Chapter 8: Model Inference and Averaging

DD3364

April 29, 2012

Introduction

- This chapter covers a lot of ideas / techniques !
- Will focus more on the later sections.
- Would probably need several lectures to cover the material properly.
- But here goes.....

The Bootstrap and Maximum Likelihood Methods

Maximum likelihood estimate

Using training data $\mathbf{Z} = \{(x_1, y_1), \dots, (x_n, y_n)\}$ fit this model $Y = \sum_{j=1}^J \beta_j h_j(X)$

using the ML estimate.

Can also put error bounds on the estimate if assume an additive error model.

Bootstrap estimate and variance estimate

Using training data $\mathbf{Z} = \{(x_1, y_1), \dots, (x_n, y_n)\}$ fit this model

$$Y = \sum_{j=1}^{J} \beta_j h_j(X)$$

Iterate: Take bootstrap sample and compute the ML estimate.

From bootstrap fits can find the mean estimate and put error bounds on the estimates.

Maximum Likelihood Inference

Parameter estimation

Have *n* independent draws $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from $p(\mathbf{x} | \Theta)$.

Each $\mathbf{x}_i \sim N(\mathbf{x} \,|\, \boldsymbol{\mu}, \Sigma)$ where $\Theta = (\boldsymbol{\mu}, \Sigma)$

Parameter estimation

Have *n* independent draws $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from $p(\mathbf{x} | \Theta)$.

Each $\mathbf{x}_i \sim N(\mathbf{x} \,|\, \boldsymbol{\mu}, \Sigma)$ where $\Theta = (\boldsymbol{\mu}, \Sigma)$

Want to estimate the parameters Θ from the \mathbf{x}_i 's

Josephine Sullivan + the web,

Parameter estimation

Have *n* independent draws $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from $p(\mathbf{x} | \Theta)$.

Want to estimate the parameters Θ from the \mathbf{x}_i 's. HOW??

Choose the Θ which maximizes the likelihood of your data:

$$\Theta^* = \arg \max_{\Theta} p(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \,|\, \Theta)$$

Choose the Θ which maximizes the likelihood of your data:

$$I(\Theta; \mathbf{X}) \equiv p(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \,|\, \Theta)$$
$$= \prod_{i=1}^n p(\mathbf{x}_i \,|\, \Theta) \quad \leftarrow \text{assuming independent samples}$$

Choose the Θ which maximizes the likelihood of your data:

$$I(\Theta; \mathbf{X}) \equiv p(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \,|\, \Theta)$$
$$= \prod_{i=1}^n p(\mathbf{x}_i \,|\, \Theta) \quad \leftarrow \text{assuming independent samples}$$

Easier to work with the log-likelihood

$$L(\Theta; \mathbf{X}) = \log \left(l(\Theta; \mathbf{X}) \right) = \sum_{i=1}^{n} \log \left(p(\mathbf{x}_i \mid \Theta) \right)$$

Choose the Θ which maximizes the likelihood of your data:

Note

$$\Theta^* = \arg \max_{\Theta} \, \mathit{I}(\Theta; \, \mathbf{X}) = \arg \max_{\Theta} \, \mathit{L}(\Theta; \, \mathbf{X})$$

An example Log-likelihood function

Our 1D example of points drawn from $N(\mu, \Sigma)$

An example Log-likelihood function

Our 1D example of points drawn from $N(\mu, \Sigma)$

Want to find the maximum of this function $L(\Theta; \mathbf{X})$.

The formula for a normal distribution for $\mathbf{x} \in \mathcal{R}^d$:

$$\rho(\mathbf{x} \mid \Theta) = (2\pi)^{-\frac{d}{2}} \mid \Sigma \mid^{-\frac{1}{2}} \exp\left(-.5(\mathbf{x} - \boldsymbol{\mu})^t \, \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

The formula for a normal distribution for $\mathbf{x} \in \mathcal{R}^d$:

 $p(\mathbf{x} \mid \Theta) = (2\pi)^{-\frac{d}{2}} \left| \Sigma \right|^{-\frac{1}{2}} \exp\left(-.5(\mathbf{x} - \boldsymbol{\mu})^t \, \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}) \right)$

The log-likelihood of our n data-points is

$$\begin{split} \mathcal{L}(\Theta;\mathbf{X}) &= \sum_{i=1}^{n} \log\left(p(\mathbf{x}_{i} \mid \Theta)\right) \\ &= \sum_{i=1}^{n} \left[-\frac{d}{2} \log(2\pi) - \frac{1}{2} \log\left(|\Sigma|\right) - .5(\mathbf{x}_{i} - \mu)^{t} \Sigma^{-1}(\mathbf{x}_{i} - \mu) \right] \\ &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log\left(|\Sigma|\right) - .5 \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu)^{t} \Sigma^{-1}(\mathbf{x}_{i} - \mu) \\ &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log\left(|\Sigma|\right) - .5 \operatorname{tr}\left[\sum_{i=1}^{n} (\mathbf{x}_{i} - \mu)^{t} \Sigma^{-1}(\mathbf{x}_{i} - \mu) \right] \end{split}$$

1

$$\begin{split} \mathcal{L}(\Theta; \mathbf{X}) &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log(|\Sigma|) - .5 \operatorname{tr} \left[\sum_{i=1}^{n} (\mathbf{x}_{i} - \mu)^{t} \Sigma^{-1} (\mathbf{x}_{i} - \mu) \right] \\ &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log(|\Sigma|) - .5 \operatorname{tr} \left[\sum_{i=1}^{n} \Sigma^{-1} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu)^{t} \right] \\ &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log(|\Sigma|) - .5 \operatorname{tr} \left[\Sigma^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu)^{t} \right] \end{split}$$

Note Σ is a symmetric positive definite matrix. Thus Σ = ${\cal T}^{{\it t}}{\cal T}$ therefore

$$L(\Theta; \mathbf{X}) = -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log(|T^{t}T|) - .5 \operatorname{tr} \left[(T^{t}T)^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu) \right]$$
$$= -\frac{nd}{2} \log(2\pi) - n \log(|T|) - .5 \operatorname{tr} \left[(T^{t}T)^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu)^{t} \right]$$

How do we analytically solve for an optimum?

Take derivative of function wrt each variable.

Remember

How do we analytically solve for an optimum?

- Take derivative of function wrt each variable.
- Set each derivative to zero.

Remember

How do we analytically solve for an optimum?

