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Boosting Methods



Overview of boosting

• Boosting is a procedure to combine the output of many weak
classifiers to produce a powerful committee.

• A weak classifier is one whose error rate is only slightly better
than random guessing.

• Boosting produces a sequence of weak classifiers Gm(x) for
m = 1, . . . ,M whose predictions are then combined

G(x) = sgn

(
M∑

m=1

αmGm(x)

)

through a weighted majority to produce the final prediction.

• Each αm > 0 is computed by the boosting algorithm and
reflects how accurately Gm classified the data.



Most popular boosting algorithm: AdaBoost.M1

“AdaBoost.M1” algorithm of Freund and Schapire (1997)

• Have training data (xi, yi), i = 1, 2, . . . , n

• Introduce a weight wi = 1/n for each training example.

• for m = 1, . . . ,M

? Let Gm be the weak classifier with minimum error:

errm =

n∑

i=1

wi Ind(yi 6= Gm(xi))

? Set αm = log((1− errm)/errm).

? Set

wi ← wi e
αmInd(yi 6=Gm(xi)) for i = 1, . . . , n

This increases (decreases) wi for xi misclassified (correctly

classified) by GM

? Normalize the wi’s so that they sum to one.



What AdaBoost.M1 does

• As iterations proceed, observations difficult to classify
correctly receive more influence.

• Each successive classifier is forced to concentrate on training
observations missed by previous ones in the sequence



Binary classification example

True decision boundary Training data

H is the set of all possible oriented vertical and horizontal lines.



Example

Round 1

Chosen weak classifier Re-weight training points Current strong classifier

ε1 = 0.19, α1 = 1.45 w
(2)
i ’s G(x)



Example

Round 2

Chosen weak classifier Re-weight training points Current strong classifier

ε2 = 0.1512, α2 = 1.725 w
(3)
i ’s G(x)



Example

Round 3

Chosen weak classifier Re-weight training points Current strong classifier

ε3 = 0.2324, α3 = 1.1946 w
(4)
i ’s G(x)



Example

Round 4

Chosen weak classifier Re-weight training points Current strong classifier

ε4 = 0.2714, α4 = 0.9874 w
(5)
i ’s G(x)



Example

Round 5

Chosen weak classifier Re-weight training points Current strong classifier

ε5 = 0.2616, α5 = 1.0375 w
(6)
i ’s G(x)



Example

Round 6

Chosen weak classifier Re-weight training points Current strong classifier

ε6 = 0.2262, α6 = 1.2298 w
(7)
i ’s G(x)



Example

Round 7

Chosen weak classifier Re-weight training points Current strong classifier

ε7 = 0.2680, α7 = 1.0049 w
(8)
i ’s G(x)



Example

Round 8

Chosen weak classifier Re-weight training points Current strong classifier

ε8 = 0.3282, α8 = 0.7165 w
(9)
i ’s G(x)



Example

Round 9

Chosen weak classifier Re-weight training points Current strong classifier

ε9 = 0.3048, α9 = 0.8246 w
(10)
i ’s G(x)



Example

Round 10

Chosen weak classifier Re-weight training points Current strong classifier

ε10 = 0.2943, α10 = 0.8744 w
(11)
i ’s G(x)



Example

Round 11

Chosen weak classifier Re-weight training points Current strong classifier

ε11 = 0.2876, α11 = 0.9071 w
(12)
i ’s G(x)



Example

...........................



Example

Round 21

Chosen weak classifier Re-weight training points Current strong classifier

ε21 = 0.3491, α21 = 0.6232 w
(22)
i ’s G(x)



AdaBoost performance

AdaBoost can dramatically increases the performance of very weak
classifier.



In this chapter authors

• Show AdaBoost fits an additive model in a base learner,
optimizing a novel exponential loss function

• Show the population minimizer of the exponential loss
function is the log-odds of the class probabilities

• Present loss functions that are more robust than squared error
or exponential loss

• Argue decision trees are an ideal base learner for data mining
applications of boosting.

• Develop class of gradient boosted models (GBMs), for
boosting trees with any loss function.

