

P (Mm|Z) ∝ P (Mm) p(Z|Mm)

∝ P (Mm)

∫
p(Z|θm,Mm) p(θm|Mm) dθm
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Derivation of BIC

• The posterior of model Mm is

P (Mm|θm) ∝ P (Mm)

∫
p(Z|θm,Mm) p(θm|Mm) dθm

• Usually assume uniform prior: P (Mm) = 1/M .

• Approximate the above integral by simplification and Laplace
approximation to get

logP (Z|Mm) = logP (Z|θ̂m,Mm)− dm
2

log n+O(1)

where θ̂m is a MLE and dm is # free parameters in Mm.

• Then BIC ∝ −2 logP (Mm|Z)
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AIC Vs BIC

• If Mtrue ∈ {M1, . . . ,MM} then as n→∞
• BIC will select Mtrue. X

• AIC will not. It tends to choose too complex models as
n→∞. 7

• However, when n is small

• BIC often chooses models which are too simple. 7
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K-Fold Cross-Validation

General Approach

• Split the data into K roughly equal-size parts.

Train

1

Train

2

Train

4

Train

5

Validation

3

• For the kth part calculate the prediction error of the model fit
using the other K − 1 parts.

• Do this for k = 1, 2, . . . ,K and combine the K estimates of
the prediction error.
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• Split the data into K roughly equal-size parts.
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Validation
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• For the kth part calculate the prediction error of the model fit
using the other K − 1 parts.

• Do this for k = 1, 2, . . . ,K and combine the K estimates of
the prediction error.

When and why

• It is applied when labelled training data is relatively sparse.

• This method directly estimates Err = E[L(Y, f̂(X))].



K-Fold Cross-validation: Detailed description

• The mapping κ : {1, . . . , n} → {1, . . . ,K} indicates observation i
belongs to partition κ(i).

• f̂−k(x) is the function fitted with the kth part of the data
removed.

• Cross-validation estimate of the prediction error is

CV(f̂) =
1

n

n∑

i=1

L(yi, f̂
−κ(i)(xi))

• Typical choices for K are 5 or 10.

• The case K = n is known as leave-one-out cross-validation.
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K-Fold Cross-validation: Model selection

• Have models f(x, α) indexed by a parameter α.

• f̂−k(x, α) is αth model fit with kth part of the data removed.

• Then define

CV(f̂ , α) =
1

n

n∑

i=1

L(yi, f̂
−κ(i)(xi, α))

• Choose the model

α̂ = arg min
α

CV(f̂ , α)
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What quantity does K-fold validation estimate?

Intuition says

• When K = 5 or 10 then CV (f̂) ≈ Err as training sets for
each fold are fairly different.

• When K = n then CV (f̂) ≈ ErrT as training sets for each
fold are almost identical.



What quantity does K-fold validation estimate?

Intuition says

• When K = 5 or 10 then CV (f̂) ≈ Err as training sets for
each fold are fairly different.

• When K = n then CV (f̂) ≈ ErrT as training sets for each
fold are almost identical.

Book’s simulation experiments say

• Cross-validation, really only effectively estimates Err.



What quantity does K-fold validation estimate?

7.12 Conditional or Expected Test Error? 255
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FIGURE 7.14. Conditional prediction-error ErrT , 10-fold cross-validation, and
leave-one-out cross-validation curves for a 100 simulations from the top-right
panel in Figure 7.3. The thick red curve is the expected prediction error Err,
while the thick black curves are the expected CV curves ET CV10 and ET CVN .
The lower-right panel shows the mean absolute deviation of the CV curves from
the conditional error, ET |CVK − ErrT | for K = 10 (blue) and K = N (green),
as well as from the expected error ET |CV10 − Err| (orange).

• Thick red curve: Err

• Thick black curve: ET [CVK ]



What value of K?

• When K = n

• CV (f̂) is approx an unbiased estimate of Err. X

• CV (f̂) has high variance as the n training sets are similar. 7

• Computational burden is high. 7 (except for a few exceptions)

• When K = 5 (is lowish)

• CV (f̂) has low variance. X

• CV (f̂) is potentially an upward biased estimate of Err. 7

Only occurs if at each fold there is not enough training data to
fit a good model.