- Take derivative of function wrt each variable.
- Set each derivative to zero.
- ► Solve the set of simultaneous equations if possible.

For our Normal distribution

$$L(\Theta; \mathbf{X}) = -\frac{nd}{2}\log(2\pi) - n\log\left(|T|\right) - .5\operatorname{tr}\left[(T^{t}T)^{-1}\sum_{i=1}^{n}(\mathbf{x}_{i}-\mu)(\mathbf{x}_{i}-\mu)^{t}\right]$$

Take derivative of function wrt each variable:

$$\frac{\partial L(\Theta; \mathbf{X})}{\partial \mu} = \sum_{i=1}^{n} \Sigma^{-1} (\mathbf{x}_{i} - \mu)$$
$$\frac{\partial L(\Theta; \mathbf{X})}{\partial T} = -nT^{-t} + T(T^{t}T)^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu)^{t} (T^{t}T)^{-1}$$

Remember: The Matrix Cookbook is your friend.

For our Normal distribution

$$L(\Theta; \mathbf{X}) = -\frac{nd}{2}\log(2\pi) - n\log\left(|\mathcal{T}|\right) - .5\operatorname{tr}\left[(\mathcal{T}^{t}\mathcal{T})^{-1}\sum_{i=1}^{n}(\mathbf{x}_{i}-\mu)(\mathbf{x}_{i}-\mu)^{t}\right]$$

Set each derivative to zero:

$$\mathbf{0} = \Sigma^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu)$$

$$\mathbf{0} = -nT^{-t} + T(T^{t}T)^{-1} \left[\sum_{i=1}^{n} (\mathbf{x}_{i} - \mu)(\mathbf{x}_{i} - \mu)^{t} \right] (T^{t}T)^{-1}$$

Remember: The Matrix Cookbook is your friend.

For our Normal distribution

$$L(\Theta; \mathbf{X}) = -\frac{nd}{2}\log(2\pi) - n\log\left(|T|\right) - .5\operatorname{tr}\left[(T^{t}T)^{-1}\sum_{i=1}^{n}(\mathbf{x}_{i}-\mu)(\mathbf{x}_{i}-\mu)^{t}\right]$$

Solve the set of simultaneous equations if possible:

$$\mu^* = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$$
$$T^{*t} T^* = \Sigma^* = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \mu^*) (\mathbf{x}_i - \mu^*)^t$$

Remember: *The Matrix Cookbook* is your friend.

Back to our 1D example:

Red curve is the MLE pdf (n = 25)Black curve is the ground truth

Estimate becomes better as n increases

Red curve is the MLE pdf (n = 200) Black curve is the ground truth

Bootstrap Vs Maximum Likelihood estimate

• Bootstrap is a computer implementation of maximum likelihood estimation.

Bayesian Methods

• Base calculations on the **posterior distribution** for θ

$$p(\theta | \mathbf{Z}) = \frac{p(\mathbf{Z} | \theta) p(\theta)}{\int p(\mathbf{Z} | \theta') p(\theta') \, \mathrm{d}\theta'}$$

- Use the posterior to estimate the predictive distribution for $z^{\rm new}$

$$p(z^{\text{new}}|\mathbf{Z}) = \int p(z^{\text{new}}|\theta) \, p(\theta|\mathbf{Z}) \, \mathrm{d}\theta$$

- This is in contrast to the ML approach which would use $p(z^{\rm new}|\hat{\theta}_{\rm MLE}).$

Bayesian approach to 1D smoothing example

• Have observed data $\mathbf{Z} = \{(x_1, y_1), \dots, (x_n, y_n)\}$

Assume

$$Y = \sum_{j=1}^{J} \beta_j h_j(X) + \epsilon \qquad \text{with } \epsilon \sim \mathcal{N}(0, \sigma^2)$$

- Put a prior on the
$$eta=(eta_1,\ldots,eta_p)^t$$
 $eta\sim\mathcal{N}(0, au^2I_p$

Bayesian approach to 1D smoothing example

• Have observed data $\mathbf{Z} = \{(x_1, y_1), \dots, (x_n, y_n)\}$

Assume

$$Y = \sum_{j=1}^{J} \beta_j h_j(X) + \epsilon \qquad \text{with } \epsilon \sim \mathcal{N}(0, \sigma^2)$$

• Put a prior on the $\beta = (\beta_1, \dots, \beta_p)^t$ $\beta \sim \mathcal{N}(0, \tau^2 I_p)$

Bayesian approach to 1D smoothing example

• The posterior distribution for β is then

$$p(\beta \mid \mathbf{Z}) = p(\beta \mid \mathbf{X}, y) = \frac{p(y \mid \mathbf{X}, \beta) p(\beta)}{p(y \mid \mathbf{X})}$$

where

$$p(y \mid \mathbf{X}, \beta) = \mathcal{N}(y; \mathbf{H}\beta, \sigma^2 I_n) \quad \text{with } \mathbf{H} = \{h_j(x_i)\}$$

and $\beta \sim \mathcal{N}(0, \tau^2 I_p)$

• As have Normal distributions for the likelihood and prior

$$p(\beta \mid \mathbf{Z}) = \mathcal{N}(\beta; A^{-1} \mathbf{H}^t y, A^{-1} \sigma^2)$$

with
$$A = \mathbf{H}^t \mathbf{H} + rac{\sigma^2}{\tau^2} I_p.$$

Distribution of the prediction at x_*

• The distribution of the predicted curve at $\mu(\boldsymbol{x})$

$$\begin{aligned} p(y_* \mid x_*, \mathbf{Z}) &= \int p(y_* \mid x_*, \beta) \, p(\beta \mid \mathbf{Z}) \, \mathrm{d}\beta \\ &= \int \mathcal{N}(y_* \, ; \, h(x_*)^t \beta, \sigma^2) \, \mathcal{N}(\beta \, ; \, A^{-1} \mathbf{H}^t y, A^{-1} \sigma^2) \, \mathrm{d}\beta \\ &= \mathcal{N}(y_* \, ; \, \mu_{x_*}, \sigma_{x_*}^2) \end{aligned}$$

where

$$\mu_{x_*} = h(x_*)^t A^{-1} \mathbf{H}^t y, \qquad \sigma_{x_*}^2 = h(x_*)^t A^{-1} h(x_*) + \sigma^2$$

• Can re-write these terms μ_{x_*} and $\sigma_{x_*}^2$ so that one can use kernels \implies get Gaussian process regression.