• Emphasize the importance of “slow learning”.



Boosting Fits an Additive Model



Additive Models

• Boosting fits an additive expansion in a set of elementary
basis functions.

G(x) = sgn

(
M∑

m=1

αmGm(x)

)

• The basis functions are the weak classifiers Gm(x) ∈ {−1, 1}.

• More generally, basis function expansions take the form

f(x) =

M∑

m=1

βm b(x; γm)

where βm’s are the expansion coefficients and b(x; γ) ∈ R are
simple functions of the input x parameterized by γ.



Examples of additive models

• Single-hidden-layer neural networks where

b(x; γ) =
1

1 + exp(−γ0 − γt1x)

• Multivariate adaptive regression splines (MARS)
Use truncated-power spline basis functions where γ
parameterizes the variables and values for the knots.

• Trees
γ parameterizes the split variables and split points at the
internal nodes, and the predictions at the terminal nodes.



Fitting these additive models

• Typically fit model by minimizing a loss function averaged
over the training data:

min
β1,γ1,...,βM ,γM

n∑

i=1

L

(
yi,

M∑

m=1

βm b(xi; γm)

)

• For many loss functions L(x, f(x)) and/or basis functions
b(x; γ) this is too hard....



Forward Stagewise Additive Modeling



Approximate the global solution to fitting additive model

• More simply can greedily add one basis function at a time in
the following fashion.

• Set f0(x) = 0

• for m = 1, . . . ,M

? Compute

(β̂m, γ̂m) = arg min
βm,γm

n∑

i=1

L

(
yi,

M∑

m=1

fm−1(xi) + βm b(xi; γm)

)

? Set

fm(x) = fm−1(x) + β̂m b(x; γ̂m)

? Note: Previously added terms are not modified.



Exponential Loss and AdaBoost



Interpretation of the Adaboost algorithm

• Interpretation of AdaBoost.M1

AdaBoost.M1 ≡ forward stagewise additive modelling

with an exponential loss function.

• Definition of exponential loss

L(y, f(x)) = exp{−y f(x)}

• Will now go through the derivation of this result....
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Specifics of forward stagewise additive modelling (fsam)

• At each iteration of forward stagewise additive modelling
must solve this optimization problem

(βm, Gm) = arg min
β,G

n∑

i=1

L(yi, fm−1(xi) + βG(xi))

= arg min
β,G

n∑

i=1

exp{−yi (fm−1(xi) + β G(xi))}

where we assume an exponential loss and G(x) ∈ {−1, 1}.
• Can re-write

n∑
i=1

exp{−yi (fm−1(xi) + β G(xi))} =
n∑
i=1

exp{−yi fm−1(xi)} exp{−yiβ G(xi)}

=
n∑
i=1

w
(m)
i exp{−yiβ G(xi) }



Optimization of the fsam cost function

• The optimization problem becomes

min
β,G

n∑
i=1

w
(m)
i exp{−yiβ G(xi)} = min

β

(
min
G

n∑
i=1

w
(m)
i exp{−yiβ G(xi)}

)

• Note

yiG(xi) =

{
1 if yi = G(xi)

−1 if yi 6= G(xi)

and this implies exp{−yiβ G(xi)} is equal to

eβ Ind(yi 6= G(xi)) + e−β (1− Ind(yi 6= G(xi)))

• The above implies
∑n
i=1 w

(m)
i exp{−yiβ G(xi)} can be written as:

(eβ − e−β)
n∑
i=1

w
(m)
i Ind(yi 6= G(xi)) + e−β

n∑
i=1

w
(m)
i



Optimization of the fsam cost function: Gm?

• The optimization problem becomes

argmin
G

n∑
i=1

w
(m)
i exp{−yiβ G(xi)}

=argmin
G

(
(eβ − e−β)

n∑
i=1

w
(m)
i Ind(yi 6= G(xi)) + e−β

n∑
i=1

w
(m)
i

)

=argmin
G

(
n∑
i=1

w
(m)
i Ind(yi 6= G(xi))

)

• Therefore

Gm = argmin
G

(
n∑
i=1

w
(m)
i Ind(yi 6= G(xi))

)

Gm minimizes the weighted error in the AdaBoost
algorithm. (if the w

(m)
i ’s have the same definition....)
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Optimization of the fsam cost function: βm?