Example of a K-fold cross validation curve244 7. Model Assessment and Selection
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FIGURE 7.9. Prediction error (orange) and tenfold cross-validation curve
(blue) estimated from a single training set, from the scenario in the bottom right
panel of Figure 7.3.

ear model with best subsets regression of subset size p. Standard error bars
are shown, which are the standard errors of the individual misclassification
error rates for each of the ten parts. Both curves have minima at p = 10,
although the CV curve is rather flat beyond 10. Often a “one-standard
error” rule is used with cross-validation, in which we choose the most par-
simonious model whose error is no more than one standard error above
the error of the best model. Here it looks like a model with about p = 9
predictors would be chosen, while the true model uses p = 10.

Generalized cross-validation provides a convenient approximation to leave-
one out cross-validation, for linear fitting under squared-error loss. As de-
fined in Section 7.6, a linear fitting method is one for which we can write

ŷ = Sy. (7.50)

Now for many linear fitting methods,

1

N

N∑

i=1

[yi − f̂−i(xi)]
2 =

1

N

N∑

i=1

[yi − f̂(xi)

1 − Sii

]2

, (7.51)

where Sii is the ith diagonal element of S (see Exercise 7.3). The GCV
approximation is

GCV(f̂) =
1

N

N∑

i=1

[
yi − f̂(xi)

1 − trace(S)/N

]2

. (7.52)

• Orange curve: ErrT

• Blue curve: CV10(f̂)



Right & Wrong way to do Cross-validation



Classification problem with a large # of predictors

What’s wrong with this strategy?

1 Screen the predictors Find a subset of good predictors that are
correlated with the class labels.

2 Build a classifier based on the subset of good predictors.

3 Perform cross-validation to estimate the unknown tuning
parameters and to estimate Err of the final model.
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Classification problem with a large # of predictors

What’s wrong with this strategy?

1 Screen the predictors Find a subset of good predictors that are
correlated with the class labels.

2 Build a classifier based on the subset of good predictors.

3 Perform cross-validation to estimate the unknown tuning
parameters and to estimate Err of the final model.

The good predictors were chosen after seeing all the data.



Should have done this

1 Divide the samples into K groups randomly.

2 For each fold k = 1, . . . ,K

• Find a subset of good predictors using all the samples minus
the kth fold.

• Build a classifier using all the samples minus the kth fold.

• Use the classifier to predict the labels for the samples in the
kth fold.



Example

Set-up

• Have a binary classification problem.

• n = 50 with an equal number of points from each class.

• Have p = 5000 quantitative predictors that are independent of
the class labels.

• The true error rate of any classifier is 50%.

7 If one performs pre-selection of 100 predictors and then builds a
1-nn classifier the average CV error rate was 3% over 50
simulations ! 7



Example: correlation of class labels with predictors
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FIGURE 7.10. Cross-validation the wrong and right way: histograms shows the
correlation of class labels, in 10 randomly chosen samples, with the 100 predic-
tors chosen using the incorrect (upper red) and correct (lower green) versions of
cross-validation.

(a) Find a subset of “good” predictors that show fairly strong (uni-
variate) correlation with the class labels, using all of the samples
except those in fold k.

(b) Using just this subset of predictors, build a multivariate classi-
fier, using all of the samples except those in fold k.

(c) Use the classifier to predict the class labels for the samples in
fold k.

The error estimates from step 2(c) are then accumulated over all K folds, to
produce the cross-validation estimate of prediction error. The lower panel
of Figure 7.10 shows the correlations of class labels with the 100 predictors
chosen in step 2(a) of the correct procedure, over the samples in a typical
fold k. We see that they average about zero, as they should.

In general, with a multistep modeling procedure, cross-validation must
be applied to the entire sequence of modeling steps. In particular, samples
must be “left out” before any selection or filtering steps are applied. There
is one qualification: initial unsupervised screening steps can be done be-
fore samples are left out. For example, we could select the 1000 predictors



To perform Multistep Modelling

• Cross-validation must be applied to the entire sequence of
modelling steps.

• Samples must be left out before any selection or filtering is
applied which uses the labels.

• One exception: An unsupervised screening step can use all the
samples.
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Bootstrap Method



The Bootstrap

• Have a training set Z = (z1, z2, . . . , zn) with each
zi = (xi, yi).

• The bootstrap idea is

for b = 1, 2, . . . , B

1 Randomly draw n samples with replacement
from Z to get Z∗b that is

Z∗b = (zb1 , zb2 , . . . , zbn) with bi ∈ {1, . . . , n}

2 Refit the model using Z∗b to get S(Z∗b)

Examine the behaviour of the B fits

S(Z∗1), S(Z∗2), . . . , S(Z∗B).
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Can estimate any aspect of the distribution of S(Z)

• For example its variance

V̂ar[S(Z)] =
1

B − 1

B∑

b=1

(S(Z∗b)− S̄∗)2

where

S̄∗ =
1

B

B∑

b=1

S(Z∗b)



Use Bootstrap to estimate Prediction Error

Attempt 1

Êrrboot =
1

B

1

n

B∑

b=1

n∑

i=1

L(yi, f̂
∗b(xi))

where f̂∗b(xi) is the predicted value at xi using the model
computed from Z∗b.

