Chapter 8: Model Inference and Averaging
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Introduction



Today's Lecture

e This chapter covers a lot of ideas / techniques !
e Will focus more on the later sections.

e Would probably need several lectures to cover the material
properly.

e But here goes.....



The Bootstrap and Maximum Likelihood
Methods



Maximum likelihood estimate

Using training data Z = {(z1,v1), ..., (Zn,yn)} fit this model
Y =330 B hi(X)

using the ML estimate.
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Can also put error bounds on the estimate if assume an additive
error model.



Bootstrap estimate and variance estimate

Using training data Z = {(z1,vy1), ..., (Zn,yn)} fit this model
Y =337 B hi(X)

Iterate: Take bootstrap sample and compute the ML estimate.
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From bootstrap fits can find the mean estimate and put error
bounds on the estimates.



Maximum Likelihood Inference



Parameter estimation

Have n independent draws x1, ..., X, from p(x|©).
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v

Each x; ~ N(x|p,X) where © = (pu,¥)
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Parameter estimation

Have n independent draws xi, ..., x, from p(x|©).
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e - +— 1D example

v

Each x; ~ N(x|p,X) where © = (i, )

Want to estimate the parameters © from the x;'s
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Parameter estimation

Have n independent draws X1, ..., X, from p(x|©).

p(x] ©) p(x| ©) P(x| ©)

kY

& * x e .., x K ., x
s e gl > oot JR— TG s amsemmeenl >

s . B 1 B . . B o s
0= (52,.8) © = (4.8,1.4) O =(4.9,.7)

Want to estimate the parameters © from the x;'s.

HOW??
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Maximum Likelihood Estimation (MLE)

Choose the © which maximizes the likelihood of your data:

O =arg max p(x1,X%2,...,X,|©)
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Maximum Likelihood Estimation (MLE)

Choose the © which maximizes the likelihood of your data:
/(@,X) = p(x1>x2a <y Xp | e)

n
= H p(x;|©) < assuming independent samples
i=1

Josephine Sullivan + the web, Expectation Maximization without tears! 5/42



Maximum Likelihood Estimation (MLE)

Choose the © which maximizes the likelihood of your data:
/(@,X) = p(x1>x2a <y Xp | e)

= H p(x;| ©) < assuming independent samples
Easier to work with the log-likelihood

L(©; X) = log (/ GX))—ZIog (x;1©))
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Maximum Likelihood Estimation (MLE)

Choose the © which maximizes the likelihood of your data:

Note

O =arg max I(©; X) = arg max L(©; X)
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An example Log-likelihood function

Our 1

4

o= 0 XDE@EDO O

D example of points drawn from N(u, ¥)

A

v
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An example Log-likelihood function

Our 1

4

o= 0 XDE@EDO O

D example of points drawn from N(u, ¥)

A

v

Want

X=(x1,...,%p) Log-likelihood: L(©; X)

to find the maximum of this function L(©; X).

Josephine Sullivan +

the web, Expectation Maximization without tears! 6/42



MLE for a Normal distribution

The formula for a normal distribution for x € R¢:

p(x|©) = (27) 2 |Z] 72 exp (—5(x — )t T (x — p))
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MLE for a Normal distribution

The log-likelihood of our n data-points is

Z log (p(x; | ©))
-y 5 og(2r) ~  og (1) ~ 50 — 1'%~ 10)
i=1

= " 1og(2) — Tlog (Z]) ~ 53 (xi — )T xi — 1)

i=1

_ _”2_d log(2r) — 710g (I%]) — 5tr | S (xi — )T (xi — )

i=1
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MLE for a Normal distribution

L(©;X) = —%d log(27) — g log (|X]) — .5tr Z(x,- — ) (% — p)

nd n [ _
=-> log(2m) — > log (|X]) — .5tr ZZ Yxi — p)(xj — p)*
i=1

nd n [ O
= —7Iog(27r)— 5|og(\2|)—.5tr r 1Z(x,-—u)(x,-—u)t
L i=1

Note X is a symmetric positive definite matrix. Thus ¥ = T!T therefore

n

(TET) Y (% = )(xi — )

i=1

(TET)71 D (xi = p)(xi — )’
i=1

L(©;X) = _n27d log(27) — g log (| T*T|) — 5tr

d
= 7”7 log(27) — nlog (| T|) — .5tr
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Remember

How do we analytically solve for an optimum?

» Take derivative of function wrt each variable.
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Remember

How do we analytically solve for an optimum?

» Take derivative of function wrt each variable.
» Set each derivative to zero.
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Remember

How do we analytically solve for an optimum?

