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Boosting Methods



Overview of boosting

e Boosting is a procedure to combine the output of many weak
classifiers to produce a powerful committee.

o A weak classifier is one whose error rate is only slightly better
than random guessing.

e Boosting produces a sequence of weak classifiers G, () for
m =1,..., M whose predictions are then combined

G(z) = sgn (Z U Gm(x)>

through a weighted majority to produce the final prediction.

e Each a;, > 0 is computed by the boosting algorithm and
reflects how accurately G, classified the data.



Most popular boosting algorithm: AdaBoost.M1

“AdaBoost.M1" algorithm of Freund and Schapire (1997)

e Have training data (z;,v;),i=1,2,...,n
e Introduce a weight w; = 1/n for each training example.

e form=1,....M
* Let GG,,, be the weak classifier with minimum error:
err,, = sz Ind(y; # G (24))
i=1
* Set au, = log((1 — errp,)/errp,).
* Set
w; 4 w; e@mMdWiFEGm (@) for j = 1,...,n
This increases (decreases) w; for x; misclassified (correctly
classified) by Gy

* Normalize the w;'s so that they sum to one.



What AdaBoost.M1 does

e As iterations proceed, observations difficult to classify
correctly receive more influence.

e Each successive classifier is forced to concentrate on training
observations missed by previous ones in the sequence



Binary classification example
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‘H is the set of all possible oriented vertical and horizontal lines.



Example
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Chosen weak classifier Re-weight training points Current strong classifier
= - (2),
€1 =0.19, a1 = 1.45 w,;"’s G(x)



Example

L
Chosen weak classifier Re-weight training points Current strong classifier

€2 = 0.1512, ag = 1.725 w{®'s G(x)



Example

Chosen weak classifier Re-weight training points Current strong classifier

€3 = 0.2324, a3 = 1.1946 w{®'s G(x)



Example
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Round 4

Chosen weak classifier Re-weight training points Current strong classifier

€4 = 0.2714, ay = 0.9874 w{®'s G(x)



Example

Chosen weak classifier Re-weight training points Current strong classifier

€5 = 0.2616, a5 = 1.0375 w{®s G(x)



Example

Chosen weak classifier Re-weight training points Current strong classifier

€6 = 0.2262, ag = 1.2298 w{™s G(x)



Example

Round 7
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Chosen weak classifier Current strong classifier

e7 = 0.2680, a7 = 1.0049 G(x)



Example
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Chosen weak classifier Current strong classifier

eg = 0.3282, ag = 0.7165 G(x)



Example

Round 9
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€ = 0.3048, ag = 0.8246 w10 G(x)
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Example

Round 10
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€10 = 0.2943, a1 = 0.8744 w s G(x)
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Example

Round 11

Chosen weak classifier Re-weight training points Current strong classifier

€11 = 0.2876, aqq = 0.9071 w1 G(x)

k3






Example

Round 21

x .o X x X x X X x 5

L]
X ox . . x
09~ “x 0% Tw X  x
.. x 3 X x % X

Chosen weak classifier Re-weight training points Current strong classifier

a1 = 0.3491, aaq = 0.6232 w(?Ps G(x)



AdaBoost performance

AdaBoost can dramatically increases the performance of very weak
classifier.



In this chapter authors

e Show AdaBoost fits an additive model in a base learner,
optimizing a novel exponential loss function

e Show the population minimizer of the exponential loss
function is the log-odds of the class probabilities

e Present loss functions that are more robust than squared error
or exponential loss

e Argue decision trees are an ideal base learner for data mining
applications of boosting.

e Develop class of gradient boosted models (GBMs), for
boosting trees with any loss function.

e Emphasize the importance of “slow learning” .



Boosting Fits an Additive Model



Additive Models

e Boosting fits an additive expansion in a set of elementary
basis functions.

M
G(z) = sgn (Z am, Gm(.L)>

m=1

e The basis functions are the weak classifiers G, (z) € {—1,1}.

e More generally, basis function expansions take the form

M
F@) =" Bumb(w; )
m=1

where ,,'s are the expansion coefficients and b(x;~) € R are
simple functions of the input x parameterized by ~.



