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Introduction



Today’s Lecture

• This chapter covers a lot of ideas / techniques !

• Will focus more on the later sections.

• Would probably need several lectures to cover the material
properly.

• But here goes.....



The Bootstrap and Maximum Likelihood
Methods



Maximum likelihood estimate

Using training data Z = {(x1, y1), . . . , (xn, yn)} fit this model

Y =
∑J

j=1 βj hj(X)

using the ML estimate.
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FIGURE 8.2. (Top left:) B-spline smooth of data. (Top right:) B-spline smooth
plus and minus 1.96× standard error bands. (Bottom left:) Ten bootstrap repli-
cates of the B-spline smooth. (Bottom right:) B-spline smooth with 95% standard
error bands computed from the bootstrap distribution.

Can also put error bounds on the estimate if assume an additive
error model.



Bootstrap estimate and variance estimate

Using training data Z = {(x1, y1), . . . , (xn, yn)} fit this model

Y =
∑J

j=1 βj hj(X)

Iterate: Take bootstrap sample and compute the ML estimate.
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FIGURE 8.2. (Top left:) B-spline smooth of data. (Top right:) B-spline smooth
plus and minus 1.96× standard error bands. (Bottom left:) Ten bootstrap repli-
cates of the B-spline smooth. (Bottom right:) B-spline smooth with 95% standard
error bands computed from the bootstrap distribution.

From bootstrap fits can find the mean estimate and put error
bounds on the estimates.



Maximum Likelihood Inference



Parameter estimation

Have n independent draws x1, . . . , xn from p(x |Θ).

2 4 6 8

0

x

←− 1D example

Each xi ∼ N(x |µ,Σ) where Θ = (µ,Σ)

Josephine Sullivan + the web, Expectation Maximization without tears! 3/42
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Parameter estimation

Have n independent draws x1, . . . , xn from p(x |Θ).
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Θ = (5.2, .8) Θ = (4.8, 1.4) Θ = (4.9, .7)

Want to estimate the parameters Θ from the xi ’s.

HOW??

Josephine Sullivan + the web, Expectation Maximization without tears! 4/42



Maximum Likelihood Estimation (MLE)

Choose the Θ which maximizes the likelihood of your data:

Θ∗ = arg max
Θ

p(x1, x2, . . . , xn |Θ)

Josephine Sullivan + the web, Expectation Maximization without tears! 5/42
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Maximum Likelihood Estimation (MLE)

Choose the Θ which maximizes the likelihood of your data:

Note

Θ∗ = arg max
Θ

l(Θ; X) = arg max
Θ

L(Θ; X)

Josephine Sullivan + the web, Expectation Maximization without tears! 5/42



An example Log-likelihood function

Our 1D example of points drawn from N(µ,Σ)
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X = (x1, . . . , xn) Log-likelihood: L(Θ; X)

Want to find the maximum of this function L(Θ; X).
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MLE for a Normal distribution

The formula for a normal distribution for x ∈ Rd :

p(x |Θ) = (2π)−
d
2 |Σ|− 1

2 exp
(
−.5(x− µ)t Σ−1(x− µ)

)

Josephine Sullivan + the web, Expectation Maximization without tears! 7/42



MLE for a Normal distribution
The formula for a normal distribution for x ∈ Rd :

p(x |Θ) = (2π)−
d
2 |Σ|− 1

2 exp
(
−.5(x− µ)t Σ−1(x− µ)

)

The log-likelihood of our n data-points is

L(Θ; X) =
n∑

i=1

log (p(xi |Θ))

=
n∑

i=1

[
−d

2
log(2π)− 1

2
log (|Σ|)− .5(xi − µ)tΣ−1(xi − µ)

]

= −nd

2
log(2π)− n

2
log (|Σ|)− .5

n∑

i=1

(xi − µ)tΣ−1(xi − µ)

= −nd

2
log(2π)− n

2
log (|Σ|)− .5 tr

[
n∑

i=1

(xi − µ)tΣ−1(xi − µ)

]
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MLE for a Normal distribution

L(Θ; X) = −nd

2
log(2π)− n

2
log (|Σ|)− .5 tr

[
n∑

i=1

(xi − µ)tΣ−1(xi − µ)

]

= −nd

2
log(2π)− n

2
log (|Σ|)− .5 tr

[
n∑

i=1

Σ−1(xi − µ)(xi − µ)t

]

= −nd

2
log(2π)− n

2
log (|Σ|)− .5 tr

[
Σ−1

n∑

i=1

(xi − µ)(xi − µ)t

]

Note Σ is a symmetric positive definite matrix. Thus Σ = T tT therefore

L(Θ; X) = −nd

2
log(2π)− n

2
log
(∣∣T tT

∣∣)− .5 tr

[
(T tT )−1

n∑

i=1

(xi − µ)(xi − µ)t

]

= −nd

2
log(2π)− n log (|T |)− .5 tr

[
(T tT )−1

n∑

i=1

(xi − µ)(xi − µ)t

]

Josephine Sullivan + the web, Expectation Maximization without tears! 7/42



Remember

How do we analytically solve for an optimum?

I Take derivative of function wrt each variable.

I Set each derivative to zero.

I Solve the set of simultaneous equations if possible.

Josephine Sullivan + the web, Expectation Maximization without tears! 8/42
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MLE for a Normal distribution

For our Normal distribution

L(Θ; X) = −nd

2
log(2π)− n log (|T |)− .5 tr

[
(T tT )−1

n∑

i=1

(xi − µ)(xi − µ)t

]

Take derivative of function wrt each variable:

∂ L(Θ; X)

∂ µ
=

n∑

i=1

Σ−1(xi − µ)

∂ L(Θ; X)

∂ T
= −nT−t + T (T tT )−1

n∑

i=1

(xi − µ)(xi − µ)t(T tT )−1

Remember: The Matrix Cookbook is your friend.

Josephine Sullivan + the web, Expectation Maximization without tears! 9/42
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2
log(2π)− n log (|T |)− .5 tr

[
(T tT )−1

n∑

i=1

(xi − µ)(xi − µ)t

]

Set each derivative to zero:

0 = Σ−1
n∑

i=1

(xi − µ)

0 = −nT−t + T (T tT )−1

[
n∑

i=1

(xi − µ)(xi − µ)t

]
(T tT )−1
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MLE for a Normal distribution

For our Normal distribution

L(Θ; X) = −nd

2
log(2π)− n log (|T |)− .5 tr

[
(T tT )−1

n∑

i=1

(xi − µ)(xi − µ)t

]

Solve the set of simultaneous equations if possible:

µ∗ =
1

n

n∑

i=1

xi

T ∗tT ∗ = Σ∗ =
1

n

n∑

i=1

(xi − µ∗)(xi − µ∗)t

Remember: The Matrix Cookbook is your friend.

Josephine Sullivan + the web, Expectation Maximization without tears! 9/42



MLE for a Normal distribution

Back to our 1D example:

2 4 6 8
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x

p(x|Θ)

Red curve is the MLE pdf (n = 25)
Black curve is the ground truth
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MLE for a Normal distribution

Estimate becomes better as n increases

2 4 6 8
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x

p(x|Θ)

Red curve is the MLE pdf (n = 200)
Black curve is the ground truth
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Bootstrap Vs Maximum Likelihood estimate

• Bootstrap is a computer implementation of maximum
likelihood estimation.



Bayesian Methods



Bayesian approach

• Base calculations on the posterior distribution for θ

p(θ|Z) =
p(Z|θ) p(θ)∫
p(Z|θ′) p(θ′) dθ′

• Use the posterior to estimate the predictive distribution for
znew

p(znew|Z) =

∫
p(znew|θ) p(θ|Z) dθ

• This is in contrast to the ML approach which would use
p(znew|θ̂MLE).