» Take derivative of function wrt each variable.
» Set each derivative to zero.
» Solve the set of simultaneous equations if possible.
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MLE for a Normal distribution

For our Normal distribution

Take derivative of function wrt each variable:
LO;X) &
8 @ Zz 1(X,

aL(e X) _

5T AT 4+ T(TIT)™ 1Z(x, p)(x — p) (TFT)

i=1

Remember: The Matrix Cookbook is your friend.
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MLE for a Normal distribution

For our Normal distribution

Set each derivative to zero:

0=x"1 zn:(x, —
i=1

o ar xS ] e

Remember: The Matrix Cookbook is your friend.
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MLE for a Normal distribution

For our Normal distribution

Solve the set of simultaneous equations if possible:

1 n
= - Xi
i=1
THT oy = 2 Zn:(x- — )% —p)
=1"=_ i )X —p
i=1

Remember: The Matrix Cookbook is your friend.
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MLE for a Normal distribution

Back to our 1D example:

A P(x]| ©)

Red curve is the MLE pdf (n = 25)
Black curve is the ground truth
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MLE for a Normal distribution

Estimate becomes better as n increases

A P(x]| ©)

Red curve is the MLE pdf (n = 200)
Black curve is the ground truth
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Bootstrap Vs Maximum Likelihood estimate

e Bootstrap is a computer implementation of maximum
likelihood estimation.



Bayesian Methods



Bayesian approach

e Base calculations on the posterior distribution for 6

00)
[p(e‘z) = To(z) p(0) a7 ]

e Use the posterior to estimate the predictive distribution for

new

z

[p(anW|Z) = / p(2™"|0) p(8]Z) 49 ]

e This is in contrast to the ML approach which would use
p(znewleMLE)'



Bayesian approach to 1D smoothing example

e Have observed data Z = {(z1,v1), ..., (Tn,yn)}
e Assume

J
Y:Z,thj(X)—i—e with € ~ N(0, 0?%)
j=1

2
L

3 2 4 0 1
L L L L




Bayesian approach to 1D smoothing example

e Have observed data Z = {(z1,v1), ..., (Tn,yn)}
e Assume

J
Y:Z,thj(X)—i—e with € ~ N(0, 0?%)
j=1

e Put a prior on the 3 = (81,..., )"
B~ N(0,7%1)

4
3 2 1 0 1 2 3




Bayesian approach to 1D smoothing example

e The posterior distribution for § is then

_ _ p(wX,8)p(5)
p(B12) = p(8] X,y) = B e

where
p(y|X,5) = N(y; HB,0°I,)  with H = {h;(z;)}
and 3~ N(0,7%1))

e As have Normal distributions for the likelihood and prior

p(B|Z) =N(B; A~ H'y, A~ 'o?)

2
with A = H'H + 2 I,
T



Distribution of the prediction at z,

e The distribution of the predicted curve at pu(z)
(0. |2..2) = [ ol 2..9)5(512) 45

- / Ny h(z)'8,0%) N'(8; A~ H'y, A~'0%) dB

=N tha.,02,)
where

e, = h(z,)t A" HYy, 02 = h(x.) ' A7 h(x,) + o2

T x

e Can re-write these terms p,, and O’i* so that one can use kernels
— get Gaussian process regression.



Example curves drawn from the posterior distribution

=1 7 = 1000




The EM algorithm



Limitations of Normal distributions

Unfortunately Normal distributions are not very expressive.

APX|O)
4 |-
3 |-
2 |-
1 -
| | | | >O
-4 -2 0 2 4

What do we do in this situation 77
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Gaussian Mixture Models (GMM)

They can accurately represent any distribution.

Mathematical definition

K
p(x|©) =Y mi N(xk; e, i)

k=1
where

K
Zwkzl and 7, >0fork=1,....K

k=1

and6:(;1,1,...,uK,Zl,...,ZK,m,...,WK)

Josephine Sullivan + the web, Expectation Maximization without tears!
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Gaussian Mixture Models (GMM)

They can accurately represent any distribution.

APX|O)
4
3
2
1
| | | | >®
-4 -2 0 2 4

p(x]©) = aN(x|p1,0%) + (1 — Q) N (x| 2, 03)
© = (a, p1,01, p2,02) = (.6,—1,.5,1.5,1.3)

Josephine Sullivan + the web, Expectation Maximization without tears!
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Parameter estimation for a GMM

Given n independent samples xy, ..., X, from a GMM.

A PX|0©)

4

2l +— training data

-4 -2 0 2 4
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Parameter estimation for a GMM
Given n independent samples xy, ..., X, from a GMM.

A PX|0©)

4

s +— training data

-4 -2 0 2 4

Can still use MLE to estimate © from the x;'s, but...
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Attempt 1: Analytic Solution

:
15/42



Attempt 1: Parameter estimation for a GMM

The log-likelihood of the data is

n K
L(©;X) = Z log (Z TN (xi; Hmzk))
i—1 k=1

(Note: We'll assume K is known and fixed.)

Josephine Sullivan + the web, Expectation Maximization without tears! 16/42



Attempt 1: Parameter estimation for a GMM

Let's try to maximize L(©; X) analytically subject to the constraint
> w7k =1 and each X = T/ Tj. Construct the Lagrangian £(©, \; X).