Examples of additive models

¢ Single-hidden-layer neural networks where

1
bz ~) =
(z37) T+ exp(—0 = 712)

e Multivariate adaptive regression splines (MARS)
Use truncated-power spline basis functions where ~y
parameterizes the variables and values for the knots.

e Trees
~ parameterizes the split variables and split points at the
internal nodes, and the predictions at the terminal nodes.



Fitting these additive models

e Typically fit model by minimizing a loss function averaged
over the training data:

e For many loss functions L(x, f(z)) and/or basis functions
b(x; ) this is too hard....



Forward Stagewise Additive Modeling



Approximate the global solution to fitting additive model

e More simply can greedily add one basis function at a time in
the following fashion.

e Set fo(z) =0

e form=1,..., M

*x Compute

n M
(Bms4m) = argmin » L (y > fmea(@i) + B b(xi;vm)>

mom =1 m=1

* Set
Fn(@) = frmn—1(2) + B b(2: )

* Note: Previously added terms are not modified.



Exponential Loss and AdaBoost



Interpretation of the Adaboost algorithm

e Interpretation of AdaBoost.M1

AdaBoost.M1 = forward stagewise additive modelling
with an exponential loss function.

e Definition of exponential loss

L(y, f(z)) = exp{—y f(z)}



Interpretation of the Adaboost algorithm

e Interpretation of AdaBoost.M1

AdaBoost.M1 = forward stagewise additive modelling
with an exponential loss function.

e Definition of exponential loss

L(y, f(z)) = exp{—y f(z)}

e Will now go through the derivation of this result....



Specifics of forward stagewise additive modelling (fsam)

e At each iteration of forward stagewise additive modelling
must solve this optimization problem

(Bms Gm) = avgmin 3 L(yis fn-1 (@) + BG(s)

i=1
= argmin > exp{—yi (fm—1(z:) + BG(x:))}
=1
where we assume an exponential loss and G(x) € {—1,1}.

e Can re-write

n

Do expl{—yi (fm—r(2:) + BG(2:))} = Y exp{—yi fnr(2:)} exp{—y:iB G(x:)}

i=1 i=1

= Z w!™ exp{—y:3 G(x:) }
i=1



Optimization of the fsam cost function

e The optimization problem becomes

min gwi exp{~y:B G(z:)} = min (mme’”)exp{ yiB Gz )})

=1

e Note

vi G(IL) _ {1 If Yi = G(IZ)

-1 if Yi 3& G(iL)

and this implies exp{—y; 3 G(x;)} is equal to

e’ Ind(y; # G(x;)) +e7 (1= Ind(y; # G(x:)))

e The above implies -7 | w\™ exp{—y,3 G(x:)} can be written as:

(e’ —e” Zw(m)lnd(y # G(z4)) ﬁZw(m)



Optimization of the fsam cost function: G,,"

e The optimization problem becomes

arg ngn; w™ exp{—y:8 G(x:)}

_ . o (m) -8B (m)
= arg min ((e e Zw Ind(y; # G(x:)) Zw )

:argmcin <Z w{™ Ind(y; # G(:EZ))>

=1
e Therefore

G = argm&n (i w™ Ind(y; # G(J:J))

i=1



Optimization of the fsam cost function: G,,"

e The optimization problem becomes

arg mmz w; Y exp{—y:8G(x:)}

_ . o (m) -8B (m)
= arg min ((e e Zw Ind(y; # G(x:)) Zw )

:argmcin (Z w{™ Ind(y; # G(:EZ))>

=1
e Therefore

G = argm&n (i w™ Ind(y; # G(J:J))

i=1

G, minimizes the weighted error in the AdaBoost
algorithm. (if the w£m>'s have the same definition....)