Example curves drawn from the posterior distribution

The EM algorithm
Limitations of Normal distributions

Unfortunately Normal distributions are not very expressive.

What do we do in this situation ??

Josephine Sullivan + the web,

Gaussian Mixture Models (GMM)

They can accurately represent any distribution.

Mathematical definition

$$p(\mathbf{x} \mid \Theta) = \sum_{k=1}^{K} \pi_k N(\mathbf{x}_k; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where

$$\sum_{k=1}^{K} \pi_k = 1$$
 and $\pi_k \ge 0$ for $k = 1, \dots, K$

and
$$\Theta = (\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_K, \pi_1, \dots, \pi_K)$$

Gaussian Mixture Models (GMM)

They can accurately represent any distribution.

Parameter estimation for a GMM

Given *n* independent samples $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from a GMM.

Parameter estimation for a GMM

Given *n* independent samples $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from a GMM.

Can still use MLE to estimate Θ from the \mathbf{x}_i 's, but...

Attempt 1: Analytic Solution

The log-likelihood of the data is

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

(Note: We'll assume K is known and fixed.)

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Let's try to maximize $L(\Theta; \mathbf{X})$ analytically subject to the constraint $\sum_k \pi_k = 1$ and each $\Sigma_k = \mathcal{T}_k^t \mathcal{T}_k$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda; \mathbf{X})$.

$$\mathcal{L}(\Theta, \lambda; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right) + \lambda \left(1 - \sum_{k=1}^{K} \pi_k \right)$$

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Let's try to maximize $L(\Theta; \mathbf{X})$ analytically subject to the constraint $\sum_k \pi_k = 1$ and each $\Sigma_k = T_k^t T_k$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda; \mathbf{X})$.

Take derivatives for
$$k = 1, \ldots, K$$
:

$$\begin{split} \frac{\partial \mathcal{L}(\Theta, \lambda; \mathbf{X})}{\partial \boldsymbol{\mu}_{k}} &= \sum_{i=1}^{n} \frac{\pi_{k} N(\mathbf{x}_{i}; \boldsymbol{\mu}_{k}, T_{k}^{t} T_{k})}{GMM(\mathbf{x}_{i}; \Theta)} \left(T_{k}^{t} T_{k}\right)^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) \\ \frac{\partial \mathcal{L}(\Theta, \lambda; \mathbf{X})}{\partial T_{k}} &= \text{something complicated.....} \\ \text{etc} \end{split}$$

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Let's try to maximize $L(\Theta; \mathbf{X})$ analytically subject to the constraint $\sum_k \pi_k = 1$ and each $\Sigma_k = \mathcal{T}_k^t \mathcal{T}_k$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda; \mathbf{X})$.

Set derivatives to zero:

$$\sum_{i=1}^{n} \frac{\pi_k N(\mathbf{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{GMM(\mathbf{x}_i; \Theta)} \ \boldsymbol{\Sigma}_k^{-1}(\mathbf{x}_i - \boldsymbol{\mu}_k) = \mathbf{0}$$

etc

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Let's try to maximize $L(\Theta; \mathbf{X})$ analytically subject to the constraint $\sum_k \pi_k = 1$ and each $\Sigma_k = T_k^t T_k$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda; \mathbf{X})$.

Solve the set of simultaneous equations NO ANALYTIC SOLUTION

Attempt 2: Newton based iterative optimzation

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method. After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

One iteration

• Have a current estimate $\Theta^{(t)}$.

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

One iteration

- Have a current estimate $\Theta^{(t)}$.
- ► Approximate L(Θ; X) in neighbourhood of Θ^(t) with a paraboloid.

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

One iteration ▶ Have a current estimate Θ^(t). ▶ Approximate L(Θ; X) in neighbourhood of Θ^(t) with a

paraboloid.

Θ^(t+1) is set to maximum of the paraboloid.

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

Comments

- Should find a local maximum.
- Convergence fast if $\Theta^{(t)}$ close to an optimum. \checkmark

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

Comments Should find a local maximum. √ Convergence fast if Θ^(t) close to an optimum. √

If Θ⁽⁰⁾ far away from a local maximum method can fail.
 Paraboloid approximation process can hit problems. X

What other options are there??

Now for, what may seem like, a slight diversion

Defintion of Majorization

A function $g(\Theta; \Theta^{(t)})$ majorizes a function $f(\Theta)$ at $\Theta^{(t)}$ if

 $f(\Theta^{(t)}) = g(\Theta^{(t)}; \Theta^{(t)})$ and $f(\Theta) \le g(\Theta; \Theta^{(t)})$ for all Θ

 $\leftarrow g(\Theta; \Theta^{(t)})$ majorizes $f(\Theta)$

The MM Algorithm

To **minimize** an objective function $f(\Theta)$:

 The MM algorithm is a prescription for constructing optimization algorithms.

Name coined by David R. Hunter and Kenneth Lange

The MM Algorithm

To **minimize** an objective function $f(\Theta)$:

- The MM algorithm is a prescription for constructing optimization algorithms.
- An MM algorithm creates a surrogate function that majorizes the objective function. When the surrogate function is minimized the objective function is decreased.

Name coined by David R. Hunter and Kenneth Lange

The MM Algorithm

To **minimize** an objective function $f(\Theta)$:

- The MM algorithm is a prescription for constructing optimization algorithms.
- An MM algorithm creates a surrogate function that majorizes the objective function. When the surrogate function is minimized the objective function is decreased.
- When minimizing $MM \equiv majorize/minimize$.