• Plugging Gm into the original optimization problem

min
β

(
min
G

n∑
i=1

w
(m)
i exp{−yiβ G(xi)}

)
and using the previous result, it becomes

argmin
β

(
(eβ − e−β)

n∑
i=1

w
(m)
i Ind(yi 6= Gm(xi)) + e−β

n∑
i=1

w
(m)
i

)

• This quantity is minimized when

βm =
1

2
log

1− errm
errm

where

errm =

∑n
i=1 w

(m)
i Ind(yi 6= Gm(xi))∑n

i=1 w
(m)
i

• Expression for βm same (upto a multiplicative constant) as for
αm in AdaBoost.M1 (if the w

(m)
i ’s have same definition....)
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Optimization of the fsam cost function: w
(m)
i ?

Update of the weights: Expression for w
(m+1)
i

• Need the following result

−yiGm(xi) = −Ind(yi = G(xi)) + Ind(yi 6= G(xi))

= −(1− Ind(yi 6= G(xi))) + Ind(yi 6= G(xi))

= −1 + 2 Ind(yi 6= G(xi))

• The updated weights can then be written as

w
(m+1)
i = e−yifm(xi) = e−yi(fm−1(x)+βm Gm(x))

= w
(m)
i e−yiβmGm(x))

= w
(m)
i e2βm Ind(yi 6=Gm(x)) e−βm

• As factor e−βm is the same for all weights it has no effect.

• Expression for weight update for each example is the
same as for AdaBoost.M1 as αm = 2βm.
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Adaboost minimizes the exponential loss

• Hence can view AdaBoost.M1 as a method that
approximates minimizing

arg min
β1,G1,...βM ,GM

n∑
i=1

exp(−yi
M∑
m=1

βmGm(xi) )

via a forward-stagewise additive modeling approach.



Adaboost minimizes the exponential loss

For a simulated problem the training-set mis-classification error
and average exponential loss: 10.5 Why Exponential Loss? 345
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FIGURE 10.3. Simulated data, boosting with stumps: misclassification error
rate on the training set, and average exponential loss: (1/N)

PN
i=1 exp(−yif(xi)).

After about 250 iterations, the misclassification error is zero, while the exponential
loss continues to decrease.

10.5 Why Exponential Loss?

The AdaBoost.M1 algorithm was originally motivated from a very differ-
ent perspective than presented in the previous section. Its equivalence to
forward stagewise additive modeling based on exponential loss was only
discovered five years after its inception. By studying the properties of the
exponential loss criterion, one can gain insight into the procedure and dis-
cover ways it might be improved.

The principal attraction of exponential loss in the context of additive
modeling is computational; it leads to the simple modular reweighting Ad-
aBoost algorithm. However, it is of interest to inquire about its statistical
properties. What does it estimate and how well is it being estimated? The
first question is answered by seeking its population minimizer.

It is easy to show (Friedman et al., 2000) that

f∗(x) = arg min
f(x)

EY |x(e−Y f(x)) =
1

2
log

Pr(Y = 1|x)

Pr(Y = −1|x)
, (10.16)

While the mis-classification error decreases to zero ≈ 250
iterations, the exponential loss keeps decreasing.



Loss Functions and Robustness



Loss functions for classification

• Exponential Loss

L(y, f(x)) = exp{−y f(x)}

• Binomial deviance loss

L(y, f(x)) = − log (1 + exp{−2yf(x)})

where

p(x) = P (Y = 1 | x) =
1

1 + exp{−2f(x)}

• Misclassification loss

L(y, f(x)) = Ind(y f(x) < 0)



The margin

• These loss functions are functions of the “margin”: y f(x)

• Classification rule

G(x) = sign{f(x)}

=⇒ training examples with

- positive margin yi f(xi) > 0 are correctly classified and

- negative margin yi f(xi) < 0 are misclassified

• Decision boundary defined by f(x) = 0

• Classification algorithms attempt to produce positive margins
for each training data point.