Bayesian approach to 1D smoothing example

• Have observed data Z = {(x1, y1), . . . , (xn, yn)}

• Assume

Y =

J∑

j=1

βj hj(X) + ε with ε ∼ N (0, σ2)

• Put a prior on the β = (β1, . . . , βp)
t

β ∼ N (0, τ2Ip)8.3 Bayesian Methods 269
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FIGURE 8.3. Smoothing example: Ten draws from the Gaussian prior distri-
bution for the function µ(x).

The posterior distribution for β is also Gaussian, with mean and covariance

E(β|Z) =

(
HT H +

σ2

τ
Σ−1

)−1

HT y,

cov(β|Z) =

(
HT H +

σ2

τ
Σ−1

)−1

σ2,

(8.27)

with the corresponding posterior values for µ(x),

E(µ(x)|Z) = h(x)T

(
HT H +

σ2

τ
Σ−1

)−1

HT y,

cov[µ(x), µ(x′)|Z] = h(x)T

(
HT H +

σ2

τ
Σ−1

)−1

h(x′)σ2.

(8.28)

How do we choose the prior correlation matrix Σ? In some settings the
prior can be chosen from subject matter knowledge about the parameters.
Here we are willing to say the function µ(x) should be smooth, and have
guaranteed this by expressing µ in a smooth low-dimensional basis of B-
splines. Hence we can take the prior correlation matrix to be the identity
Σ = I. When the number of basis functions is large, this might not be suf-
ficient, and additional smoothness can be enforced by imposing restrictions
on Σ; this is exactly the case with smoothing splines (Section 5.8.1).

Figure 8.3 shows ten draws from the corresponding prior for µ(x). To
generate posterior values of the function µ(x), we generate values β′ from its

posterior (8.27), giving corresponding posterior value µ′(x) =
∑7

1 β′
jhj(x).

Ten such posterior curves are shown in Figure 8.4. Two different values
were used for the prior variance τ , 1 and 1000. Notice how similar the
right panel looks to the bootstrap distribution in the bottom left panel
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Bayesian approach to 1D smoothing example

• The posterior distribution for β is then

p(β |Z) = p(β |X, y) =
p(y |X, β) p(β)

p(y |X)

where

p(y |X, β) = N (y ; Hβ, σ2In) with H = {hj(xi)}

and β ∼ N (0, τ2Ip)

• As have Normal distributions for the likelihood and prior

p(β |Z) = N (β;A−1Hty, A−1σ2)

with A = HtH +
σ2

τ2
Ip.



Distribution of the prediction at x∗

• The distribution of the predicted curve at µ(x)

p(y∗ |x∗,Z) =

∫
p(y∗ |x∗, β) p(β |Z) dβ

=

∫
N (y∗ ; h(x∗)

tβ, σ2)N (β ; A−1Hty,A−1σ2) dβ

= N (y∗ ; µx∗ , σ
2
x∗)

where

µx∗ = h(x∗)
tA−1Hty, σ2

x∗ = h(x∗)
tA−1 h(x∗) + σ2

• Can re-write these terms µx∗ and σ2
x∗ so that one can use kernels

=⇒ get Gaussian process regression.



Example curves drawn from the posterior distribution
270 8. Model Inference and Averaging
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FIGURE 8.4. Smoothing example: Ten draws from the posterior distribution
for the function µ(x), for two different values of the prior variance τ . The purple
curves are the posterior means.

of Figure 8.2 on page 263. This similarity is no accident. As τ → ∞, the
posterior distribution (8.27) and the bootstrap distribution (8.7) coincide.
On the other hand, for τ = 1, the posterior curves µ(x) in the left panel
of Figure 8.4 are smoother than the bootstrap curves, because we have
imposed more prior weight on smoothness.

The distribution (8.25) with τ → ∞ is called a noninformative prior for
θ. In Gaussian models, maximum likelihood and parametric bootstrap anal-
yses tend to agree with Bayesian analyses that use a noninformative prior
for the free parameters. These tend to agree, because with a constant prior,
the posterior distribution is proportional to the likelihood. This correspon-
dence also extends to the nonparametric case, where the nonparametric
bootstrap approximates a noninformative Bayes analysis; Section 8.4 has
the details.

We have, however, done some things that are not proper from a Bayesian
point of view. We have used a noninformative (constant) prior for σ2 and
replaced it with the maximum likelihood estimate σ̂2 in the posterior. A
more standard Bayesian analysis would also put a prior on σ (typically
g(σ) ∝ 1/σ), calculate a joint posterior for µ(x) and σ, and then integrate
out σ, rather than just extract the maximum of the posterior distribution
(“MAP” estimate).



The EM algorithm



Limitations of Normal distributions

Unfortunately Normal distributions are not very expressive.

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

What do we do in this situation ??

Josephine Sullivan + the web, Expectation Maximization without tears! 12/42



Gaussian Mixture Models (GMM)

They can accurately represent any distribution.

Mathematical definition

p(x |Θ) =
K∑

k=1

πk N(xk ;µk ,Σk)

where

K∑

k=1

πk = 1 and πk ≥ 0 for k = 1, . . . ,K

and Θ = (µ1, . . . ,µK ,Σ1, . . . ,ΣK , π1, . . . , πK )

Josephine Sullivan + the web, Expectation Maximization without tears! 13/42



Gaussian Mixture Models (GMM)
They can accurately represent any distribution.
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p(x | Θ)

p(x |Θ) = αN (x |µ1, σ
2
1) + (1− α)N (x |µ2, σ

2
2)

Θ = (α, µ1, σ1, µ2, σ2) = (.6,−1, .5, 1.5, 1.3)

Josephine Sullivan + the web, Expectation Maximization without tears! 13/42



Parameter estimation for a GMM

Given n independent samples x1, . . . , xn from a GMM.

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

←− training data

Josephine Sullivan + the web, Expectation Maximization without tears! 14/42



Parameter estimation for a GMM

Given n independent samples x1, . . . , xn from a GMM.

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

←− training data

Can still use MLE to estimate Θ from the xi ’s, but...

Josephine Sullivan + the web, Expectation Maximization without tears! 14/42



Attempt 1: Analytic Solution

Josephine Sullivan + the web, Expectation Maximization without tears! 15/42



Attempt 1: Parameter estimation for a GMM

The log-likelihood of the data is

L(Θ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,Σk)

)

(Note: We’ll assume K is known and fixed.)

Josephine Sullivan + the web, Expectation Maximization without tears! 16/42



Attempt 1: Parameter estimation for a GMM

L(Θ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,T
t
kTk)

)

Let’s try to maximize L(Θ; X) analytically subject to the constraint∑
k πk = 1 and each Σk = T t

kTk . Construct the Lagrangian L(Θ, λ; X).

L(Θ, λ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,T
t
kTk)

)
+ λ

(
1−

K∑

k=1

πk

)
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Attempt 1: Parameter estimation for a GMM

L(Θ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,T
t
kTk)

)

Let’s try to maximize L(Θ; X) analytically subject to the constraint∑
k πk = 1 and each Σk = T t

kTk . Construct the Lagrangian L(Θ, λ; X).

Take derivatives for k = 1, . . . ,K :

∂ L(Θ, λ; X)

∂ µk

=
n∑

i=1

πkN(xi ; µk ,T
t
kTk )

GMM(xi ; Θ)
(T t

kTk )−1(xi − µk )

∂ L(Θ, λ; X)

∂ Tk

= something complicated.....

etc
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Let’s try to maximize L(Θ; X) analytically subject to the constraint∑
k πk = 1 and each Σk = T t

kTk . Construct the Lagrangian L(Θ, λ; X).