L(©,\; X) Zlog <Z7rkN Xii s Tka)) + A (1 - Zwk>
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Attempt 1: Parameter estimation for a GMM

Let's try to maximize L(©; X) analytically subject to the constraint
> Tk =1 and each X, = T/ T,. Construct the Lagrangian £(©, \; X).

Take derivatives for k=1,... K:

dLO, N X) I\ mN(xii i, T Ti)
o, & GMM(x;©)

9 L(©, X; X)
Ty

etc

(TeT) ™M (% — )

= something complicated.....
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Attempt 1: Parameter estimation for a GMM

Let's try to maximize L(©; X) analytically subject to the constraint
> Tk =1 and each X, = T/ T,. Construct the Lagrangian L(©, \; X).

Set derivatives to zero:

Zn: N (xj; s i)

s — =0
GMM(x;; ©) k (x; i)

i=1

etc

Josephine Sullivan + the web, Expectation Maximization without tears! 16/42



Attempt 1: Parameter estimation for a GMM

Let's try to maximize L(©; X) analytically subject to the constraint
> w7k =1 and each X, = T/ Tj. Construct the Lagrangian £(©, \; X).

Solve the set of simultaneous equations

NO ANALYTIC SOLUTION

Josephine Sullivan + the web, Expectation Maximization without tears! 16/42



Attempt 2: Newton based iterative
optimzation

Josephine Sullivan + the web, Expectation Maximization without tears! 17/42



Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

One iteration

» Have a current estimate ©(1).
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

One iteration
» Have a current estimate ©(1).

» Approximate L(©; X) in neighbourhood of ©(*) with a
paraboloid.
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

One iteration
» Have a current estimate ©(1).

» Approximate L(©; X) in neighbourhood of ©(*) with a
paraboloid.

» Ot+D) is set to maximum of the paraboloid.

Josephine Sullivan + the web, Expectation Maximization without tears! 18/42



Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

Comments

» Should find a local maximum. v
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

Comments
» Should find a local maximum. v

» Convergence fast if ©() close to an optimum.
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

Comments
» Should find a local maximum.
» Convergence fast if ©(t) close to an optimum.

» If ©©) far away from a local maximum method can fail.
Paraboloid approximation process can hit problems. X

Josephine Sullivan + the web, Expectation Maximization without tears

18/42



What other options are there??

Now for, what may seem like, a slight
diversion

Josephine Sullivan + the web, Expectation Maximization without tears! 19/42



Defintion of Majorization
A function g(©; ©()) majorizes a function f(©) at () if

f(OW) =g(@®; W) and £(©) < g(©; W) for all ©

A©

+—— g(©; ©1)) majorizes f(O)

/e
>

o

Josephine Sullivan + the web, Expectation Maximization without tears! 20/42



The MM Algorithm

To minimize an objective function f(©):

» The MM algorithm is a prescription for constructing
optimization algorithms.

Name coined by David R. Hunter and Kenneth Lange
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The MM Algorithm

To minimize an objective function f(©):

» The MM algorithm is a prescription for constructing
optimization algorithms.

» An MM algorithm creates a surrogate function that
majorizes the objective function. When the surrogate
function is minimized the objective function is decreased.

Name coined by David R. Hunter and Kenneth Lange
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The MM Algorithm

To minimize an objective function f(©):

» The MM algorithm is a prescription for constructing
optimization algorithms.

» An MM algorithm creates a surrogate function that
majorizes the objective function. When the surrogate
function is minimized the objective function is decreased.

» When minimizing MM = majorize/minimize.

Name coined by David R. Hunter and Kenneth Lange

Josephine Sullivan + the web, Expectation Maximization without tears! 21/42



Some definitions
A function g(©; ©()) majorizes the function f(©) at ©(") if

F(O1) = g(@®; ©1) and f£(O) < g(©; ©W) for all ©

A©

+—— g(©;0) majorizes f(©)

/e
>

o

Josephine Sullivan + the web, Expectation Maximization without tears! 22/42



Some definitions
Let

O+ = arg m@in g(©; )

f(©) A1©
A

/ e
;e ] G)('.4-1)

Find minimum of
majorizing function

o

Majorize function
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Some definitions
Let

o+l = arg min g(0; o)
(so should choose a g(©; ©(1)) which is easy to minimize)

©) A f©)
A

/ c)
=® ] o))

Find minimum of
majorizing function

o

Majorize function

Josephine Sullivan + the web, Expectation Maximization without tears 23/42



Descent Properties

MM minimization algorithm satisfies the descent property as

fF(OUD) < g(@+D: M) 45 (@) < g(0; ©0)) v
< g(e(t); 9“)), as ©(F1) minimizes g(©; ©)
= f(el)
In summary

f(@(t+1)) < f(@(t))

Josephine Sullivan + the web, Expectation Maximization without tears!
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Descent Properties

MM minimization algorithm satisfies the descent property as

F(OIT) < g(O; @), 45 (o) < g(0; 0) Vo
< g(@(t); e(t)), as ©F1) minimizes g(©; )
= f(eW)
In summary

f(e(t+1)) < f(@(t))

The descent property makes the MM algorithm very stable.
Algorithm converges to local minima or saddle point.