• Loss criterion for classification should penalize negative
margins more heavily than positive margins.



Loss functions for classification
10.6 Loss Functions and Robustness 347
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FIGURE 10.4. Loss functions for two-class classification. The response is
y = ±1; the prediction is f , with class prediction sign(f). The losses are
misclassification: I(sign(f) != y); exponential: exp(−yf); binomial deviance:
log(1 + exp(−2yf)); squared error: (y − f)2; and support vector: (1 − yf)+ (see
Section 12.3). Each function has been scaled so that it passes through the point
(0, 1).

f(x) = 0. The goal of the classification algorithm is to produce positive
margins as frequently as possible. Any loss criterion used for classification
should penalize negative margins more heavily than positive ones since
positive margin observations are already correctly classified.

Figure 10.4 shows both the exponential (10.8) and binomial deviance
criteria as a function of the margin y · f(x). Also shown is misclassification
loss L(y, f(x)) = I(y ·f(x) < 0), which gives unit penalty for negative mar-
gin values, and no penalty at all for positive ones. Both the exponential
and deviance loss can be viewed as monotone continuous approximations
to misclassification loss. They continuously penalize increasingly negative
margin values more heavily than they reward increasingly positive ones.
The difference between them is in degree. The penalty associated with bi-
nomial deviance increases linearly for large increasingly negative margin,
whereas the exponential criterion increases the influence of such observa-
tions exponentially.

At any point in the training process the exponential criterion concen-
trates much more influence on observations with large negative margins.
Binomial deviance concentrates relatively less influence on such observa-



Loss functions for classification

• Exponential and deviance loss continuous approx. to
mis-classification loss.

• They increasingly penalize negative margin values more
heavily than they reward positive ones.

• Binomial deviance penalty increases linearly with negative
margin.

• Exponential loss penalty increases exponentially with negative
margin.

• =⇒ in training the exponential criterion concentrates more
of its efforts on large negative margin examples than the
binomial criterion.

• Thus binomial criterion is far more robust than the
exponential criterion in noisy settings - mislabels, overlapping classes.



Robust loss functions for regression

• Squared error loss

L(y, f(x)) = (y − f(x))2

Population optimum for this loss function: f(x) = E[Y | x]

• Absolute loss

L(y, f(x)) = |y − f(x)|

Population optimum for this loss function: f(x) = median(Y | x)

• On finite samples squared error loss puts far more emphasis
on observations with large |yi − f(xi)| than absolute loss.

• Thus squared error loss is less robust and performance
degrades for long-tailed error distributions and mis-labellings.
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Robust loss functions for regression

• Huber loss

L(y, f(x)) =

{
(y − f(x))2 for |y − f(x)| ≤ δ
2δ|y − f(x)| − δ2 otherwise

- strong resistance to gross outliers while

- being nearly as efficient as least squares for Gaussian errors

• Combines the good properties of squared-error loss near zero
and absolute error loss when |y − f | is large.



Robust loss functions for regression
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FIGURE 10.5. A comparison of three loss functions for regression, plotted as a
function of the margin y−f . The Huber loss function combines the good properties
of squared-error loss near zero and absolute error loss when |y − f | is large.

exponential loss one performs a weighted fit of the base learner to the
output values yi, with weights wi = exp(−yifm−1(xi)). Using other more
robust criteria directly in their place does not give rise to such simple
feasible boosting algorithms. However, in Section 10.10.2 we show how one
can derive simple elegant boosting algorithms based on any differentiable
loss criterion, thereby producing highly robust boosting procedures for data
mining.

10.7 “Off-the-Shelf” Procedures for Data Mining

Predictive learning is an important aspect of data mining. As can be seen
from this book, a wide variety of methods have been developed for predic-
tive learning from data. For each particular method there are situations
for which it is particularly well suited, and others where it performs badly
compared to the best that can be done with that data. We have attempted
to characterize appropriate situations in our discussions of each of the re-
spective methods. However, it is seldom known in advance which procedure
will perform best or even well for any given problem. Table 10.1 summarizes
some of the characteristics of a number of learning methods.