Optimization of the fsam cost function:

e Plugging G, into the original optimization problem

. n (m) - )
n (mén;wi exp{ yqﬁG(L)})

and using the previous result, it becomes

: _ (m)| d Gm —B (m)
arg min <(e e Zw nd(y; # (1)) Zw >

e This quantity is minimized when

1 1—errn,
B = Llog err.
2 ertm

where
S w™Ind(y: # Go(1))

—1 w(m)

erry, =



Optimization of the fsam cost function:

e Plugging G, into the original optimization problem

. n (m) - )
n (mén;wi exp{ yqﬁG(L)})

and using the previous result, it becomes

: _ (m)| d Gm —B (m)
arg min <(e e Zw nd(y; # (1)) Zw >

e This quantity is minimized when

1. 1—erry,
B = 5 log err
errm
where
o — i " Ind(y; # G (1))
" (™
=1

o Expression for 3,,, same (upto a multiplicative constant) as for
.y in AdaBoost.M1 (if the wgm)’s have same definition....)



Optimization of the fsam cost function:

(m-+1)

7

Update of the weights: Expression for w
® Need the following result
—y; Gm () = —Ind(y; = G(x;)) + Ind(y; # G(x3))
= —(1 —Ind(y; # G(2:))) + Ind(y; # G(i))
= —1+42Ind(y; # G(z:))
e The updated weights can then be written as
W™D = @ UiIm(@5) — =9 (m 1 () +8m G (@)
— (™ ¢~¥iBmGm (@)

= W™ ¢2Pm M(Wi#Com () =P

e As factor e P is the same for all weights it has no effect.



Optimization of the fsam cost function:

(m-+1)

7

Update of the weights: Expression for w
® Need the following result
—y; Gm () = —Ind(y; = G(x;)) + Ind(y; # G(x3))
= —(1 —Ind(y; # G(2:))) + Ind(y; # G(i))
= —1+42Ind(y; # G(z:))
e The updated weights can then be written as
W™D = @ UiIm(@5) — =9 (m 1 () +8m G (@)
— (™ ¢~¥iBmGm (@)

= W™ ¢2Pm M(Wi#Com () =P

e As factor e P is the same for all weights it has no effect.

e Expression for weight update for each example is the
same as for AdaBoost.M1 as a,,, = 205,,.



Adaboost minimizes the exponential loss

e Hence can view AdaBoost.M1 as a method that
approximates minimizing

n M

ar, min exp( —v: Gm (i
g611G1»»~BM7GM 1:21 p( yzmzﬂﬂm m (i)

via a forward-stagewise additive modeling approach.



Adaboost minimizes the exponential loss

For a simulated problem the training-set mis-classification error
and average exponential loss:
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Boosting Iterations

While the mis-classification error decreases to zero ~ 250
iterations, the exponential loss keeps decreasing.



Loss Functions and Robustness



Loss functions for classification

e Exponential Loss

L(y, f(z)) = exp{~y f(2)}

e Binomial deviance loss

L(y, f(z)) = —log (1 + exp{—2yf(x)})

where

1

ple) = POV =112) = T o)

e Misclassification loss

Ly, f(x)) = Ind(y f(z) < 0)



e These loss functions are functions of the “margin”: y f(x)
e Classification rule
G(z) = sign{f(z)}

= training examples with
- positive margin y; f(x;) > 0 are correctly classified and

- negative margin y; f(z;) < 0 are misclassified
e Decision boundary defined by f(z) =0

e Classification algorithms attempt to produce positive margins
for each training data point.

e Loss criterion for classification should penalize negative
margins more heavily than positive margins.



Loss functions for classification
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Loss functions for classification

e Exponential and deviance loss continuous approx. to
mis-classification loss.

e They increasingly penalize negative margin values more
heavily than they reward positive ones.

e Binomial deviance penalty increases linearly with negative
margin.

e Exponential loss penalty increases exponentially with negative
margin.

e — in training the exponential criterion concentrates more
of its efforts on large negative margin examples than the
binomial criterion.

e Thus binomial criterion is far more robust than the
exponential criterion in noisy settings - mislabels, overlapping classes.