Set derivatives to zero:

n∑

i=1

πkN(xi ; µk ,Σk )

GMM(xi ; Θ)
Σ−1
k (xi − µk ) = 0

etc
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Attempt 1: Parameter estimation for a GMM

L(Θ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,T
t
kTk)

)

Let’s try to maximize L(Θ; X) analytically subject to the constraint∑
k πk = 1 and each Σk = T t

kTk . Construct the Lagrangian L(Θ, λ; X).

Solve the set of simultaneous equations

NO ANALYTIC SOLUTION
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Attempt 2: Newton based iterative
optimzation
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Attempt 2: Parameter estimation for a GMM

L(Θ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,T
t
kTk)

)

Could try to maximize L(Θ; X) iteratively using Newton’s Method.

After all L(Θ; X) is a scalar valued function of a vector Θ of

variables.
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After all L(Θ; X) is a scalar valued function of a vector Θ of

variables.

Comments

I Should find a local maximum. X

I Convergence fast if Θ(t) close to an optimum. X
I If Θ(0) far away from a local maximum method can fail.

Paraboloid approximation process can hit problems. 7
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What other options are there??

Now for, what may seem like, a slight
diversion
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Defintion of Majorization

A function g(Θ ; Θ(t)) majorizes a function f (Θ) at Θ(t) if

f (Θ(t)) = g(Θ(t) ; Θ(t)) and f (Θ) ≤ g(Θ ; Θ(t)) for all Θ

Θ(t)

Θ

f(Θ)

←− g(Θ; Θ(t)) majorizes f (Θ)
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The MM Algorithm

To minimize an objective function f (Θ):

I The MM algorithm is a prescription for constructing
optimization algorithms.

I An MM algorithm creates a surrogate function that
majorizes the objective function. When the surrogate
function is minimized the objective function is decreased.

I When minimizing MM ≡ majorize/minimize.

Name coined by David R. Hunter and Kenneth Lange
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Some definitions

A function g(Θ; Θ(t)) majorizes the function f (Θ) at Θ(t) if

f (Θ(t)) = g(Θ(t); Θ(t)) and f (Θ) ≤ g(Θ; Θ(t)) for all Θ

Θ(t)

Θ

f(Θ)

←− g(Θ; Θ(t)) majorizes f (Θ)
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Some definitions
Let

Θ(t+1) = arg min
Θ

g(Θ; Θ(t))

(so should choose a g(Θ; Θ(t)) which is easy to minimize)

Θ(t)

Θ

f(Θ)

Majorize function

Θ(t+1)

Θ

f(Θ)

Find minimum of
majorizing function
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Descent Properties

MM minimization algorithm satisfies the descent property as

f (Θ(t+1)) ≤ g(Θ(t+1); Θ(t)), as f (Θ) ≤ g(Θ; Θ(t)) ∀Θ

≤ g(Θ(t); Θ(t)), as Θ(t+1) minimizes g(Θ; Θ(t))

= f (Θ(t))

In summary

f (Θ(t+1)) ≤ f (Θ(t))
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Descent Properties

MM minimization algorithm satisfies the descent property as

f (Θ(t+1)) ≤ g(Θ(t+1); Θ(t)), as f (Θ) ≤ g(Θ; Θ(t)) ∀Θ

≤ g(Θ(t); Θ(t)), as Θ(t+1) minimizes g(Θ; Θ(t))

= f (Θ(t))

In summary

f (Θ(t+1)) ≤ f (Θ(t))

The descent property makes the MM algorithm very stable.
Algorithm converges to local minima or saddle point.
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Maximizing a function

To maximize an objective function f (Θ):

I MM algorithm creates a surrogate function that minorize
the objective function. When the surrogate function is
maximized the objective function is increased.

Θ(t)

Θ

f(Θ)

Red curve minorize the black curve

I When maximizing MM ≡ minorize/maximize.
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Big Question?

How do you majorize or minorize a function??

Here are some generic tricks and tools

I Jensen’s inequality

I Chord above the graph property of a convex function

I Supporting hyperplane property of a convex function

I Quadratic upper bound principle

I Arithmetic-geometric mean inequality

I The Cauchy-Schwartz inequality

Presume it would take some practice to use these
tricks.

But....
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But wait...

You probably have minorized via Jensen’s Inequality!

Remember Jensen’s Inequality:

I h(·) be a concave function,

I have K non-negative numbers π1, . . . , πK with
∑

k πi = 1,

I K arbitrary numbers a1, . . . , aK

then

h

(
K∑

k=1

πk ak

)
≥

K∑

k=1

πk h(ak)
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Finally we’re getting to ExpectationMaximization

I The EM algorithm is a MM algorithm.

I Use Jensen’s inequality to minorize the log-likelihood.

Here’s how we minorize. Step 1:

L(Θ; X) = log (p(X |Θ) = log




nz∑

j=1

p (X,Z = zj |Θ)


 ← introduce discrete variable Z

f (t)(Z) a pdf → = log




nz∑

j=1

f (t)(Z = zj)
p (X,Z = zj |Θ)

f (t)(Z = zj)




Jensen’s inequality → ≥
nz∑

j=1

f (t)(Z = zj) log

(
p (X,Z = zj |Θ)

f (t)(Z = zj)

)

L(Θ; X) ≥∑nz
j=1 f

(t)(Z = zj) log
(

p(X,Z=zj |Θ)

f (t)(Z=zj )

)
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Find f (t)(Z)

Here’s how we minorize. Step 2:

The lower bound must touch the log-likelihood at Θ(t)

L(Θ(t); X) =
∑nz

j=1 f
(t)(Z = zj) log

(
p(X,Z=zj |Θ(t))

f (t)(Z=zj )

)

From this constraint can calculate f (t)(Z). It is:

f (t)(Z) = p(Z |X,Θ(t))

(Derivation is straight-forward)
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EM as MM summary
The log-likelihood function L(Θ; X) at Θ(t) is minorized by

g(Θ; Θ(t)) =
∑nz

j=1 p(Z = zj |X,Θ(t)) log
(

p(X,Z=zj |Θ)

p(Z=zj |X,Θ(t))

)

Maximizing the surrogate function, g(Θ; Θ(t)), involves:

Θ(t+1) = arg max
Θ

g(Θ; Θ(t))

= arg max
Θ

nz∑

j=1

p(Z = zj |X,Θ(t)) log (p(X,Z = zj |Θ))

=

Maximization Step︷ ︸︸ ︷
arg max

Θ
Ep(Z |X,Θ(t)) [ log (p(X,Z |Θ)) ]
︸ ︷︷ ︸

Expectation Step
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The latent/hidden variables Z

There seemed to be some magic in this derivation!

What are the Z’s and where did they come from??

Answer:

I Z is a random variable whose pdf conditioned on X is
completely determined by Θ.

I Choice of Z should make the maximization step easy.

Josephine Sullivan + the web, Expectation Maximization without tears! 31/42



The latent/hidden variables Z

There seemed to be some magic in this derivation!

What are the Z’s and where did they come from??

Answer:

I Z is a random variable whose pdf conditioned on X is
completely determined by Θ.

I Choice of Z should make the maximization step easy.

Josephine Sullivan + the web, Expectation Maximization without tears! 31/42



The latent/hidden variables Z

There seemed to be some magic in this derivation!

What are the Z’s and where did they come from??

Answer:

I Z is a random variable whose pdf conditioned on X is
completely determined by Θ.

I Choice of Z should make the maximization step easy.