Industrial and commercial data mining applications tend to be especially
challenging in terms of the requirements placed on learning procedures.
Data sets are often very large in terms of number of observations and
number of variables measured on each of them. Thus, computational con-



Have a problem

• When robustness is an issue

- squared-error loss for regression and

- exponential loss for classification

are not the best criterion to be optimizing.

• But, both these loss functions lead to elegant modular
boosting algorithms in the context of forward stagewise
additive modelling.

• For classification: perform a weighted fit of the base learner to
the outputs yi with weights wi = exp{−yif(xi)}

• More robust criteria in their place do not give rise to such
simple feasible boosting algorithms

• Later derive simple boosting algorithms based on any
differentiable loss criterion.
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“Off-the-Shelf” Procedures for Data Mining
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TABLE 10.1. Some characteristics of different learning methods. Key: != good,
"=fair, and #=poor.

Characteristic Neural SVM Trees MARS k-NN,

Nets Kernels

Natural handling of data
of “mixed” type

# # ! ! #

Handling of missing values # # ! ! !

Robustness to outliers in
input space

# # ! # !

Insensitive to monotone
transformations of inputs

# # ! # #

Computational scalability
(large N)

# # ! ! #

Ability to deal with irrel-
evant inputs

# # ! ! #

Ability to extract linear
combinations of features

! ! # # "

Interpretability # # " ! #

Predictive power ! ! # " !

siderations play an important role. Also, the data are usually messy: the
inputs tend to be mixtures of quantitative, binary, and categorical vari-
ables, the latter often with many levels. There are generally many missing
values, complete observations being rare. Distributions of numeric predic-
tor and response variables are often long-tailed and highly skewed. This
is the case for the spam data (Section 9.1.2); when fitting a generalized
additive model, we first log-transformed each of the predictors in order to
get a reasonable fit. In addition they usually contain a substantial fraction
of gross mis-measurements (outliers). The predictor variables are generally
measured on very different scales.

In data mining applications, usually only a small fraction of the large
number of predictor variables that have been included in the analysis are
actually relevant to prediction. Also, unlike many applications such as pat-
tern recognition, there is seldom reliable domain knowledge to help create
especially relevant features and/or filter out the irrelevant ones, the inclu-
sion of which dramatically degrades the performance of many methods.

In addition, data mining applications generally require interpretable mod-
els. It is not enough to simply produce predictions. It is also desirable to
have information providing qualitative understanding of the relationship



Book’s conclusion

• Trees are great except....

- they are inaccurate at making predictions.

• Boosting decision trees improve their accuracy but at the cost
of

- speed

- interpretability and

- for AdaBoost, robustness against overlapping class

distributions and especially mislabeling of the training data.

• A gradient boosted model (GBM) is a generalization of tree
boosting that attempts to mitigate these problems.

• It aims to produce an accurate and effective off-the-shelf
procedure for data mining.



Boosting Trees



Regression Tree Recap

• Tree partitions the input space into Rj , j = 1, . . . , J .

• Terminal/leaf nodes of tree represent the regions Rj

• Constant γj assigned to each leaf.

• The predictive rule is

x ∈ Rj =⇒ f(x) = γj

• A tree with parameters Θ = {Rj , γj}Jj=1 is expressed as

T (x; Θ) =

J∑

j=1

γj Ind(x ∈ Rj)

(J is usually treated as a meta-parameter)



Learning a Regression Tree

• Ideally parameters found by minimizing the empirical risk

Θ̂ = arg min
Θ

J∑

j=1

∑

xi∈Rj

L(yi, γj)

• Very hard optimization problem, instead settle for
approximate suboptimal solutions

• Typical approach: Divide optimization into two parts

- Find γj given Rj
Typically trivial - γ̂j the mean of the training y’s falling in Rj .

- Find Rj
Difficult part! Approximate solutions found. One strategy is to use

a greedy, top-down recursive partitioning algorithm.



The boosted tree model

• A boosted tree is a sum of regression/classification trees

fM (x) =

M∑

m=1

T (x; Θm)

learned in a forward stagewise manner.