Name coined by David R. Hunter and Kenneth Lange

Some definitions

A function $g(\Theta; \Theta^{(t)})$ majorizes the function $f(\Theta)$ at $\Theta^{(t)}$ if

 $f(\Theta^{(t)}) = g(\Theta^{(t)}; \Theta^{(t)})$ and $f(\Theta) \le g(\Theta; \Theta^{(t)})$ for all Θ

 $\leftarrow g(\Theta; \Theta^{(t)})$ majorizes $f(\Theta)$

Some definitions Let

$$\Theta^{(t+1)} = \arg\min_{\Theta} g(\Theta; \Theta^{(t)})$$

Josephine Sullivan + the web,

Some definitions

$$\Theta^{(t+1)} = \arg\min_{\Theta} g(\Theta; \Theta^{(t)})$$

(so should choose a $g(\Theta; \Theta^{(t)})$ which is easy to minimize)

Josephine Sullivan + the web,

Descent Properties

MM minimization algorithm satisfies the descent property as

$$egin{aligned} &f(\Theta^{(t+1)}) \leq g(\Theta^{(t+1)}; \, \Theta^{(t)}), & ext{ as } f(\Theta) \leq g(\Theta; \, \Theta^{(t)}) \, orall \Theta \ &\leq g(\Theta^{(t)}; \, \Theta^{(t)}), & ext{ as } \Theta^{(t+1)} ext{ minimizes } g(\Theta; \, \Theta^{(t)}) \ &= f(\Theta^{(t)}) \end{aligned}$$

In summary

$$f(\Theta^{(t+1)}) \leq f(\Theta^{(t)})$$

Descent Properties

MM minimization algorithm satisfies the descent property as

$$egin{aligned} &fig(\Theta^{(t+1)}ig) \leq gig(\Theta^{(t+1)}ig;\,\Theta^{(t)}ig), & ext{ as } f(\Theta) \leq gig(\Theta^{(t)}ig) \ orall \Theta \ &\leq gig(\Theta^{(t)}ig;\,\Theta^{(t)}ig), & ext{ as } \Theta^{(t+1)} ext{ minimizes } gig(\Theta^{(t)}ig) \ &= fig(\Theta^{(t)}ig) \end{aligned}$$

In summary

$$f(\Theta^{(t+1)}) \leq f(\Theta^{(t)})$$

The descent property makes the MM algorithm very stable. Algorithm converges to local minima or saddle point.

Maximizing a function

To **maximize** an objective function $f(\Theta)$:

MM algorithm creates a surrogate function that minorize the objective function. When the surrogate function is maximized the objective function is increased.

Red curve minorize the black curve

Maximizing a function

To **maximize** an objective function $f(\Theta)$:

MM algorithm creates a surrogate function that minorize the objective function. When the surrogate function is maximized the objective function is increased.

Red curve minorize the black curve

• When maximizing $MM \equiv minorize/maximize$.

Big Question?

How do you majorize or minorize a function??

Here are some generic tricks and tools

- Jensen's inequality
- Chord above the graph property of a convex function
- Supporting hyperplane property of a convex function
- Quadratic upper bound principle
- Arithmetic-geometric mean inequality
- The Cauchy-Schwartz inequality

Presume it would take some practice to use these tricks.

But....

But wait...

You probably have minorized via Jensen's Inequality!

Remember Jensen's Inequality:

• $h(\cdot)$ be a concave function,

But wait ...

You probably have minorized via Jensen's Inequality!

Remember Jensen's Inequality:

- $h(\cdot)$ be a concave function,
- have K non-negative numbers π_1, \ldots, π_K with $\sum_k \pi_i = 1$,

But wait ...

You probably have minorized via Jensen's Inequality!

Remember Jensen's Inequality:

- $h(\cdot)$ be a concave function,
- have K non-negative numbers π_1, \ldots, π_K with $\sum_k \pi_i = 1$,
- *K* arbitrary numbers a_1, \ldots, a_K

But wait ...

You probably have minorized via Jensen's Inequality!

Remember Jensen's Inequality:

- $h(\cdot)$ be a concave function,
- have K non-negative numbers π_1, \ldots, π_K with $\sum_k \pi_i = 1$,
- K arbitrary numbers a_1, \ldots, a_K

then

$$h\left(\sum_{k=1}^{K}\pi_{k} a_{k}\right) \geq \sum_{k=1}^{K}\pi_{k} h(a_{k})$$
Finally we're getting to $E_{xpectation}M_{aximization}$

• The EM algorithm is a MM algorithm.

Finally we're getting to Expectation Maximization

- The EM algorithm is a MM algorithm.
- ► Use Jensen's inequality to minorize the log-likelihood.

Finally we're getting to Expectation Maximization

- The EM algorithm is a MM algorithm.
- ► Use Jensen's inequality to minorize the log-likelihood.

Here's how we minorize. Step 1:

$$L(\Theta; \mathbf{X}) = \log \left(p(\mathbf{X} \mid \Theta) = \log \left(\sum_{j=1}^{n_z} p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right) \right) \leftarrow \text{introduce discrete variable } \mathbf{Z}$$
$$f^{(t)}(\mathbf{Z}) \text{ a pdf} \rightarrow = \log \left(\sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \frac{p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right)}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$
$$\text{Jensen's inequality} \rightarrow \geq \sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \log \left(\frac{p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right)}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$

Finally we're getting to Expectation Maximization

- The EM algorithm is a MM algorithm.
- Use Jensen's inequality to minorize the log-likelihood.

Here's how we minorize. Step 1:

$$L(\Theta; \mathbf{X}) = \log \left(p(\mathbf{X} \mid \Theta) = \log \left(\sum_{j=1}^{n_z} p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right) \right) \leftarrow \text{introduce discrete variable } \mathbf{Z}$$
$$f^{(t)}(\mathbf{Z}) \text{ a pdf} \rightarrow = \log \left(\sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \frac{p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right)}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$
$$\text{Jensen's inequality} \rightarrow \geq \sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \log \left(\frac{p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right)}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$

$$L(\Theta; \mathbf{X}) \geq \sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta)}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$

Find $f^{(t)}(\mathbf{Z})$

Here's how we minorize. Step 2:

The lower bound must touch the log-likelihood at $\Theta^{(t)}$

$$L(\Theta^{(t)}; \mathbf{X}) = \sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta^{(t)})}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$

Find $f^{(t)}(\mathbf{Z})$

Here's how we minorize. Step 2:

The lower bound must touch the log-likelihood at $\Theta^{(t)}$

$$L(\Theta^{(t)}; \mathbf{X}) = \sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta^{(t)})}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$

From this constraint can calculate $f^{(t)}(\mathbf{Z})$. It is:

$$f^{(t)}(\mathsf{Z}) = p(\mathsf{Z} \,|\, \mathsf{X}, \Theta^{(t)})$$

(Derivation is straight-forward)

EM as MM summary

The log-likelihood function $L(\Theta; \mathbf{X})$ at $\Theta^{(t)}$ is minorized by

$$g(\Theta; \Theta^{(t)}) = \sum_{j=1}^{n_z} p(\mathbf{Z} = \mathbf{z}_j \,|\, \mathbf{X}, \Theta^{(t)}) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \,|\, \Theta)}{p(\mathbf{Z} = \mathbf{z}_j \,|\, \mathbf{X}, \Theta^{(t)})} \right)$$

EM as MM summary

The log-likelihood function $L(\Theta; \mathbf{X})$ at $\Theta^{(t)}$ is minorized by

$$g(\Theta; \Theta^{(t)}) = \sum_{j=1}^{n_z} p(\mathbf{Z} = \mathbf{z}_j \,|\, \mathbf{X}, \Theta^{(t)}) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \,|\, \Theta)}{p(\mathbf{Z} = \mathbf{z}_j \,|\, \mathbf{X}, \Theta^{(t)})} \right)$$

Maximizing the surrogate function, $g(\Theta; \Theta^{(t)})$, involves:

The latent/hidden variables **Z**

There seemed to be some magic in this derivation!