Josephine Sullivan + the web, Expectation Maximization without tears!

24/42



Maximizing a function

To maximize an objective function f(©):

» MM algorithm creates a surrogate function that minorize
the objective function. When the surrogate function is

maximized the objective function is increased.
Af©)

|
o0

(€]
»
»

Red curve minorize the black curve
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Maximizing a function

To maximize an objective function f(©):

» MM algorithm creates a surrogate function that minorize
the objective function. When the surrogate function is

maximized the objective function is increased.
Af©)

|
o0

(€]
»
»

Red curve minorize the black curve

» When maximizing MM = minorize/maximize.

Josephine Sullivan + the web, Expectation Maximization without tears!
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Big Question?
How do you majorize or minorize a function??

Here are some generic tricks and tools
» Jensen's inequality
» Chord above the graph property of a convex function
» Supporting hyperplane property of a convex function

v

Quadratic upper bound principle

v

Arithmetic-geometric mean inequality

v

The Cauchy-Schwartz inequality

Presume it would take some practice to use these
tricks.

But....
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But wait...

You probably have minorized via Jensen’s Inequality!

Remember Jensen’s Inequality:
» h(-) be a concave function,
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Remember Jensen’s Inequality:
» h(-) be a concave function,

» have K non-negative numbers 7y, ..., mx with >, m; =1,
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But wait...

You probably have minorized via Jensen’s Inequality!

Remember Jensen’s Inequality:
» h(-) be a concave function,
» have K non-negative numbers 7y, ..., mx with >, m; =1,

» K arbitrary numbers ay, ..., ax
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But wait...

You probably have minorized via Jensen’s Inequality!

Remember Jensen’s Inequality:
» h(-) be a concave function,

» have K non-negative numbers 7y, ..., mx with >, m; =1,
» K arbitrary numbers ay, ..., ax
then

K K
h Zﬂ'kak szh(ak)
k=1 k=1

Josephine Sullivan + the web, Expectation Maximization without tears! 27/42



Flnally we're getting to ExpectationMaximization
» The EM algorithm is a MM algorithm.
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Flnally we're getting to ExpectationMaximization

» The EM algorithm is a MM algorithm.
» Use Jensen's inequality to minorize the log-likelihood.
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Flnally we're getting to ExpectationMaximization

» The EM algorithm is a MM algorithm.
» Use Jensen's inequality to minorize the log-likelihood.

Here’s how we minorize. Step 1:

L(@, X) = |Og (p(X | @) = |0g (Z p (X, Z = Zj | @)) <— introduce discrete variable Z

=1

f()(Z) a pdf — = log Z F(Z = z)) —(th =719)
FI(Z = z)

< : p(X,Z=2;|0)
Jensen's inequality — > f(t)(Z =z;)log <—
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Flnally we're getting to ExpectationMaximization

» The EM algorithm is a MM algorithm.
» Use Jensen's inequality to minorize the log-likelihood.

Here’s how we minorize. Step 1:

L(@, X) = |0g (p(X | @) = |0g Z P (X, Z—= Zj | @) < introduce discrete variable Z

j=1
p(X,Z=2;|9)
(t) t .
fU(Z) a pdf — = log Zf() _Zj)m
Jensen's inequality — > Z f(t)(z = z;)log <p(f)((;)?2_:zjzj|)e)>

Jj=1

ny (X,Z=z; | ©
L(©:;X) > %, F(Z = 2;) log (W%)
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Find f()(Z)

Here’'s how we minorize. Step 2:

The lower bound must touch the log-likelihood at @)

: X,Z=z; e(t)
L(OW; X) = 307, f(Z = z;) log (%)

Josephine Sullivan + the web, Expectation Maximization without tears! 29/42



Find f()(Z)

Here’'s how we minorize. Step 2:

The lower bound must touch the log-likelihood at @)

b X,Z=z; | ©®)
L(OW;X) = 372, f(Z = z7) log (24572197

From this constraint can calculate f(1)(Z). It is:
F(Z) = p(Z| X, 01)

(Derivation is straight-forward)

Josephine Sullivan + the web, Expectation Maximization without tears 29/42



EM as MM summary
The log-likelihood function L(©; X) at ©(*) is minorized by

n; X,Z=z; | ©
g(0;00) = 577, p(Z = 27| X, 01) log (222410 )
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EM as MM summary
The log-likelihood function L(©; X) at ©*) is minorized by

p(Z=2,1%.60))

8(9:6%) = 7z, p(Z = ;| X,01) log (T )

Maximizing the surrogate function, g(©; ©(%)), involves:

olt+l) — arg mgx g(o; e(t))

n
= arg max ;p(z =2;|X,0W)log (p(X,Z =2 |©))
=

Maximization Step

= arg mea)xx Ep(z [X,000) [log (p(X,Z]0))]

Expectation Step

Josephine Sullivan + the web, Expectation Maximization without tears 30/42



The latent/hidden variables Z

There seemed to be some magic in this derivation!