• At each step solve

Θ̂m = arg min
Θm

N∑

i=1

L(yi, fm−1(xi) + T (xi; Θm))

for the parameters Θm = {Rjm, γjm}Jmj=1 of the next tree.

• How do we solve this optimization problem?



Learning a boosted tree model

• Find γjm given Rjm - easy

γ̂jm = arg min
γjm

∑

xi∈Rjm

L(yi, fm−1(xi) + γjm)

• Find Rjm’s - not so easy....

A few exceptions

- Squared-error loss

At each stage fit a regression tree to residuals yi − fm−1(xi)

- Two-class classification and exponential loss

Gives rise to an AdaBoost method for boosting classification

trees...



Adaboost for boosting classification trees

• If the trees are restricted to type where

βm T (xi; Θm) and each γjm ∈ {−1, 1}
• The solution to

Θ̂m = arg min
Θm

N∑

i=1

L(yi, fm−1(xi) + T (xi; Θm))

is the tree that minimizes the

N∑

i=1

w
(m)
i Ind(yi 6= T (xi; Θm))

with weights

w
(m)
i = exp{−yi fm−1(xi)}

• Straightforward to implement a greedy recursive-partitioning
algorithm with this loss as a splitting criterion.



Adaboost for boosting classification trees

• If the there is no restriction on the type of tree then the
solution to

Θ̂m = arg min
Θm

N∑

i=1

L(yi, fm−1(xi) + T (xi; Θm))

is the tree that minimizes the

N∑

i=1

w
(m)
i exp{−yiT (xi; Θm)}

with weights

w
(m)
i = exp{−yi fm−1(xi)}



Numerical Optimization via Gradient Boosting



Numerical Optimization

• If the loss, L(·, ·), is differentiable, can

Θ̂m = arg min
Θm

∑N
i=1 L(yi, fm−1(xi) + T (xi; Θm))

be approximately solved with numerical optimization.

• Consider this...

• The loss associated with using any f(x) to predict y is

L(f) =
∑N

i=1 L(yi, f(xi))

• Goal: Find f which minimizes L(f).

• Re-interpret this optimization problem as find

f̂ = arg min
f
L(f)

where f = {f(x1), . . . , f(xN )}.
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Numerical Optimization

• Numerical optimization approximates

f̂ = arg min
f
L(f)

as a sum of vectors

fM =

M∑

m=0

hm, hm ∈ RN

where f0 = h0 is an initial guess and each fm is estimated
from fm−1.



Steepest Descent

• Steepest descent chooses

hm = −ρm gm

where

- ρm is a scalar and

- gm ∈ RN is the gradient of L(f) evaluated at f = fm−1.

• Components of gm are

gim =
∂L(yi, f(xi))

∂f(xi)

∣∣∣∣
f(xi)=fi,m−1

• Step length is the solution to

ρm = arg min
ρ

L(fm−1 − ρgm)

• Solution is updated: fm = fm−1 − ρm gm



Forward stagewise Tree Boosting & Gradient Boosting

• Forward stagewise boosting is also a very greedy strategy:

Θ̂m = arg min
Θm

∑N
i=1 L(yi, fm−1(xi) + T (xi; Θm))

• Tree predictions T (xi; Θm) are analogous to the negative
gradients −g1m, . . . ,−gNm.

• But tm = {T (x1; Θm), . . . , T (xN ; Θm)} are constrained to be
predictions of a Jm-terminal node decision tree

• Whereas −gm is the unconstrained maximal descent direction.

• Also analogous

ρm=arg min
ρ

L(fm−1−ρgm) to γ̂jm=arg min
γjm

∑
xi∈Rjm

L(yi,fm−1(xi)+γjm)

but perform a line search for each terminal node.
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Forward stagewise Tree Boosting & Gradient Boosting

• If only goal is minimizing

f̂ = arg min
f
L(f)

then perform steepest descent.

• However, the ultimate goal is to generalize fM (x) to new
unseen data.

• A possible solution is as follows....