What are the **Z**'s and where did they come from??

Answer:

The latent/hidden variables **Z**

There seemed to be some magic in this derivation!

What are the **Z**'s and where did they come from??

Answer:

 Z is a random variable whose pdf conditioned on X is completely determined by Θ.

The latent/hidden variables **Z**

There seemed to be some magic in this derivation!

What are the **Z**'s and where did they come from??

Answer:

- Z is a random variable whose pdf conditioned on X is completely determined by Θ.
- Choice of **Z** should make the maximization step **easy**.

Back to our GMM parameter estimation and EM

Attempt 3: Parameter estimation for a GMM

Let's look at a tutorial example using EM:

$$p(x \mid \Theta) = \alpha \, \mathcal{N}(x \mid \mu_1, \sigma_1^2) + (1 - \alpha) \, \mathcal{N}(x \mid \mu_2, \sigma_2^2)$$

Attempt 3: Parameter estimation for a GMM

Say all the parameters of Θ are known except α . Then we are given *n* samples $\mathbf{X} = (x_1, x_2, \dots, x_n)$ independently drawn from $p(x \mid \Theta)$. Using these samples and EM we can estimate α .

Attempt 3: Parameter estimation for a GMM

If we knew which samples were generated by which component, life would be so much simpler!

Introduce hidden/latent variables:

 $\mathbf{Z} = (z_1, \ldots, z_n)$ is a vector of hidden variables. Each $z_i \in \{0, 1\}$ indicates component generating x_i .

Introduce hidden/latent variables:

 $\mathbf{Z} = (z_1, \ldots, z_n)$ is a vector of hidden variables. Each $z_i \in \{0, 1\}$ indicates component generating x_i .

E-step:

Update posteriors for the hidden variables:

$$p(z_i = 0 | x_i, \alpha^{(t)}) = \frac{p(x_i | \mu_1, \sigma_1) \alpha^{(t)}}{p(x_i | \mu_1, \sigma_1) \alpha^{(t)} + p(x_i | \mu_2, \sigma_2) (1 - \alpha^{(t)})}$$

Introduce hidden/latent variables:

 $\mathbf{Z} = (z_1, \ldots, z_n)$ is a vector of hidden variables. Each $z_i \in \{0, 1\}$ indicates component generating x_i .

E-step:

Update posteriors for the hidden variables:

$$p(z_i = 0 | x_i, \alpha^{(t)}) = \frac{p(x_i | \mu_1, \sigma_1) \alpha^{(t)}}{p(x_i | \mu_1, \sigma_1) \alpha^{(t)} + p(x_i | \mu_2, \sigma_2) (1 - \alpha^{(t)})}$$

Calculate the conditional expectation

$$g(\alpha; \alpha^{(t)}) = \sum_{\mathsf{all } \mathsf{Z}} p(\mathsf{Z} \,|\, \mathsf{X}, \alpha^{(t)}) \, \log\left(\frac{p(\mathsf{X}, \mathsf{Z} \,|\, \alpha)}{p(\mathsf{Z} \,|\, \mathsf{X}, \alpha^{(t)})}\right)$$

Introduce hidden/latent variables:

 $\mathbf{Z} = (z_1, \ldots, z_n)$ is a vector of hidden variables. Each $z_i \in \{0, 1\}$ indicates component generating x_i .

E-step:

Update posteriors for the hidden variables:

$$p(z_{i} = 0 | x_{i}, \alpha^{(t)}) = \frac{p(x_{i} | \mu_{1}, \sigma_{1}) \alpha^{(t)}}{p(x_{i} | \mu_{1}, \sigma_{1}) \alpha^{(t)} + p(x_{i} | \mu_{2}, \sigma_{2}) (1 - \alpha^{(t)})}$$

Calculate the conditional expectation

$$g(\alpha; \alpha^{(t)}) = \sum_{\mathsf{all } \mathbf{Z}} p(\mathbf{Z} \,|\, \mathbf{X}, \alpha^{(t)}) \, \log\left(\frac{p(\mathbf{X}, \mathbf{Z} \,|\, \alpha)}{p(\mathbf{Z} \,|\, \mathbf{X}, \alpha^{(t)})}\right)$$

M-step: Find $\arg \max_{\alpha} g(\alpha; \alpha^{(t)})$ which gives:

$$\alpha^{(t+1)} = \frac{\sum_{i} p(z_i=0 \mid \mathbf{x}_i, \alpha^{(t)})}{n}$$

Josephine Sullivan + the web,

Attempt 3: EM expectation calculation

$$\begin{split} &\sum_{\text{all } \mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}) \log \left(p(\mathbf{X}, \mathbf{Z} \mid \alpha) \right) \\ &= \sum_{\text{all } \mathbf{Z}} \left[\prod_{s=1}^{n} p(z_s \mid x_s, \alpha^{(t)}) \sum_{i=1}^{n} \log \left(p(x_i \mid z_i, \alpha) p(z_i \mid \alpha) \right) \right] \\ &= \sum_{j_1=0}^{1} \cdots \sum_{j_n=0}^{1} \left[\prod_{s=1}^{n} p(z_s = j_s \mid x_s, \alpha^{(t)}) \sum_{i=1}^{n} \log \left(p(x_i \mid z_i = j_i, \alpha) p(z_i = j_i \mid \alpha) \right) \right] \\ &= \sum_{i=1}^{n} \left[\left(\prod_{s=1, s \neq i}^{n} \sum_{\substack{j_s = 0 \\ s=1}}^{1} p(z_s = j_s \mid x_s, \alpha^{(t)}) \sum_{i=1}^{n} p(z_i = j_i \mid x_i, \alpha^{(t)}) \log \left(p(x_i \mid z_i = j_i, \alpha) p(z_i = j_i \mid \alpha) \right) \right] \\ &= \sum_{i=1}^{n} \sum_{j_i=0}^{1} p(z_i = j_i \mid x_i, \alpha^{(t)}) \log \left(p(x_i \mid z_i = j_i, \alpha) p(z_i = j_i \mid \alpha) \right) \\ &= \sum_{i=1}^{n} \sum_{j_i=0}^{1} p(z_i = j_i \mid x_i, \alpha^{(t)}) \log \left(N(x_i \mid \mu_{j_i}, \sigma_{j_i}) \alpha^{1-j_i} (1 - \alpha)^{j_i} \right) \end{split}$$