What are the Z's and where did they come from??

Answer:
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The latent/hidden variables Z

There seemed to be some magic in this derivation!

What are the Z's and where did they come from??
Answer:

» Z is a random variable whose pdf conditioned on X is
completely determined by ©.
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The latent/hidden variables Z

There seemed to be some magic in this derivation!

What are the Z's and where did they come from??

Answer:

» Z is a random variable whose pdf conditioned on X is
completely determined by ©.

» Choice of Z should make the maximization step easy.

Josephine Sullivan + the web, Expectation Maximization without tears

31/42



Back to our GMM parameter estimation and EM

Josephine Sullivan + the web, Expectation Maximization without tears! 32/42



Attempt 3: Parameter estimation for a GMM

Let's look at a tutorial example using EM:

p(x]©) = aN(x|p1,07) + (1 — Q) N (x| 2, 03)

A PKX|0©)

<— Ground truth
distribution

o
L ! ! | >
-4 -2 0 2 4

where © = (v, 1, 01, 12, 02) = (.6, —1,.5,1.5,1.3)
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Attempt 3: Parameter estimation for a GMM

Say all the parameters of © are known except . Then we are
given n samples X = (x, X2, .. ., X,) independently drawn from
p(x|©). Using these samples and EM we can estimate a.

A PX|0©)

<— training data

-4 -2 0 2 4
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Attempt 3: Parameter estimation for a GMM

If we knew which samples were generated by which
component, life would be so much simpler!

APX|O)

4+

3 -

-4

Component 1 samples

Josephine Sullivan + the web,

-2

0

2

4

APX|©)

4
3
2 |-
1+

-4 -2 0 2 4

Component 2 samples

Expectation Maximization without tears
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Attempt 3: EM Solution
Introduce hidden/latent variables:
Z = (z,...,z,) is a vector of hidden variables.
Each z € {0,1} indicates component generating x;.

Josephine Sullivan + the web, Expectation Maximization without tears! 36/42



Attempt 3: EM Solution
Introduce hidden/latent variables:
Z=(zn,...,z,) is a vector of hidden variables.
Each z € {0,1} indicates component generating x;.
E-step:
» Update posteriors for the hidden variables:

p(xi | p1,01) o)
p(xi | 11, 01) a0 + p(x; | 2, 92) (1 — o)

p(zi = 0] x;,a(®)) =
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Attempt 3: EM Solution
Introduce hidden/latent variables:
Z=(zn,...,z,) is a vector of hidden variables.
Each z € {0,1} indicates component generating x;.
E-step:
» Update posteriors for the hidden variables:

p(xi | p1,01) o)
p(xi | 11, 01) a0 + p(x; | 2, 92) (1 — o)

p(zi = 0|x;, ) =
» Calculate the conditional expectation

ool — o) log [P 219)
s(aial®) = 3 o(Z|X. ) og (FE i)

M-step: Find argmaxg(c; oY) which gives:
o(ttD) — X P(Zi=l?lxi,oz(t))
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Attempt 3: EM expectation calculation

S p(z1X, o) log (p(X, Z | )

all Z
> [H plzs | x5, o) S log (,,(X,|z,,a),,(z,.|a))]
all Z [s=1 i=1

1 1 n n
=> > l:H pzs = Js | s, Dt(t))zbg(l’(xf [ zj = jj, &) p(z; :jf|‘1)):|

=0 jn=0 |s=1 i=1

n n 1
=S TT S s = ds | xs, ) | plzi = i |5, D) log (p(xi | 71 = ji, @) plzi = i)
i=1 s=1,5#i js=0
=1
n 1
=373 bz = i | xi, D) log (p(xi | 27 = i, @) plai = jiler))
i=1j;=0
n 1 . X
=55 plzi =i | x> o) log (N(Xi | wj;> o) ot i - O‘)Ji)
i=1j;=0
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Attempt 3: EM maximization process

83 p(ZIX, al?) log(p(X, Z| @)

'z 9 log (a1 /i1 — i)

1
. t
=>">" plzi =i | xi, ')
da =1 ji=0 da
n 1 . .
1—j .
=33 plzi =i | xi, o) (71' i a - )
i=1 j;=0 @ -«
n

p(zi = ji 1, 0M) (1 = ji — a)

|
.MH

i=1j;=0
n 1 n 1
=(1-a)> > plg =i %, a) - plzi = Ji | %, D)
i=1 j,-:l) i=1 j,-:O

"
=n(l —a) = > plz = 1|x, )

i=1
=—na+n—>(1-pz=0]|xa")

i=1

n
=> p@ =0lx,a) —na=0
i=1

(20| xi,a®)
(t+1) — 2y P(zi=0]xi,0™”)
Therefore o = -
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Josephine Sullivan + the web,

Attempt 3: EM Solution

A P(x[©)

-4 -2 0 2 4

Ground truth distribution

starting point

A P(x | ©)

)
-4 -2 0 2 4
Initial guess of distribution
with o9 = .1

Remember g(a; a(*)) minorizes log (p(X | @) at af?).