Josephine Sullivan + the web, Expectation Maximization without tears! 31/42



Back to our GMM parameter estimation and EM
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Attempt 3: Parameter estimation for a GMM

Let’s look at a tutorial example using EM:

p(x |Θ) = αN (x |µ1, σ
2
1) + (1− α)N (x |µ2, σ

2
2)

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

←− Ground truth
distribution

where Θ = (α, µ1, σ1, µ2, σ2) = (.6,−1, .5, 1.5, 1.3)
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Attempt 3: Parameter estimation for a GMM

Say all the parameters of Θ are known except α. Then we are
given n samples X = (x1, x2, . . . , xn) independently drawn from
p(x |Θ). Using these samples and EM we can estimate α.

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

←− training data
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Attempt 3: Parameter estimation for a GMM

If we knew which samples were generated by which
component, life would be so much simpler!

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

Component 1 samples Component 2 samples
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Attempt 3: EM Solution
Introduce hidden/latent variables:
Z = (z1, . . . , zn) is a vector of hidden variables.
Each zi ∈ {0, 1} indicates component generating xi .

E-step:

I Update posteriors for the hidden variables:

p(zi = 0 | xi , α(t)) = p(xi |µ1,σ1)α(t)

p(xi |µ1, σ1)α(t) + p(xi |µ2, σ2) (1− α(t))

I Calculate the conditional expectation

g(α;α(t)) =
∑

all Z

p(Z |X, α(t)) log

(
p(X,Z |α)

p(Z |X, α(t)

)

M-step: Find arg max
α

g(α;α(t)) which gives:

α(t+1) =
∑

i p(zi=0 | xi ,α(t))
n

Josephine Sullivan + the web, Expectation Maximization without tears! 36/42



Attempt 3: EM Solution
Introduce hidden/latent variables:
Z = (z1, . . . , zn) is a vector of hidden variables.
Each zi ∈ {0, 1} indicates component generating xi .

E-step:
I Update posteriors for the hidden variables:

p(zi = 0 | xi , α(t)) = p(xi |µ1,σ1)α(t)

p(xi |µ1, σ1)α(t) + p(xi |µ2, σ2) (1− α(t))

I Calculate the conditional expectation

g(α;α(t)) =
∑

all Z

p(Z |X, α(t)) log

(
p(X,Z |α)

p(Z |X, α(t)

)

M-step: Find arg max
α

g(α;α(t)) which gives:

α(t+1) =
∑

i p(zi=0 | xi ,α(t))
n

Josephine Sullivan + the web, Expectation Maximization without tears! 36/42



Attempt 3: EM Solution
Introduce hidden/latent variables:
Z = (z1, . . . , zn) is a vector of hidden variables.
Each zi ∈ {0, 1} indicates component generating xi .

E-step:
I Update posteriors for the hidden variables:

p(zi = 0 | xi , α(t)) = p(xi |µ1,σ1)α(t)

p(xi |µ1, σ1)α(t) + p(xi |µ2, σ2) (1− α(t))

I Calculate the conditional expectation

g(α;α(t)) =
∑

all Z

p(Z |X, α(t)) log

(
p(X,Z |α)

p(Z |X, α(t)

)

M-step: Find arg max
α

g(α;α(t)) which gives:

α(t+1) =
∑

i p(zi=0 | xi ,α(t))
n

Josephine Sullivan + the web, Expectation Maximization without tears! 36/42



Attempt 3: EM Solution
Introduce hidden/latent variables:
Z = (z1, . . . , zn) is a vector of hidden variables.
Each zi ∈ {0, 1} indicates component generating xi .

E-step:
I Update posteriors for the hidden variables:

p(zi = 0 | xi , α(t)) = p(xi |µ1,σ1)α(t)

p(xi |µ1, σ1)α(t) + p(xi |µ2, σ2) (1− α(t))

I Calculate the conditional expectation

g(α;α(t)) =
∑

all Z

p(Z |X, α(t)) log

(
p(X,Z |α)

p(Z |X, α(t)

)

M-step: Find arg max
α

g(α;α(t)) which gives:

α(t+1) =
∑

i p(zi=0 | xi ,α(t))
n
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Attempt 3: EM expectation calculation

∑

all Z

p(Z |X, α(t)) log (p(X, Z |α))

=
∑

all Z




n∏

s=1

p(zs | xs , α(t))
n∑

i=1

log (p(xi | zi , α) p(zi |α))




=
1∑

j1=0

· · ·
1∑

jn=0




n∏

s=1

p(zs = js | xs , α(t))
n∑

i=1

log (p(xi | zi = ji , α) p(zi = ji |α))




=
n∑

i=1







n∏

s=1,s 6=i

1∑

js=0

p(zs = js | xs , α(t))

︸ ︷︷ ︸
=1




p(zi = ji | xi , α(t)) log (p(xi | zi = ji , α) p(zi = ji |α))




=
n∑

i=1

1∑

ji =0

p(zi = ji | xi , α(t)) log (p(xi | zi = ji , α) p(zi = ji |α))

=
n∑

i=1

1∑

ji =0

p(zi = ji | xi , α(t)) log
(
N(xi |µji

, σji
)α1−ji (1− α)ji

)
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Attempt 3: EM maximization process

∂
∑

all Z

p(Z |X, α(t)) log (p(X, Z |α))

∂ α
=

n∑

i=1

1∑

ji =0

p(zi = ji | xi , α(t))
∂ log

(
α1−ji (1− α)ji

)

∂ α

=
n∑

i=1

1∑

ji =0

p(zi = ji | xi , α(t))

(
1− ji

α
−

ji

1− α

)

=
n∑

i=1

1∑

ji =0

p(zi = ji | xi , α(t)) (1− ji − α)

= (1− α)
n∑

i=1

1∑

ji =0

p(zi = ji | xi , α(t))−
n∑

i=1

1∑

ji =0

p(zi = ji | xi , α(t)) ji

= n(1− α)−
n∑

i=1

p(zi = 1 | xi , α(t))

= −nα + n −
n∑

i=1

(1− p(zi = 0 | xi , α(t)))

=
n∑

i=1

p(zi = 0 | xi , α(t))− nα = 0

Therefore α(t+1) =
∑n

i=1 p(zi=0 | xi ,α(t))
n
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Attempt 3: EM Solution starting point

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

Ground truth distribution

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

Initial guess of distribution
with α(0) = .1

Remember g(α;α(t)) minorizes log (p(X |α)) at α(t).

Let’s plot what happens as EM update α(t)...
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EM one iteration
Compute posterior probabilities of the hidden variables

10 20 30 40 50

.2

.4

.6

.8

1

i

p(z
i
=0 | x

i
, α(t))

Graph shows p(zi = 0 | xi , α(0)) of each hidden variable.

Red =⇒ sample really generated by component 1

Green =⇒ sample really generated by component 2
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EM one iteration
Compute the expectation minorizing the log-likelihood
at α(0) = .1

g(α;α(t)) =
∑

all Z

p(Z |X, α(t)) log

(
p(X,Z |α)

p(Z |X, α(t)

)
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−140

−120

−100

−80

α

log( p(X | α) )   g(α ; α(t))

Josephine Sullivan + the web, Expectation Maximization without tears! 40/42



EM one iteration

Calculate maximum of g(α;α(0))

0 .2 .4 .6 .8 1

−

 140

−120

−100

α

log( p(X | α) )   g(α ; α(t))

Maximum of g(α;α(0)) gives α(1) = .3672
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EM one iteration

The estimate of the GMM with α(1) = .3672
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EM Iterations

Iteration 2
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α(2) = .5287
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EM Iterations

Iteration 3
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EM Iterations

Iteration 4
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α(4) = .5859
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EM Iterations

Iteration 5
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MCMC for Sampling from the Posterior



Monte Carlo Markov Chain Method

Aim:

• Generate independent samples {x(r)}Rr=1 from a pdf p(x).