Gradient Tree Boosting

• Fit a tree T (x; Θm) at mth iteration whose predictions tm are
as close as possible to the negative gradient

Θ̃m = arg min
Θ

N∑

i=1

(−gim − T (xi; Θ))2

• From the solution regions R̃jm set

γ̂jm = arg min
γjm

∑

xi∈R̃jm

L(yi, fm−1(xi) + γjm)

• The regions R̃jm will not be identical to the regions Rjm that
solve the original problem, but they are similar enough.



Gradients for common loss functions

Setting Loss function −∂L(yi, f(xi))/∂f(xi)

Regression 1
2 (yi−f(xi))

2 yi−f(xi)

Regression |yi−f(xi)| sign{yi−f(xi)}

Regression Huber

yi−f(xi) if |yi−f(xi)|≤δm
δm sign{yi−f(xi)} if |yi−f(xi)|>δm

Classification Deviance kth component: Ind(yi=Gk)−pk(xi)

where the K-class deviance loss function is

L(y,p(x))=−∑K
k=1 Ind(y=Gk) log pk(x)=−

∑K
k=1 Ind(y=Gk)+log(

∑K
l=1 exp{fl(x)})

if pk(x)=exp{fk(x)}/
∑K

l=1 exp{fl(x)}
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Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize f0(x) = arg minγ

∑N
i=1 L(yi, γ).

2. For m = 1 to M :

(a) For i = 1, 2, . . . , N compute

rim = −
[
∂L(yi, f(xi))

∂f(xi)

]

f=fm−1

.

(b) Fit a regression tree to the targets rim giving terminal regions
Rjm, j = 1, 2, . . . , Jm.

(c) For j = 1, 2, . . . , Jm compute

γjm = arg min
γ

∑

xi∈Rjm

L (yi, fm−1(xi) + γ) .

(d) Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI(x ∈ Rjm).

3. Output f̂(x) = fM (x).

The algorithm for classification is similar. Lines 2(a)–(d) are repeated
K times at each iteration m, once for each class using (10.38). The result
at line 3 is K different (coupled) tree expansions fkM (x), k = 1, 2, . . . ,K.
These produce probabilities via (10.21) or do classification as in (10.20).
Details are given in Exercise 10.9. Two basic tuning parameters are the
number of iterations M and the sizes of each of the constituent trees
Jm, m = 1, 2, . . . ,M .

The original implementation of this algorithm was called MART for
“multiple additive regression trees,” and was referred to in the first edi-
tion of this book. Many of the figures in this chapter were produced by
MART. Gradient boosting as described here is implemented in the R gbm

package (Ridgeway, 1999, “Gradient Boosted Models”), and is freely avail-
able. The gbm package is used in Section 10.14.2, and extensively in Chap-
ters 16 and 15. Another R implementation of boosting is mboost (Hothorn
and Bühlmann, 2006). A commercial implementation of gradient boost-
ing/MART called TreeNet! is available from Salford Systems, Inc.

10.11 Right-Sized Trees for Boosting

Historically, boosting was considered to be a technique for combining mod-
els, here trees. As such, the tree building algorithm was regarded as a



Right-Sized Trees for Boosting



Size of trees in a boosted tree

• Learning a large pruned tree at each round performs poorly.

• Better if

- Restrict all trees to be same size Jm = J ∀m
- Perform cross-validation to choose an optimal J

• Interaction level of tree-based approximations is limited by J :

- if J = 2 then fM (x) can only be of the form
∑
k ηk(Xk)

- if J = 3 then fM (x) can be of the form
∑
k ηk(Xk) +

∑
jk ηjk(Xj , Xk)

- if J = 4 then fM (x) can be of the form
∑
k ηk(Xk) +

∑
jk ηjk(Xj , Xk) +

∑
jkl ηjk(Xj , Xk, Xl)

- etc...
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Size of trees in a boosted tree

• For many practical problems low-order interactions dominate.

• Therefore models that produce strong higher-order interaction
effects suffer in accuracy.

• Authors claim that 4 ≤ J ≤ 8 works well in the context of
boosting.