Let’s plot what happens as EM update o(9...
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EM one iteration
Compute posterior probabilities of the hidden variables

- ()
A p(z=01x, a™)

1
8 =
6 =

4 =

I | >

10 20 30 40 50

Graph shows p(z; = 0| x;, @(?)) of each hidden variable.

Red — sample really generated by component 1
Green = sample really generated by component 2
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EM one iteration

Compute the expectation minorizing the log-likelihood
at o9 =1

NG (t) M
gla;al?) a%JZP(Z“"“ )'°g<p(2|x,a<f))

Alog(p(X [ ) g(a;a®)

-100 —

-120

-140 -
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EM one iteration

Calculate maximum of g(a; a(?)

Alog(p(X ) ga;a®)
-100

-120

140

| | | | | “" | La
0 2 4 6 8 1
Maximum of g(o; o)) gives a(Y)

= .3672
Josephine Sullivan + the web,

Expectation Maximization without tears!

40/42



EM one iteration

The estimate of the GMM with oY) = 3672

A PX|0©)

4 =

-4 -2 0 2 4
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EM lterations

Iteration 2

pz=0x, a') o
log(p(X | @) g(a:a)
4
-100
3
-120
2
140
1
i L L L L L L ‘c( L " N P ‘e
[0 2 4 6 8 I I oz ; + P
Posterior probabilities g(a; o) Current GMM estimate
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EM lterations

Iteration 3

pz=0x, a') o
log(p(X | @) g(a:a)
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EM lterations

Iteration 4

pz=0x, a') o
log(p(X | @) g(a:a)
4
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3
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EM lterations

Iteration 5

pz=0x, a') o
log(p(X | @) g(a:a)
4
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Posterior probabilities gla; o) Current GMM estimate
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MCMC for Sampling from the Posterior



Monte Carlo Markov Chain Method

Aim:
o Generate independent samples {z("} % | from a pdf p(x).

e Can then use 2(")’s to estimate expectations of functions
under this distribution

1
Blo(a)] = [ o(e)ple)do~ 33 3 o(a)
x r=1
Not an easy task:
e Sampling from p(z) is, in general, hard.

e Especially when x € R? and p is large.

Common approach:

e Monte Carlo Markov Chain methods such as
Metropolis-Hastings and Gibbs sampling.



MCMC assumptions

Assumptions:

e Want to draw samples from p(z).
e Can evaluate p(z) within a normalization factor.

e That is can evaluate a function p*(x) such that

where Z is a constant.



The Metropolis-Hastings method

Initially

e Have an initial state (1.

e Define a proposal density Q(x’;x(t)) depending on the
current state (%),

71Qia)

20 T

e Must be able to draw samples from Q(z’; x(t)).



The Metropolis-Hastings method

At each iteration

e A tentative new state x’ is generated from the proposal
density Q(a'; ™).
e Compute

a = min (1 p*(z') Q(x(t)ﬂﬁl) )
B Tp* (™) Q(a; 2®)

e Accept new state 2’ with probability a.
o Set

(t+1) x’  if state is accepted
€T =
2 if state is not accepted



The Metropolis-Hastings method

At each iteration

o A tentative new state x’ is generated from the proposal
density Q(a'; ™).

e Compute
. P () Qz; 2)
o (1’ P () Q' 21)
e Accept new state 2’ with probability a.
e Set

S+ {m’ if state is accepted

2z if state is not accepted

Convergence:
For any Q s.t. Q(2;2) > 0Vz, 2/, ast — oo

[the probability distribution of 2 tends to p(x) = p*(x)/Z]




Example of ") for a simple toy example

(b) Metropolis (c) Independent sampling

100 iterations 100 iterations

2t 4 2
ol L L L L 0 L
0 5 10 15 20 0 5 10 15 20
400 iterations 400 iterations
T w0l T T T n
1 35 4

10 15 20 10
1200 iterations 1200 iterations
T T T




Gibbs Sampling

In Gibbs sampling given a state z(Y) € RP generate a new state with

x§t+1) - p(:C1|Igt), xét)’ o ’:CZ()t))
ZL‘SH—I) ~ p(x2|xgt+1),xgt), .. ,xz(f)),

xg’t+l) ~ p(x2|$§t+1),f13g+1)7 'Tflt), e 7‘,1;&))7 etc.

where it is assumed we can generate samples from p(x;|{x;}; ).