• Can then use x(r)’s to estimate expectations of functions
under this distribution

E[φ(x)] =

∫

x
φ(x) p(x) dx ≈ 1

R

∑

r=1

φ(x(r))

Not an easy task:

• Sampling from p(x) is, in general, hard.

• Especially when x ∈ Rp and p is large.

Common approach:

• Monte Carlo Markov Chain methods such as
Metropolis-Hastings and Gibbs sampling.



MCMC assumptions

Assumptions:

• Want to draw samples from p(x).

• Can evaluate p(x) within a normalization factor.

• That is can evaluate a function p∗(x) such that

p(x) = p∗(x)/Z

where Z is a constant.



The Metropolis-Hastings method

Initially

• Have an initial state x(1).

• Define a proposal density Q(x′;x(t)) depending on the
current state x(t).
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that the probability density of the x-coordinates of the accepted points must
be proportional to P ∗(x), so the samples must be independent samples from
P (x).

Rejection sampling will work best if Q is a good approximation to P . If Q
is very different from P then, for cQ to exceed P everywhere, c will necessarily
have to be large and the frequency of rejection will be large.

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

Figure 29.9. A Gaussian P (x) and
a slightly broader Gaussian Q(x)
scaled up by a factor c such that
c Q(x) ≥ P (x).

Rejection sampling in many dimensions

In a high-dimensional problem it is very likely that the requirement that cQ∗

be an upper bound for P ∗ will force c to be so huge that acceptances will be
very rare indeed. Finding such a value of c may be difficult too, since in many
problems we know neither where the modes of P ∗ are located nor how high
they are.

As a case study, consider a pair of N -dimensional Gaussian distributions
with mean zero (figure 29.9). Imagine generating samples from one with stan-
dard deviation σQ and using rejection sampling to obtain samples from the
other whose standard deviation is σP . Let us assume that these two standard
deviations are close in value – say, σQ is 1% larger than σP . [σQ must be larger
than σP because if this is not the case, there is no c such that cQ exceeds P
for all x.] So, what value of c is required if the dimensionality is N = 1000?
The density of Q(x) at the origin is 1/(2πσ2

Q)N/2, so for cQ to exceed P we
need to set

c =
(2πσ2

Q)N/2

(2πσ2
P )N/2

= exp

(
N ln

σQ

σP

)
. (29.30)

With N = 1000 and
σQ

σP
= 1.01, we find c = exp(10) ! 20,000. What will the

acceptance rate be for this value of c? The answer is immediate: since the
acceptance rate is the ratio of the volume under the curve P (x) to the volume
under cQ(x), the fact that P and Q are both normalized here implies that
the acceptance rate will be 1/c, for example, 1/20,000. In general, c grows
exponentially with the dimensionality N , so the acceptance rate is expected
to be exponentially small in N .

Rejection sampling, therefore, whilst a useful method for one-dimensional
problems, is not expected to be a practical technique for generating samples
from high-dimensional distributions P (x).

29.4 The Metropolis–Hastings method

Importance sampling and rejection sampling work well only if the proposal
density Q(x) is similar to P (x). In large and complex problems it is difficult
to create a single density Q(x) that has this property.

xx(1)

Q(x; x(1))

P ∗(x)

xx(2)

Q(x; x(2))

P ∗(x)

Figure 29.10. Metropolis–Hastings
method in one dimension. The
proposal distribution Q(x′; x) is
here shown as having a shape that
changes as x changes, though this
is not typical of the proposal
densities used in practice.

The Metropolis–Hastings algorithm instead makes use of a proposal den-
sity Q which depends on the current state x(t). The density Q(x′;x(t)) might
be a simple distribution such as a Gaussian centred on the current x(t). The
proposal density Q(x′;x) can be any fixed density from which we can draw
samples. In contrast to importance sampling and rejection sampling, it is not
necessary that Q(x′;x(t)) look at all similar to P (x) in order for the algorithm
to be practically useful. An example of a proposal density is shown in fig-
ure 29.10; this figure shows the density Q(x′;x(t)) for two different states x(1)

and x(2).

As before, we assume that we can evaluate P ∗(x) for any x. A tentative
new state x′ is generated from the proposal density Q(x′;x(t)). To decide

• Must be able to draw samples from Q(x′;x(t)).



The Metropolis-Hastings method

At each iteration

• A tentative new state x′ is generated from the proposal
density Q(x′;x(t)).

• Compute

a = min

(
1,

p∗(x′)Q(x(t);x′)

p∗(x(t))Q(x′;x(t))

)

• Accept new state x′ with probability a.

• Set

x(t+1) =

{
x′ if state is accepted

x(t) if state is not accepted



The Metropolis-Hastings method

At each iteration
• A tentative new state x′ is generated from the proposal

density Q(x′;x(t)).
• Compute

a = min

(
1,

p∗(x′)Q(x(t);x′)

p∗(x(t))Q(x′;x(t))

)

• Accept new state x′ with probability a.
• Set

x(t+1) =

{
x′ if state is accepted

x(t) if state is not accepted

Convergence:

For any Q s.t. Q(x′;x) > 0 ∀x, x′, as t→∞

the probability distribution of x(t) tends to p(x) = p∗(x)/Z.



Example of x(t) for a simple toy example
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(a)

(b) Metropolis
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(c) Independent sampling
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Figure 29.12. Metropolis method
for a toy problem. (a) The state
sequence for t = 1, . . . , 600.
Horizontal direction = states from
0 to 20; vertical direction = time
from 1 to 600; the cross bars mark
time intervals of duration 50. (b)
Histogram of occupancy of the
states after 100, 400, and 1200
iterations. (c) For comparison,
histograms resulting when
successive points are drawn
independently from the target
distribution.



Gibbs Sampling

In Gibbs sampling given a state x(t) ∈ Rp generate a new state with

x
(t+1)
1 ∼ p(x1|x(t)2 , x

(t)
3 , . . . , x(t)p )

x
(t+1)
2 ∼ p(x2|x(t+1)

1 , x
(t)
3 , . . . , x(t)p ),

x
(t+1)
3 ∼ p(x2|x(t+1)

1 , x
(t+1)
2 , x

(t)
4 , . . . , x(t)p ), etc.

where it is assumed we can generate samples from p(xi|{xj}j 6=i).



Gibbs Sampling

In Gibbs sampling given a state x(t) ∈ Rp generate a new state with

x
(t+1)
1 ∼ p(x1|x(t)2 , x

(t)
3 , . . . , x(t)p )

x
(t+1)
2 ∼ p(x2|x(t+1)

1 , x
(t)
3 , . . . , x(t)p ),

x
(t+1)
3 ∼ p(x2|x(t+1)

1 , x
(t+1)
2 , x

(t)
4 , . . . , x(t)p ), etc.

where it is assumed we can generate samples from p(xi|{xj}j 6=i).

Convergence

As Gibbs sampling is a Metropolis method, the probability
distribution of x(t) tends to p(x) as t→∞, as long as p(x) does
not have pathological properties.



Gibbs Sampling: Two dimensional example
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(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and

x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x
(t)
2 .

A sample x2 is then made from the conditional density P (x2 |x1), using the



Evolution of a state x defined by a Markov chain

• Markov chain defined by an initial p(0)(x) and a transition
probability T (x′;x).

• Let p(t)(x) be the pdf of the state after t applications of the
Markov chain.

• The pdf of the state at the (t+ 1)th iteration of the Markov
chain is given by

p(t+1)(x′) =

∫

x
T (x′;x) p(t)(x) dx

• Want to find a chain s.t. as t→∞ then p(t)(x)→ p(x).