Boosting with different sized trees
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FIGURE 10.9. Boosting with different sized trees, applied to the example (10.2)
used in Figure 10.2. Since the generative model is additive, stumps perform the
best. The boosting algorithm used the binomial deviance loss in Algorithm 10.3;
shown for comparison is the AdaBoost Algorithm 10.1.

so on. This suggests that the value chosen for J should reflect the level
of dominant interactions of η(x). This is of course generally unknown, but
in most situations it will tend to be low. Figure 10.9 illustrates the effect
of interaction order (choice of J) on the simulation example (10.2). The
generative function is additive (sum of quadratic monomials), so boosting
models with J > 2 incurs unnecessary variance and hence the higher test
error. Figure 10.10 compares the coordinate functions found by boosted
stumps with the true functions.

Although in many applications J = 2 will be insufficient, it is unlikely
that J > 10 will be required. Experience so far indicates that 4 ≤ J ≤ 8
works well in the context of boosting, with results being fairly insensitive
to particular choices in this range. One can fine-tune the value for J by
trying several different values and choosing the one that produces the low-
est risk on a validation sample. However, this seldom provides significant
improvement over using J " 6.

Y =

{
1 if

∑10
j=1X

2
j > χ2

10(.5)

−1 otherwise

where X1, . . . , X10 are standard indpt Gaussian and χ2
10(.5) = 9.34.



Regularization



Shrinkage & Subsampling

Options for regularization

• Control number of boosting rounds

- Too large M =⇒ danger of over-fitting

∴ There is a M∗ that minimizes future risk

• Shrinkage

- Scale the contribution of each tree by factor 0 < ν < 1

fm(x) = fm−1(x) + ν ·
J∑

j=1

γjm Ind(x ∈ Rjm)

- Smaller ν =⇒ larger M to obtain low training error

- Empirical finding: small ν < .1 and sufficiently large M
=⇒ better result than no shrinkage. Especially for regression problems
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Shrinkage example
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FIGURE 10.11. Test error curves for simulated example (10.2) of Figure 10.9,
using gradient boosting (MART). The models were trained using binomial de-
viance, either stumps or six terminal-node trees, and with or without shrinkage.
The left panels report test deviance, while the right panels show misclassification
error. The beneficial effect of shrinkage can be seen in all cases, especially for
deviance in the left panels.

Y =

{
1 if

∑10
j=1X

2
j > χ2

10(.5)

−1 otherwise

where X1, . . . , X10 are
standard indpt Gaussian and
χ2
10(.5) = 9.34.

Deviance: −2 log p̂G(X)



Shrinkage & Subsampling

Options for regularization

• Subsampling

- Stochastic gradient boosting - each iteration sample a
fraction η of the training observations (without replacement).

- A typical value is η = .5

- Empirically subsampling without shrinkage works poorly

- But subsampling with shrinkage works well

- Now have 4 parameters to estimate J,M, ν, and η



Subsample example
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FIGURE 10.12. Test-error curves for the simulated example (10.2), showing
the effect of stochasticity. For the curves labeled “Sample= 0.5”, a different 50%
subsample of the training data was used each time a tree was grown. In the left
panel the models were fit by gbm using a binomial deviance loss function; in the
right-hand panel using square-error loss.

The downside is that we now have four parameters to set: J , M , ν and
η. Typically some early explorations determine suitable values for J , ν and
η, leaving M as the primary parameter.

10.13 Interpretation

Single decision trees are highly interpretable. The entire model can be com-
pletely represented by a simple two-dimensional graphic (binary tree) that
is easily visualized. Linear combinations of trees (10.28) lose this important
feature, and must therefore be interpreted in a different way.

10.13.1 Relative Importance of Predictor Variables

In data mining applications the input predictor variables are seldom equally
relevant. Often only a few of them have substantial influence on the re-
sponse; the vast majority are irrelevant and could just as well have not
been included. It is often useful to learn the relative importance or contri-
bution of each input variable in predicting the response.

Y =

{
1 if

∑10
j=1X

2
j > χ2

10(.5)

−1 otherwise

where X1, . . . , X10 are standard indpt Gaussian and χ2
10(.5) = 9.34.