Gibbs Sampling

In Gibbs sampling given a state z(Y) € RP generate a new state with

azgtH) ~ p(:c1|xgt), :cét), . ,CL‘]()t))
ZL‘SH—I) ~ p(x2|xgt+1),xgt), . ,xg)),

IL'gH_l) ~ p(x2|$§t+1),f13g+1)7 xit)) e 7xét))7 etc.

where it is assumed we can generate samples from p(x;|{x;}; ).

Convergence

As Gibbs sampling is a Metropolis method, the probability
distribution of 2(*) tends to p(x) as t — oo, as long as p(x) does
not have pathological properties.



Gibbs Sampling: Two dimensional example

k2




Evolution of a state x defined by a Markov chain

e Markov chain defined by an initial p(”) () and a transition
probability T'(2'; 7).

o Let p¥) () be the pdf of the state after ¢ applications of the
Markov chain.

e The pdf of the state at the (¢ + 1)th iteration of the Markov
chain is given by

P (a) = / T(2's 2) p® (&) da

e Want to find a chain s.t. as ¢t — oo then p®(z) — p(x).



Example of p®(z)’s

Tr .t. . (t) '
ansition matrix P ) S
(@)
o s 10 15 2
M (x) M
o s 5 2
l/ 12
1 1/ 1/2 1/ p(2)(m)
/2‘/ /21/2
2 . Y2 o 5 10 15 2
'/21/2'/ 1,
o . 1
1, 1/; 3
T= ’ 2 . Y2 p(‘l)(z)
V2 . V2
/|/1/2|'/2' o 5 0 15 2
Va1
vvvvv "y ;w P (@) ANV
1
21/2”2/2]/ o 5 0 15 2
..... a1

PP () —~AAAAAA—

P10 ()



Transition matrix

o 5 10 15 20
o 5 10 15 2

o 5 10 15 20
P
o 5 10 15 20



Markov chains for MCMC methods

When designing a MCMC method construct a chain with the
following properties

e p(x) is an invariant distribution of the chain

pa) = [ Ta) pla) da
e The chain is ergodic that is

p(z) — p(z) as t — oo for any p0(z)



Gibbs sampling for mixtures

e Close connection between Gibbs sampling and the EM
algorithm in exponential family models.

o Let
e the parameters, 0, of the distribution and

e the latent/missing data Z™
be parameters for a Gibbs sampler.



Gibbs sampling for mixtures

e Close connection between Gibbs sampling and the EM
algorithm in exponential family models.

o Let
e the parameters, 0, of the distribution and

e the latent/missing data Z™
be parameters for a Gibbs sampler.

e Therefore to estimate the parameters of a GMM at each
iteration

o AV p(A; 160, Z) fori=1,....n
o 01D~ p(0| AUTY, Z)

where A; € {1,..., K} and represents which component
training example 4 is assigned to.



Bagging



Bagging

Starting point
e Have training set Z = {(z1,y1), .-, (Tn,yn)}

o Let f(x) be the prediction at input z learned from Z.

Goal

e Obtain a prediction at input 2 with lower variance than f(x)



Bagging

Starting point
e Have training set Z = {(z1,91), -, (Tn,yn)}

e Let f(x) be the prediction at input z learned from Z.

Goal
e Obtain a prediction at input x with lower variance than f(x).

How - Bootstrap aggregation a.k.a. Bagging

e Obtain bootstrap samples Z*!, ... Z*5.
e For each Z*" fit the model and get prediction f*(z).

e The bagged estimate is then

B A~
fbag Zf



Comments on the Bagged estimate

The Bagged Estimate

B A
fbag :Ez.f

e Remember f(z) is the prediction at input z: learned from Z.

. fbag(m) differs from f(x) when the fitted f is a non-linear or
adaptive function of the data.



Example when bagging helps significantly

e Have n = 30 training examples with two classes and p = 5.

e Each feature is A/(0,1) with pairwise correlations of .95.

The response Y was generated according to
P(Y =1|z; <.5)=.2and P(Y =1|z; > .5) = 8.

Test sample of size 2000 was generated.

The base classifier, f, is a classification tree.

B =200



Trees learnt from different bootstrap samples

b=3 b=4 b=s
xecozms  x3<oss xa<-138
J‘\ °
. [
3
'
1o ! o
° 1
o o 1 1o
b=s b=7 b=s
x1<0395 x1<0395 xa <008
! ‘
i
o 1 0
o o [ o 1



Bagged tree classifer outperforms one tree classifier

Consensus
©  Probability

0.50
|

Original Tree

0.45

0.40

Bagged Trees

Test Error
0.30 0.35
I I

0.25
|

0.20

Number of Bootstrap Samples
e Bag the 0,1 decision returned by each tree.

e Bag the (P(y = 0|x), P(y = 1|x)) returned by each tree. Use
the ratio of +tives to -tives in the terminal node reached by z.