Example of p(t)(x)’s

Transition matrix p(t)(x)’s
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29.6 Terminology for Markov chain Monte Carlo methods

We now spend a few moments sketching the theory on which the Metropolis
method and Gibbs sampling are based. We denote by p(t)(x) the probabil-
ity distribution of the state of a Markov chain simulator. (To visualize this
distribution, imagine running an infinite collection of identical simulators in
parallel.) Our aim is to find a Markov chain such that as t → ∞, p(t)(x) tends
to the desired distribution P (x).

A Markov chain can be specified by an initial probability distribution
p(0)(x) and a transition probability T (x′;x).

The probability distribution of the state at the (t+1)th iteration of the
Markov chain, p(t+1)(x), is given by

p(t+1)(x′) =

∫
dNx T (x′;x)p(t)(x). (29.39)

Example 29.6. An example of a Markov chain is given by the Metropolis
demonstration of section 29.4 (figure 29.12), for which the transition proba-
bility is

T =

1/2 1/2 · · · · · · · · · · · · · · · · · · ·
1/2 · 1/2 · · · · · · · · · · · · · · · · · ·
· 1/2 · 1/2 · · · · · · · · · · · · · · · · ·
· · 1/2 · 1/2 · · · · · · · · · · · · · · · ·
· · · 1/2 · 1/2 · · · · · · · · · · · · · · ·
· · · · 1/2 · 1/2 · · · · · · · · · · · · · ·
· · · · · 1/2 · 1/2 · · · · · · · · · · · · ·
· · · · · · 1/2 · 1/2 · · · · · · · · · · · ·
· · · · · · · 1/2 · 1/2 · · · · · · · · · · ·
· · · · · · · · 1/2 · 1/2 · · · · · · · · · ·
· · · · · · · · · 1/2 · 1/2 · · · · · · · · ·
· · · · · · · · · · 1/2 · 1/2 · · · · · · · ·
· · · · · · · · · · · 1/2 · 1/2 · · · · · · ·
· · · · · · · · · · · · 1/2 · 1/2 · · · · · ·
· · · · · · · · · · · · · 1/2 · 1/2 · · · · ·
· · · · · · · · · · · · · · 1/2 · 1/2 · · · ·
· · · · · · · · · · · · · · · 1/2 · 1/2 · · ·
· · · · · · · · · · · · · · · · 1/2 · 1/2 · ·
· · · · · · · · · · · · · · · · · 1/2 · 1/2 ·
· · · · · · · · · · · · · · · · · · 1/2 · 1/2
· · · · · · · · · · · · · · · · · · · 1/2 1/2

and the initial distribution was

p(0)(x) =
[

· · · · · · · · · · 1 · · · · · · · · · ·
]
. (29.40)

The probability distribution p(t)(x) of the state at the tth iteration is shown
for t = 0, 1, 2, 3, 5, 10, 100, 200, 400 in figure 29.14; an equivalent sequence of
distributions is shown in figure 29.15 for the chain that begins in initial state
x0 = 17. Both chains converge to the target density, the uniform density, as
t → ∞.

p(0)(x)

0 5 10 15 20

p(1)(x)

0 5 10 15 20

p(2)(x)

0 5 10 15 20

p(3)(x)

0 5 10 15 20

p(10)(x)

0 5 10 15 20

p(100)(x)

0 5 10 15 20

p(200)(x)

0 5 10 15 20

p(400)(x)

0 5 10 15 20

Figure 29.14. The probability
distribution of the state of the
Markov chain of example 29.6.

Required properties

When designing a Markov chain Monte Carlo method, we construct a chain
with the following properties:

1. The desired distribution P (x) is an invariant distribution of the chain.

A distribution π(x) is an invariant distribution of the transition proba-
bility T (x′;x) if

π(x′) =

∫
dNx T (x′;x)π(x). (29.41)

An invariant distribution is an eigenvector of the transition probability
matrix that has eigenvalue 1.
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29.6 Terminology for Markov chain Monte Carlo methods

We now spend a few moments sketching the theory on which the Metropolis
method and Gibbs sampling are based. We denote by p(t)(x) the probabil-
ity distribution of the state of a Markov chain simulator. (To visualize this
distribution, imagine running an infinite collection of identical simulators in
parallel.) Our aim is to find a Markov chain such that as t → ∞, p(t)(x) tends
to the desired distribution P (x).

A Markov chain can be specified by an initial probability distribution
p(0)(x) and a transition probability T (x′;x).

The probability distribution of the state at the (t+1)th iteration of the
Markov chain, p(t+1)(x), is given by

p(t+1)(x′) =

∫
dNx T (x′;x)p(t)(x). (29.39)

Example 29.6. An example of a Markov chain is given by the Metropolis
demonstration of section 29.4 (figure 29.12), for which the transition proba-
bility is

T =

1/2 1/2 · · · · · · · · · · · · · · · · · · ·
1/2 · 1/2 · · · · · · · · · · · · · · · · · ·
· 1/2 · 1/2 · · · · · · · · · · · · · · · · ·
· · 1/2 · 1/2 · · · · · · · · · · · · · · · ·
· · · 1/2 · 1/2 · · · · · · · · · · · · · · ·
· · · · 1/2 · 1/2 · · · · · · · · · · · · · ·
· · · · · 1/2 · 1/2 · · · · · · · · · · · · ·
· · · · · · 1/2 · 1/2 · · · · · · · · · · · ·
· · · · · · · 1/2 · 1/2 · · · · · · · · · · ·
· · · · · · · · 1/2 · 1/2 · · · · · · · · · ·
· · · · · · · · · 1/2 · 1/2 · · · · · · · · ·
· · · · · · · · · · 1/2 · 1/2 · · · · · · · ·
· · · · · · · · · · · 1/2 · 1/2 · · · · · · ·
· · · · · · · · · · · · 1/2 · 1/2 · · · · · ·
· · · · · · · · · · · · · 1/2 · 1/2 · · · · ·
· · · · · · · · · · · · · · 1/2 · 1/2 · · · ·
· · · · · · · · · · · · · · · 1/2 · 1/2 · · ·
· · · · · · · · · · · · · · · · 1/2 · 1/2 · ·
· · · · · · · · · · · · · · · · · 1/2 · 1/2 ·
· · · · · · · · · · · · · · · · · · 1/2 · 1/2
· · · · · · · · · · · · · · · · · · · 1/2 1/2

and the initial distribution was

p(0)(x) =
[

· · · · · · · · · · 1 · · · · · · · · · ·
]
. (29.40)

The probability distribution p(t)(x) of the state at the tth iteration is shown
for t = 0, 1, 2, 3, 5, 10, 100, 200, 400 in figure 29.14; an equivalent sequence of
distributions is shown in figure 29.15 for the chain that begins in initial state
x0 = 17. Both chains converge to the target density, the uniform density, as
t → ∞.
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Figure 29.14. The probability
distribution of the state of the
Markov chain of example 29.6.

Required properties

When designing a Markov chain Monte Carlo method, we construct a chain
with the following properties:

1. The desired distribution P (x) is an invariant distribution of the chain.

A distribution π(x) is an invariant distribution of the transition proba-
bility T (x′;x) if

π(x′) =

∫
dNx T (x′;x)π(x). (29.41)

An invariant distribution is an eigenvector of the transition probability
matrix that has eigenvalue 1.



Example of p(t)(x)’s

Transition matrix p(t)(x)’s
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29.6 Terminology for Markov chain Monte Carlo methods

We now spend a few moments sketching the theory on which the Metropolis
method and Gibbs sampling are based. We denote by p(t)(x) the probabil-
ity distribution of the state of a Markov chain simulator. (To visualize this
distribution, imagine running an infinite collection of identical simulators in
parallel.) Our aim is to find a Markov chain such that as t → ∞, p(t)(x) tends
to the desired distribution P (x).