Attempt 3: EM maximization process

$$\frac{\partial \sum_{i=1}^{n} p(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}) \log (p(\mathbf{X}, \mathbf{Z} \mid \alpha))}{\partial \alpha} = \sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p(z_{i} = j_{i} \mid x_{i}, \alpha^{(t)}) \frac{\partial \log \left(\alpha^{1-j_{i}}(1-\alpha)^{j_{i}}\right)}{\partial \alpha}$$
$$= \sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p(z_{i} = j_{i} \mid x_{i}, \alpha^{(t)}) \left(\frac{1-j_{i}}{\alpha} - \frac{j_{i}}{1-\alpha}\right)$$
$$= \sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p(z_{i} = j_{i} \mid x_{i}, \alpha^{(t)}) (1-j_{i} - \alpha)$$
$$= (1-\alpha) \sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p(z_{i} = j_{i} \mid x_{i}, \alpha^{(t)}) - \sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p(z_{i} = j_{i} \mid x_{i}, \alpha^{(t)}) j_{i}$$
$$= n(1-\alpha) - \sum_{i=1}^{n} p(z_{i} = 1 \mid x_{i}, \alpha^{(t)})$$
$$= -n\alpha + n - \sum_{i=1}^{n} (1-p(z_{i} = 0 \mid x_{i}, \alpha^{(t)}))$$
$$= \sum_{i=1}^{n} p(z_{i} = 0 \mid x_{i}, \alpha^{(t)}) - n\alpha = 0$$

Therefore
$$\alpha^{(t+1)} = \frac{\sum_{i=1}^{n} p(z_i=0 \mid x_i, \alpha^{(t)})}{n}$$

Josephine Sullivan + the web,

Attempt 3: EM Solution starting point

Remember $g(\alpha; \alpha^{(t)})$ minorizes $\log (p(\mathbf{X} | \alpha))$ at $\alpha^{(t)}$. Let's plot what happens as EM update $\alpha^{(t)}$...

Josephine Sullivan + the web,

Compute posterior probabilities of the hidden variables

Compute the expectation minorizing the log-likelihood at $\alpha^{(0)}=.1$

$$g(\alpha; \alpha^{(t)}) = \sum_{\mathsf{all } \mathsf{Z}} p(\mathsf{Z} \,|\, \mathsf{X}, \alpha^{(t)}) \, \log\left(\frac{p(\mathsf{X}, \mathsf{Z} \,|\, \alpha)}{p(\mathsf{Z} \,|\, \mathsf{X}, \alpha^{(t)})}\right)$$

Calculate maximum of $g(\alpha; \alpha^{(0)})$

The estimate of the GMM with $\alpha^{(1)} = .3672$

MCMC for Sampling from the Posterior

Monte Carlo Markov Chain Method

Aim:

- Generate independent samples $\{x^{(r)}\}_{r=1}^R$ from a pdf p(x).
- Can then use $x^{(r)}$'s to estimate expectations of functions under this distribution

$$\mathbf{E}[\phi(x)] = \int_x \phi(x) \, p(x) \, \mathrm{d}x \approx \frac{1}{R} \sum_{r=1} \phi(x^{(r)})$$

Not an easy task:

- Sampling from p(x) is, in general, hard.
- Especially when $x \in \mathbb{R}^p$ and p is large.

Common approach:

• Monte Carlo Markov Chain methods such as *Metropolis-Hastings* and *Gibbs sampling*.

Assumptions:

- Want to draw samples from p(x).
- Can evaluate p(x) within a normalization factor.
- That is can evaluate a function $p^*(x)$ such that

$$p(x) = p^*(x)/Z$$

where Z is a constant.

The Metropolis-Hastings method

Initially

- Have an initial state $x^{(1)}$.
- Define a **proposal density** $Q(x'; x^{(t)})$ depending on the current state $x^{(t)}$.

• Must be able to draw samples from $Q(x'; x^{(t)})$.

At each iteration

- A tentative new state x^\prime is generated from the proposal density $Q(x^\prime;x^{(t)}).$
- Compute

$$a = \min\left(1, \frac{p^*(x') Q(x^{(t)}; x')}{p^*(x^{(t)}) Q(x'; x^{(t)})}\right)$$

- Accept new state x' with probability a.
- Set

$$x^{(t+1)} = \begin{cases} x' & \text{if state is accepted} \\ x^{(t)} & \text{if state is not accepted} \end{cases}$$

At each iteration

- A tentative new state x^\prime is generated from the proposal density $Q(x^\prime;x^{(t)}).$
- Compute

$$a = \min\left(1, \frac{p^*(x') Q(x^{(t)}; x')}{p^*(x^{(t)}) Q(x'; x^{(t)})}\right)$$

• Accept new state x' with probability a.

• Set

$$x^{(t+1)} = egin{cases} x' & ext{if state is accepted} \ x^{(t)} & ext{if state is not accepted} \end{cases}$$

Convergence:

For any
$$Q$$
 s.t. $Q(x';x)>0$ $orall x,x'$, as $t
ightarrow\infty$

the probability distribution of $x^{(t)}$ tends to $p(x) = p^*(x)/Z$.
Example of $x^{(t)}$ for a simple toy example

In Gibbs sampling given a state $x^{(t)} \in \mathbb{R}^p$ generate a new state with

$$\begin{split} x_1^{(t+1)} &\sim p(x_1 | x_2^{(t)}, x_3^{(t)}, \dots, x_p^{(t)}) \\ x_2^{(t+1)} &\sim p(x_2 | x_1^{(t+1)}, x_3^{(t)}, \dots, x_p^{(t)}), \\ x_3^{(t+1)} &\sim p(x_2 | x_1^{(t+1)}, x_2^{(t+1)}, x_4^{(t)}, \dots, x_p^{(t)}), \text{etc.} \end{split}$$

where it is assumed we can generate samples from $p(x_i|\{x_j\}_{j\neq i})$.