Bagging for classification and 0, 1 loss

Squared-error loss:

e Bagging can dramatically reduce the variance of unstable
procedures, leading to improved prediction.

Classification with 0,1 loss

e Bagging a good classifier can make it better.
e Bagging a bad classifier can make things worse.

e Can understand the bagging effect in terms of a consensus of
independent weak learners or the wisdom of crowds.



Bagging enlarges the space of models derived from f(T)

Bagged Decision Rule Boosted Decision Rule

K
et

e f(x) can either be an oriented vertical or horizontal line.

e In this case bagging the f**(x)’s gives some gain but not as
much as boosting. (B = 50)



Model Averaging and Stacking



Bayesian model averaging

Starting point
e Have training set Z = {(z1,%1), -, (Tn,yn)}

e Have a set of candidate models M1, ..., M s to explain Z.

Goal
e Want to estimate quantity ¢ - perhaps a prediction of f(x) at x.

A Bayesian solution
e The posterior distribution of ( is

M

m=1
with posterior mean

M

E[(|Z] =) B[(|Mpm,Z] P(My, |Z)

m=1



Bayesian model averaging

M

E[C|Z] = ) E[(|Mmn,Z] P(My,|Z)

m=1

e Committee method make approximation

1

e BIC approach make approximation
P(My, | Z) ~ —2loglik + dy, log(n)
e Hardcore Bayesian try to estimate the integral
P(M | Z) < P(Mu) p(Z | M)
x PMp,) | p(Z |6, M) p(Or | M) dO



Model averaging - Frequentist approach

Starting point

A~ ~

e Have predictions fi(z), f2(), ..., far(x).

Goal
e For squared-error loss find weights w = (w1,...,wys) s.t.

(Y - Z Woy, fm(x)> ]

w = argmin Ep,
w

Solution if can compute expectations

e Population linear regression of Y on F(z) = [fi(z),. .., fa ()]

w=Ep [F(x) F(@t} "Ep [F(x) Y]

(Have dropped the subscript on the distribution P.)



Model averaging - Frequentist approach

For this w

[w —Ep [F(m) F(x)t} “Ep [F(a;) Y] ]

the full regression model has smaller error than any single model

Ep [(Yﬁlwmfm(m)ﬂ <Ep [(Yffm(x))z} Vm

Combining models never makes things worse (at a population level)



Model averaging - Frequentist approach

For this w

[szp [F(m)ﬁ(x)t} "Ep [F(a:)Y] ]

the full regression model has smaller error than any single model

M 2
m=1
Combining models never makes things worse (at a population level)

But cannot estimate the population w. What is one to do?



Solution: Stacked generalization

o fri(z) is the prediction at x using

e the mth model

o learnt from the dataset with the ith training example removed.



Solution: Stacked generalization

o fri(z) is the prediction at x using

e the mth model

o learnt from the dataset with the ith training example removed.

e Then the stacking weights are given by

2
n M
% = argmin 3 (y -y wmfm)
i=1 m=1



Solution: Stacked generalization

o fri(z) is the prediction at x using

e the mth model

o learnt from the dataset with the ith training example removed.

e Then the stacking weights are given by
n M 2
@ = argmin ) (y -3 wmfn:”(wi)>
i=1 m=1

e The final prediction at point x is

> @ ful(@)

m



Comments on stacking

e Better results by forcing w3-'s to be > 0 and sum to 1.

e Stacking and model selection with via leave-one-out
cross-validation are closely related.

e Can apply stacking to other non-linear methods to combine
predictions from different models.



Stochastic Search: Bumping



e Draw bootstrap samples Z*!, ... Z*5.

e forb=1,....B
Fit the model to Z** giving f**(x).

e Choose the model obtained from bootstrap sample b which
minimizes training error:

The model predictions are then f* b(a:)



Bumping Example: Classification using decision trees

o ey . PLRE} <.
. o« e
® . . ® . . .
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% e r .o % el ] . 5o
L 3 o L PPN M { o
. .o . . .o o
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° ot . M 5 o . *
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“ . L
K3 o . (38 S .
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. o . L. o
., 8 . e NS ’

Training data f(x) using all training data

Forced tree to have at least 80 points in each leaf.



Bumping: Bootstrap sample training data and fit

A~ ~

Fi(z) F*(x) fi ()

0.2775 0.3425

0.1950 0.3475 0.2550 0.1950 0.2100



Bumping: Bootstrap sample training data and fit

fl@ e PR e )

0.0325 0.3450 0.3450 0.1025 0.2750

f*lﬁ(x)

0.2000 0.3100 0.2775 0.3425 0.2000



When & why it works

e Bumping perturbs the training data.
e Therefore explore different areas of the model space.

e Must ensure the complexity of each model fit is comparable.