A Markov chain can be specified by an initial probability distribution
p(0)(x) and a transition probability T (x′;x).

The probability distribution of the state at the (t+1)th iteration of the
Markov chain, p(t+1)(x), is given by

p(t+1)(x′) =

∫
dNx T (x′;x)p(t)(x). (29.39)

Example 29.6. An example of a Markov chain is given by the Metropolis
demonstration of section 29.4 (figure 29.12), for which the transition proba-
bility is

T =
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· · · · · · · · · · · · · · · · · · · 1/2 1/2

and the initial distribution was

p(0)(x) =
[

· · · · · · · · · · 1 · · · · · · · · · ·
]
. (29.40)

The probability distribution p(t)(x) of the state at the tth iteration is shown
for t = 0, 1, 2, 3, 5, 10, 100, 200, 400 in figure 29.14; an equivalent sequence of
distributions is shown in figure 29.15 for the chain that begins in initial state
x0 = 17. Both chains converge to the target density, the uniform density, as
t → ∞.
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Figure 29.14. The probability
distribution of the state of the
Markov chain of example 29.6.

Required properties

When designing a Markov chain Monte Carlo method, we construct a chain
with the following properties:

1. The desired distribution P (x) is an invariant distribution of the chain.

A distribution π(x) is an invariant distribution of the transition proba-
bility T (x′;x) if

π(x′) =

∫
dNx T (x′;x)π(x). (29.41)

An invariant distribution is an eigenvector of the transition probability
matrix that has eigenvalue 1.
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2. The chain must also be ergodic, that is,

p(t)(x) → π(x) as t → ∞, for any p(0)(x). (29.42)

A couple of reasons why a chain might not be ergodic are:

(a) Its matrix might be reducible, which means that the state space
contains two or more subsets of states that can never be reached
from each other. Such a chain has many invariant distributions;
which one p(t)(x) would tend to as t → ∞ would depend on the
initial condition p(0)(x).
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Figure 29.15. The probability
distribution of the state of the
Markov chain for initial condition
x0 = 17 (example 29.6 (p.372)).

The transition probability matrix of such a chain has more than
one eigenvalue equal to 1.

(b) The chain might have a periodic set, which means that, for some
initial conditions, p(t)(x) doesn’t tend to an invariant distribution,
but instead tends to a periodic limit-cycle.

A simple Markov chain with this property is the random walk on the
N -dimensional hypercube. The chain T takes the state from one
corner to a randomly chosen adjacent corner. The unique invariant
distribution of this chain is the uniform distribution over all 2N

states, but the chain is not ergodic; it is periodic with period two:
if we divide the states into states with odd parity and states with
even parity, we notice that every odd state is surrounded by even
states and vice versa. So if the initial condition at time t = 0 is a
state with even parity, then at time t = 1 – and at all odd times
– the state must have odd parity, and at all even times, the state
will be of even parity.

The transition probability matrix of such a chain has more than
one eigenvalue with magnitude equal to 1. The random walk on
the hypercube, for example, has eigenvalues equal to +1 and −1.

Methods of construction of Markov chains

It is often convenient to construct T by mixing or concatenating simple base
transitions B all of which satisfy

P (x′) =

∫
dNx B(x′;x)P (x), (29.43)

for the desired density P (x), i.e., they all have the desired density as an
invariant distribution. These base transitions need not individually be ergodic.

T is a mixture of several base transitions Bb(x′,x) if we make the transition
by picking one of the base transitions at random, and allowing it to determine
the transition, i.e.,

T (x′,x) =
∑

b

pbBb(x′,x), (29.44)

where {pb} is a probability distribution over the base transitions.

T is a concatenation of two base transitions B1(x′,x) and B2(x′,x) if we
first make a transition to an intermediate state x′′ using B1, and then make a
transition from state x′′ to x′ using B2.

T (x′,x) =

∫
dNx′′ B2(x′,x′′)B1(x′′,x). (29.45)



Markov chains for MCMC methods

When designing a MCMC method construct a chain with the
following properties

• p(x) is an invariant distribution of the chain

p(x′) =

∫

x
T (x′;x) p(x) dx

• The chain is ergodic that is

p(t)(x)→ p(x) as t→∞ for any p(0)(x)



Gibbs sampling for mixtures

• Close connection between Gibbs sampling and the EM
algorithm in exponential family models.

• Let
• the parameters, θ, of the distribution and

• the latent/missing data Zm

be parameters for a Gibbs sampler.

• Therefore to estimate the parameters of a GMM at each
iteration

• ∆
(t+1)
i ∼ p(∆i | θ(t),Z) for i = 1, . . . , n

• θ(t+1) ∼ p(θ |∆(t+1),Z)

where ∆i ∈ {1, . . . ,K} and represents which component
training example i is assigned to.
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Bagging



Bagging

Starting point

• Have training set Z = {(x1, y1), . . . , (xn, yn)}

• Let f̂(x) be the prediction at input x learned from Z.

Goal

• Obtain a prediction at input x with lower variance than f̂(x).



Bagging

Starting point
• Have training set Z = {(x1, y1), . . . , (xn, yn)}

• Let f̂(x) be the prediction at input x learned from Z.

Goal
• Obtain a prediction at input x with lower variance than f̂(x).

How - Bootstrap aggregation a.k.a. Bagging

• Obtain bootstrap samples Z∗1, . . . ,Z∗B .

• For each Z∗b fit the model and get prediction f̂∗b(x).

• The bagged estimate is then

f̂bag(x) =
1

B

B∑

b=1

f̂∗b(x)



Comments on the Bagged estimate

The Bagged Estimate

f̂bag(x) =
1

B

B∑

b=1

f̂∗b(x)

• Remember f̂(x) is the prediction at input x learned from Z.

• f̂bag(x) differs from f̂(x) when the fitted f is a non-linear or
adaptive function of the data.



Example when bagging helps significantly

• Have n = 30 training examples with two classes and p = 5.

• Each feature is N (0, 1) with pairwise correlations of .95.

• The response Y was generated according to
P (Y = 1|x1 ≤ .5) = .2 and P (Y = 1|x1 > .5) = .8.

• Test sample of size 2000 was generated.

• The base classifier, f̂ , is a classification tree.

• B = 200



Trees learnt from different bootstrap samples
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FIGURE 8.9. Bagging trees on simulated dataset. The top left panel shows the
original tree. Eleven trees grown on bootstrap samples are shown. For each tree,
the top split is annotated.



Bagged tree classifer outperforms one tree classifier
8.7 Bagging 285

0 50 100 150 200

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

Number of Bootstrap Samples

Te
st

 E
rro

r
Bagged Trees

Original Tree

Bayes

Consensus
Probability

FIGURE 8.10. Error curves for the bagging example of Figure 8.9. Shown is
the test error of the original tree and bagged trees as a function of the number of
bootstrap samples. The orange points correspond to the consensus vote, while the
green points average the probabilities.

bagging helps under squared-error loss, in short because averaging reduces
variance and leaves bias unchanged.