• Why is this not a good estimate??

• Overlap between training and test sets

• How could we do better?

• Mimic cross-validation
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Use Bootstrap to estimate Prediction Error

Attempt 2: Leave-one-out bootstrap

Êrr
(1)

=
1

n

n∑

i=1

1

|C−i|
∑

b∈C−i
L(yi, f̂

∗b(xi))

where C−i is the set of bootstrap samples b not containing
observation i.

• Either make

• Make B large enough so |C−i| > 0 for all i or

• Omit observation i from testing if |C−i| = 0.
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Is the leave-one-out prediction any good?

• Pros:

1 avoids the overfitting problem of Êrrboot

• Cons:

1 Has the training-set-size bias of cross-validation

2 The P (observation i ∈ Z∗b) is

1−
(

1− 1

n

)n
≈ 1− e−1 = .632

Therefore the average number of distinct observations in Z∗b is
.632n.

3 Êrr
(1)

’s bias is thus similar to twofold cross-validation.



To alleviate this bias

Attempt 3: The .632 estimator

Êrr
(.632)

= .368 err + .632 Êrr
(1)

• Compromise between the training error err and the
leave-one-out bootstrap estimate.

• Its derivation is not easy.

• Obviously the constant .632 relates to P (observation i ∈ Z∗b).

The .632 estimator does not do well if predictor overfits.
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Estimate the degree of overfitting

No-information error rate:

γ̂ =
1

n2

n∑

i=1

n∑

j=1

L(yi, f̂(xj))

• Estimate of the error rate of f̂ if inputs and outputs were
independent.

• Note the prediction rule, f̂ , is evaluated on all possible
combinations of targets yi and predictors xj .
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Estimate the degree of overfitting

Relative overfitting rate:

R̂ =
Êrr

(1) − err

γ̂ − err

• 0 ≤ R̂ ≤ 1

• R̂ = 0 =⇒ no overfitting.

• R̂ = 1 =⇒ overfitting equals no-information value γ̂ − err.



Use Bootstrap to estimate Prediction Error

Attempt 4: The .632+ estimator

Êrr
(.632+)

= (1− ŵ) err + ŵ Êrr
(1)

with

ŵ =
.632

1− .368R̂

• .632 ≤ ŵ ≤ 1 as R̂ ranges from 0 to 1.

• Êrr
(.632+)

ranges from Êrr
(.632)

to Êrr
(1)

.

• Êrr
(.632+)

is a compromise between Êrr
(.632)

and err that depends
on the amount of overfitting.

• Derivation of the above eqn is non-trivial.
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FIGURE 7.13. Boxplots show the distribution of the relative error
100 · [Errα̂ − minα Err(α)]/[maxα Err(α) − minα Err(α)] over the four scenar-
ios of Figure 7.3. This is the error in using the chosen model relative to the best
model. There are 100 training sets represented in each boxplot.

Figure 7.13 shows boxplots of 100 · [Errα̂ − minα Err(α)]/[maxα Err(α) −
minα Err(α)], the error in using the chosen model relative to the best model.
There are 100 different training sets represented in each boxplot. Both mea-
sures perform well overall, perhaps the same or slightly worse that the AIC
in Figure 7.7.

Our conclusion is that for these particular problems and fitting methods,
minimization of either AIC, cross-validation or bootstrap yields a model
fairly close to the best available. Note that for the purpose of model selec-
tion, any of the measures could be biased and it wouldn’t affect things, as
long as the bias did not change the relative performance of the methods.
For example, the addition of a constant to any of the measures would not
change the resulting chosen model. However, for many adaptive, nonlinear
techniques (like trees), estimation of the effective number of parameters is
very difficult. This makes methods like AIC impractical and leaves us with
cross-validation or bootstrap as the methods of choice.

A different question is: how well does each method estimate test error?
On the average the AIC criterion overestimated prediction error of its cho-

• Boxplots show 100
Err(α̂)−minα Err(α)

maxα Err(α)−minα Err(α)
where α̂ is the best parameter

found via the selection method under investigation.

• 100 training sets were used.