In Gibbs sampling given a state $x^{(t)} \in \mathbb{R}^p$ generate a new state with

$$x_1^{(t+1)} \sim p(x_1 | x_2^{(t)}, x_3^{(t)}, \dots, x_p^{(t)})$$
$$x_2^{(t+1)} \sim p(x_2 | x_1^{(t+1)}, x_3^{(t)}, \dots, x_p^{(t)}),$$

 $x_3^{(t+1)} \sim p(x_2 | x_1^{(t+1)}, x_2^{(t+1)}, x_4^{(t)}, \dots, x_p^{(t)}),$ etc.

where it is assumed we can generate samples from $p(x_i|\{x_j\}_{j\neq i})$.

Convergence

As Gibbs sampling is a Metropolis method, the probability distribution of $x^{(t)}$ tends to p(x) as $t \to \infty$, as long as p(x) does not have pathological properties.

Gibbs Sampling: Two dimensional example

Evolution of a state x defined by a Markov chain

- Markov chain defined by an initial $p^{(0)}(x)$ and a transition probability T(x';x).
- Let $p^{(t)}(x)$ be the pdf of the state after t applications of the Markov chain.
- The pdf of the state at the $(t+1){\rm th}$ iteration of the Markov chain is given by

$$p^{(t+1)}(x') = \int_x T(x';x) \, p^{(t)}(x) \, \mathrm{d}x$$

• Want to find a chain s.t. as $t \to \infty$ then $p^{(t)}(x) \to p(x)$.

Example of $p^{(t)}(x)$'s

Example of $p^{(t)}(x)$'s

T =

Markov chains for MCMC methods

When designing a MCMC method construct a chain with the following properties

• p(x) is an **invariant distribution** of the chain

$$p(x') = \int_x T(x'; x) \, p(x) \, \mathrm{d}x$$

• The chain is **ergodic** that is

$$p^{(t)}(x) \rightarrow p(x)$$
 as $t \rightarrow \infty$ for any $p^{(0)}(x)$

Gibbs sampling for mixtures

- Close connection between Gibbs sampling and the EM algorithm in exponential family models.
- Let
 - the parameters, θ , of the distribution **and**
 - the <code>latent/missing</code> data \mathbf{Z}^m

be parameters for a Gibbs sampler.

- Therefore to estimate the parameters of a GMM at each iteration
 - $\Delta_i^{(t+1)} \sim p(\Delta_i \mid \theta^{(t)}, \mathbb{Z})$ for $i = 1, \dots, n$
 - $\theta^{(t+1)} \sim p(\theta \mid \Delta^{(t+1)}, \mathbf{Z})$

where $\Delta_i \in \{1, \dots, K\}$ and represents which component training example *i* is assigned to.

Gibbs sampling for mixtures

- Close connection between Gibbs sampling and the EM algorithm in exponential family models.
- Let
 - the parameters, θ , of the distribution **and**
 - the <code>latent/missing</code> data \mathbf{Z}^m

be parameters for a Gibbs sampler.

- Therefore to estimate the parameters of a GMM at each iteration
 - $\Delta_i^{(t+1)} \sim p(\Delta_i \,|\, \theta^{(t)}, \mathbf{Z})$ for $i=1,\ldots,n$
 - $\theta^{(t+1)} \sim p(\theta \mid \Delta^{(t+1)}, \mathbf{Z})$

where $\Delta_i \in \{1, \dots, K\}$ and represents which component training example *i* is assigned to.

Starting point

- Have training set $\mathbf{Z} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
- Let $\hat{f}(x)$ be the prediction at input x learned from Z.

Goal

• Obtain a prediction at input x with lower variance than $\hat{f}(x)$.

Starting point

- Have training set $\mathbf{Z} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
- Let $\hat{f}(x)$ be the prediction at input x learned from Z.

Goal

- Obtain a prediction at input x with lower variance than $\hat{f}(x)$.
- How Bootstrap aggregation a.k.a. Bagging
 - Obtain bootstrap samples $\mathbf{Z}^{*1}, \dots, \mathbf{Z}^{*B}$.
 - For each \mathbf{Z}^{*b} fit the model and get prediction $\hat{f}^{*b}(x)$.
 - The bagged estimate is then

$$\hat{f}_{\mathsf{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

Comments on the Bagged estimate

The Bagged Estimate

$$\hat{f}_{\mathsf{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

- Remember $\hat{f}(x)$ is the prediction at input x learned from Z.
- $\hat{f}_{bag}(x)$ differs from $\hat{f}(x)$ when the fitted f is a non-linear or adaptive function of the data.

Example when bagging helps significantly

- Have n = 30 training examples with two classes and p = 5.
- Each feature is $\mathcal{N}(0,1)$ with pairwise correlations of .95.
- The response Y was generated according to $P(Y = 1 | x_1 \le .5) = .2$ and $P(Y = 1 | x_1 > .5) = .8$.
- Test sample of size 2000 was generated.
- The base classifier, \hat{f} , is a classification tree.
- B = 200

Trees learnt from different bootstrap samples

b = 7

x.1<0.395

Bagged tree classifer outperforms one tree classifier

- Bag the 0,1 decision returned by each tree.
- Bag the (P(y = 0|x), P(y = 1|x)) returned by each tree. Use the ratio of +tives to -tives in the terminal node reached by x.

Squared-error loss:

• Bagging can dramatically reduce the variance of unstable procedures, leading to improved prediction.

Classification with $\mathbf{0},\mathbf{1}$ loss

- Bagging a **good** classifier can make it **better**.
- Bagging a **bad** classifier can make things **worse**.
- Can understand the bagging effect in terms of a consensus of independent *weak learners* or the *wisdom of crowds*.

Bagging enlarges the space of models derived from $\hat{f}(x)$

- $\hat{f}(x)$ can either be an oriented vertical or horizontal line.
- In this case bagging the $\hat{f}^{*b}(x)$'s gives some gain but not as much as boosting. (B = 50)

Model Averaging and Stacking

Bayesian model averaging

Starting point

- Have training set $\mathbf{Z} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
- Have a set of candidate models $\mathcal{M}_1, \ldots, \mathcal{M}_M$ to explain \mathbf{Z} .

Goal

Want to estimate quantity ζ - perhaps a prediction of f(x) at x.