Assume our training observations (xi, yi), i = 1, . . . , N are indepen-
dently drawn from a distribution P, and consider the ideal aggregate es-
timator fag(x) = EP f̂∗(x). Here x is fixed and the bootstrap dataset Z∗

consists of observations x∗
i , y

∗
i , i = 1, 2, . . . , N sampled from P. Note that

fag(x) is a bagging estimate, drawing bootstrap samples from the actual
population P rather than the data. It is not an estimate that we can use
in practice, but is convenient for analysis. We can write

EP [Y − f̂∗(x)]2 = EP [Y − fag(x) + fag(x) − f̂∗(x)]2

= EP [Y − fag(x)]2 + EP [f̂∗(x) − fag(x)]2

≥ EP [Y − fag(x)]2. (8.52)

The extra error on the right-hand side comes from the variance of f̂∗(x)
around its mean fag(x). Therefore true population aggregation never in-
creases mean squared error. This suggests that bagging—drawing samples
from the training data— will often decrease mean-squared error.

The above argument does not hold for classification under 0-1 loss, be-
cause of the nonadditivity of bias and variance. In that setting, bagging a

• Bag the 0, 1 decision returned by each tree.

• Bag the (P (y = 0|x), P (y = 1|x)) returned by each tree. Use
the ratio of +tives to -tives in the terminal node reached by x.



Bagging for classification and 0, 1 loss

Squared-error loss:

• Bagging can dramatically reduce the variance of unstable
procedures, leading to improved prediction.

Classification with 0, 1 loss

• Bagging a good classifier can make it better.

• Bagging a bad classifier can make things worse.

• Can understand the bagging effect in terms of a consensus of
independent weak learners or the wisdom of crowds.



Bagging enlarges the space of models derived from f̂(x)
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FIGURE 8.12. Data with two features and two classes, separated by a linear
boundary. (Left panel:) Decision boundary estimated from bagging the decision
rule from a single split, axis-oriented classifier. (Right panel:) Decision boundary
from boosting the decision rule of the same classifier. The test error rates are
0.166, and 0.065, respectively. Boosting is described in Chapter 10.

and is described in Chapter 10. The decision boundary in the right panel is
the result of the boosting procedure, and it roughly captures the diagonal
boundary.

8.8 Model Averaging and Stacking

In Section 8.4 we viewed bootstrap values of an estimator as approximate
posterior values of a corresponding parameter, from a kind of nonparamet-
ric Bayesian analysis. Viewed in this way, the bagged estimate (8.51) is
an approximate posterior Bayesian mean. In contrast, the training sample
estimate f̂(x) corresponds to the mode of the posterior. Since the posterior
mean (not mode) minimizes squared-error loss, it is not surprising that
bagging can often reduce mean squared-error.

Here we discuss Bayesian model averaging more generally. We have a
set of candidate models Mm, m = 1, . . . ,M for our training set Z. These
models may be of the same type with different parameter values (e.g.,
subsets in linear regression), or different models for the same task (e.g.,
neural networks and regression trees).

Suppose ζ is some quantity of interest, for example, a prediction f(x) at
some fixed feature value x. The posterior distribution of ζ is

Pr(ζ|Z) =
M∑

m=1

Pr(ζ|Mm,Z)Pr(Mm|Z), (8.53)

• f̂(x) can either be an oriented vertical or horizontal line.

• In this case bagging the f̂∗b(x)’s gives some gain but not as
much as boosting. (B = 50)



Model Averaging and Stacking



Bayesian model averaging

Starting point
• Have training set Z = {(x1, y1), . . . , (xn, yn)}

• Have a set of candidate models M1, . . . ,MM to explain Z.

Goal
• Want to estimate quantity ζ - perhaps a prediction of f(x) at x.

A Bayesian solution
• The posterior distribution of ζ is

p(ζ |Z) =

M∑

m=1

p(ζ |Mm,Z)P (Mm |Z)

with posterior mean

E[ζ |Z] =

M∑

m=1

E[ζ |Mm,Z]P (Mm |Z)



Bayesian model averaging

E[ζ |Z] =

M∑

m=1

E[ζ |Mm,Z]P (Mm |Z)

• Committee method make approximation

P (Mm |Z) ≈ 1

M

• BIC approach make approximation

P (Mm |Z) ≈ −2 loglik + dm log(n)

• Hardcore Bayesian try to estimate the integral

P (Mm |Z) ∝ P (Mm) p(Z |Mm)

∝ P (Mm)

∫
p(Z | θm,Mm) p(θm |Mm) dθm



Model averaging - Frequentist approach

Starting point

• Have predictions f̂1(x), f̂2(x), . . . , f̂M (x).

Goal

• For squared-error loss find weights w = (w1, . . . , wM ) s.t.

ŵ = arg min
w

EPY |X=x



(
Y −

M∑

m=1

wm f̂m(x)

)2



Solution if can compute expectations

• Population linear regression of Y on F̂ (x) ≡ [f̂1(x), . . . , f̂M (x)]t

ŵ = EP

[
F̂ (x) F̂ (x)t

]−1
EP

[
F̂ (x)Y

]

(Have dropped the subscript on the distribution P .)



Model averaging - Frequentist approach

For this ŵ

ŵ = EP

[
F̂ (x) F̂ (x)t

]−1
EP

[
F̂ (x)Y

]

the full regression model has smaller error than any single model

EP

(Y − M∑
m=1

wm f̂m(x)

)2
 ≤ EP

[(
Y − f̂m(x)

)2]
∀m

Combining models never makes things worse (at a population level)



Model averaging - Frequentist approach

For this ŵ

ŵ = EP

[
F̂ (x) F̂ (x)t

]−1
EP

[
F̂ (x)Y

]

the full regression model has smaller error than any single model

EP

(Y − M∑
m=1

wm f̂m(x)

)2
 ≤ EP

[(
Y − f̂m(x)

)2]
∀m

Combining models never makes things worse (at a population level)

But cannot estimate the population ŵ. What is one to do?



Solution: Stacked generalization

• f̂−im (x) is the prediction at x using

• the mth model

• learnt from the dataset with the ith training example removed.

• Then the stacking weights are given by

ŵst = arg min
w

n∑

i=1

(
yi −

M∑

m=1

wmf̂
−i
m (xi)

)2

• The final prediction at point x is

∑

m

ŵst
m f̂m(x)
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Comments on stacking

• Better results by forcing ŵst
m’s to be ≥ 0 and sum to 1.

• Stacking and model selection with via leave-one-out
cross-validation are closely related.

• Can apply stacking to other non-linear methods to combine
predictions from different models.



Stochastic Search: Bumping



Bumping

• Draw bootstrap samples Z∗1, . . . ,Z∗B.

• for b = 1, . . . , B

Fit the model to Z∗b giving f̂∗b(x).

• Choose the model obtained from bootstrap sample b̂ which
minimizes training error:

b̂ = arg min
b

1

n

n∑

i=1

(
yi − f̂∗b(xi)

)2

The model predictions are then f̂ ∗b̂(x).



Bumping Example: Classification using decision trees

Training data f̂(x) using all training data

Forced tree to have at least 80 points in each leaf.



Bumping: Bootstrap sample training data and fit

f̂∗1(x) f̂∗2(x) f̂∗3(x) f̂∗4(x) f̂∗5(x)

0.2775 0.3425 0.2725 0.2050 0.2550

f̂∗6(x) f̂∗7(x) f̂∗8(x) f̂∗9(x) f̂∗10(x)

0.1950 0.3475 0.2550 0.1950 0.2100



Bumping: Bootstrap sample training data and fit

f̂∗11(x) f̂∗12(x) f̂∗13(x) f̂∗14(x) f̂∗15(x)

0.0325 0.3450 0.3450 0.1025 0.2750

f̂∗16(x) f̂∗17(x) f̂∗18(x) f̂∗19(x) f̂∗20(x)

0.2000 0.3100 0.2775 0.3425 0.2000



When & why it works

• Bumping perturbs the training data.

• Therefore explore different areas of the model space.

• Must ensure the complexity of each model fit is comparable.