A Bayesian solution

• The posterior distribution of $\boldsymbol{\zeta}$ is

$$p(\zeta \,|\, \mathbf{Z}) = \sum_{m=1}^{M} p(\zeta \,|\, \mathcal{M}_m, \mathbf{Z}) P(\mathcal{M}_m \,|\, \mathbf{Z})$$

with posterior mean

$$\mathbf{E}[\zeta \,|\, \mathbf{Z}] = \sum_{m=1}^{M} \,\mathbf{E}[\zeta \,|\, \mathcal{M}_{m}, \mathbf{Z}] \,P(\mathcal{M}_{m} \,|\, \mathbf{Z})$$

Bayesian model averaging

$$\mathbf{E}[\zeta \mid \mathbf{Z}] = \sum_{m=1}^{M} \mathbf{E}[\zeta \mid \mathcal{M}_{m}, \mathbf{Z}] P(\mathcal{M}_{m} \mid \mathbf{Z})$$

• Committee method make approximation

$$P(\mathcal{M}_m \mid \mathbf{Z}) \approx \frac{1}{M}$$

• BIC approach make approximation

$$P(\mathcal{M}_m \mid \mathbf{Z}) \approx -2 \operatorname{loglik} + d_m \log(n)$$

• Hardcore Bayesian try to estimate the integral

$$P(\mathcal{M}_m \mid \mathbf{Z}) \propto P(\mathcal{M}_m) \, p(\mathbf{Z} \mid \mathcal{M}_m)$$
$$\propto P(\mathcal{M}_m) \, \int p(\mathbf{Z} \mid \theta_m, \mathcal{M}_m) \, p(\theta_m \mid \mathcal{M}_m) \, d\theta_m$$

Model averaging - Frequentist approach

Starting point

• Have predictions $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_M(x)$.

Goal

• For squared-error loss find weights $w = (w_1, \ldots, w_M)$ s.t.

$$\hat{w} = \arg\min_{w} \operatorname{E}_{P_{Y|X=x}} \left[\left(Y - \sum_{m=1}^{M} w_m \, \hat{f}_m(x) \right)^2 \right]$$

Solution if can compute expectations

• Population linear regression of Y on $\hat{F}(x) \equiv [\hat{f}_1(x), \dots, \hat{f}_M(x)]^t$

$$\hat{w} = \mathbf{E}_P \left[\hat{F}(x) \, \hat{F}(x)^t \right]^{-1} \mathbf{E}_P \left[\hat{F}(x) \, Y \right]$$

(Have dropped the subscript on the distribution P.)

Model averaging - Frequentist approach

For this \hat{w}

$$\hat{w} = \mathbf{E}_P \left[\hat{F}(x) \, \hat{F}(x)^t \right]^{-1} \mathbf{E}_P \left[\hat{F}(x) \, Y \right]$$

the full regression model has smaller error than any single model

$$\mathbf{E}_{P}\left[\left(Y - \sum_{m=1}^{M} w_{m} \, \hat{f}_{m}(x)\right)^{2}\right] \leq \mathbf{E}_{P}\left[\left(Y - \hat{f}_{m}(x)\right)^{2}\right] \, \forall m$$

Combining models never makes things worse (at a population level)

Model averaging - Frequentist approach

For this \hat{w}

$$\hat{w} = \mathbf{E}_P \left[\hat{F}(x) \, \hat{F}(x)^t \right]^{-1} \mathbf{E}_P \left[\hat{F}(x) \, Y \right]$$

the full regression model has smaller error than any single model

$$\mathbf{E}_{P}\left[\left(Y - \sum_{m=1}^{M} w_{m} \, \hat{f}_{m}(x)\right)^{2}\right] \leq \mathbf{E}_{P}\left[\left(Y - \hat{f}_{m}(x)\right)^{2}\right] \, \forall m$$

Combining models never makes things worse (at a population level)

But cannot estimate the population \hat{w} . What is one to do?

Solution: Stacked generalization

• $\hat{f}_m^{-i}(x)$ is the prediction at x using

- the *m*th model
- learnt from the dataset with the *i*th training example removed.
- Then the stacking weights are given by

$$\hat{w}^{\text{st}} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - \sum_{m=1}^{M} w_m \hat{f}_m^{-i}(x_i) \right)^2$$

• The final prediction at point x is

$$\sum_{m} \hat{w}_{m}^{\mathsf{st}} \hat{f}_{m}(x)$$

Solution: Stacked generalization

- $\hat{f}_m^{-i}(x)$ is the prediction at x using
 - the *m*th model
 - learnt from the dataset with the *i*th training example removed.
- Then the stacking weights are given by

$$\hat{w}^{\text{st}} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - \sum_{m=1}^{M} w_m \hat{f}_m^{-i}(x_i) \right)^2$$

• The final prediction at point x is

$$\sum_{m} \hat{w}_{m}^{\mathsf{st}} \hat{f}_{m}(x)$$

Solution: Stacked generalization

- $\hat{f}_m^{-i}(x)$ is the prediction at x using
 - the *m*th model
 - learnt from the dataset with the *i*th training example removed.
- Then the stacking weights are given by

$$\hat{w}^{\text{st}} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - \sum_{m=1}^{M} w_m \hat{f}_m^{-i}(x_i) \right)^2$$

• The final prediction at point x is

$$\sum_{m} \hat{w}_{m}^{\mathsf{st}} \hat{f}_{m}(x)$$

- Better results by forcing \hat{w}_m^{st} 's to be ≥ 0 and sum to 1.
- Stacking and model selection with via leave-one-out cross-validation are closely related.
- Can apply stacking to other non-linear methods to combine predictions from different models.

Stochastic Search: Bumping

- Draw bootstrap samples $\mathbf{Z}^{*1}, \ldots, \mathbf{Z}^{*B}$.
- for $b=1,\ldots,B$ Fit the model to \mathbf{Z}^{*b} giving $\hat{f}^{*b}(x).$
- Choose the model obtained from bootstrap sample \hat{b} which minimizes training error:

$$\hat{b} = \arg\min_{b} \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}^{*b}(x_i))^2$$

The model predictions are then
$$\hat{f}^{*\hat{b}}(x)$$
.

Bumping Example: Classification using decision trees

Forced tree to have at least 80 points in each leaf.

Bumping: Bootstrap sample training data and fit

Bumping: Bootstrap sample training data and fit

When & why it works

- Bumping perturbs the training data.
- Therefore explore different areas of the model space.
- Must ensure the complexity of each model fit is comparable.