Robust loss functions for regression

e Squared error loss

L(y, f(z)) = (y - f(x))?
Population optimum for this loss function: f(z) = E[Y | z]

e Absolute loss

Ly, f(z)) =y = f ()]

Population optimum for this loss function: f(z) = median(Y | x)



Robust loss functions for regression

e Squared error loss
L(y, f(2)) = (y — f(2))*
Population optimum for this loss function: f(z) = E[Y | z]

e Absolute loss

Ly, f(z)) = |y — f(2)]

Population optimum for this loss function: f(z) = median(Y | x)

e On finite samples squared error loss puts far more emphasis
on observations with large |y; — f(x;)| than absolute loss.

e Thus squared error loss is less robust and performance
degrades for long-tailed error distributions and mis-labellings.



Robust loss functions for regression

e Huber loss

= f2)? for ly — f(z)| <6
Ly, (=) = {25|y — f(x)| — 6% otherwise

- strong resistance to gross outliers while

- being nearly as efficient as least squares for Gaussian errors

e Combines the good properties of squared-error loss near zero
and absolute error loss when |y — f] is large.



Robust loss functions for regression
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Have a problem

e When robustness is an issue
- squared-error loss for regression and

- exponential loss for classification
are not the best criterion to be optimizing.

e But, both these loss functions lead to elegant modular
boosting algorithms in the context of forward stagewise
additive modelling.

e For classification: perform a weighted fit of the base learner to
the outputs y; with weights w; = exp{—vy; f(z;)}

e More robust criteria in their place do not give rise to such
simple feasible boosting algorithms



Have a problem

e When robustness is an issue
- squared-error loss for regression and

- exponential loss for classification
are not the best criterion to be optimizing.

e But, both these loss functions lead to elegant modular
boosting algorithms in the context of forward stagewise
additive modelling.

e For classification: perform a weighted fit of the base learner to
the outputs y; with weights w; = exp{—vy; f(z;)}

e More robust criteria in their place do not give rise to such
simple feasible boosting algorithms

e Later derive simple boosting algorithms based on any
differentiable loss criterion.



“Off-the-Shelf’ Procedures for Data Mining



TABLE 10.1. Some characteristics of different learning methods. Key: A= good,
=fair, and ¥ =poor.

Characteristic Neural SVM Trees MARS k-NN,
Nets Kernels

Natural handling of data v v A A v

of “mixed” type

Handling of missing values v v A A A

Robustness to outliers in v v A v A

input space

Insensitive to monotone v v A v v

transformations of inputs

Computational scalability v v A A v

(large N)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linear A A v v

combinations of features

Interpretability v v A v

Predictive power A A v A




Book's conclusion

e Trees are great except....
- they are inaccurate at making predictions.

e Boosting decision trees improve their accuracy but at the cost
of

- speed
- interpretability and

- for AdaBoost, robustness against overlapping class
distributions and especially mislabeling of the training data.

e A gradient boosted model (GBM) is a generalization of tree
boosting that attempts to mitigate these problems.

e It aims to produce an accurate and effective off-the-shelf
procedure for data mining.



Boosting Trees



Regression Tree Recap

e Tree partitions the input space into R;, 5 =1,...,J.

Terminal/leaf nodes of tree represent the regions R;

Constant +; assigned to each leaf.

The predictive rule is

reR; = f(x) ="

A tree with parameters © = {Rj,yj}‘j]:l is expressed as

J
T(:C; @) = Z’Yj Ind(a: S 'Rj)

=1

(J is usually treated as a meta-parameter)



Learning a Regression Tree

e |deally parameters found by minimizing the empirical risk

e Very hard optimization problem, instead settle for
approximate suboptimal solutions

e Typical approach: Divide optimization into two parts
- Find v; given R;
Typically trivial - 4; the mean of the training y's falling in R;.

- Find Rj
Difficult part! Approximate solutions found. One strategy is to use

a greedy, top-down recursive partitioning algorithm.



The boosted tree model

e A boosted tree is a sum of regression/classification trees

M
= Z T(z;0m)
m=1

learned in a forward stagewise manner.

e At each step solve
@m = argmm Z (Yiy frn—1(x;) + T(x5;0m))

for the parameters ©,, = {Rjm, ij};@l of the next tree.

e How do we solve this optimization problem?



Learning a boosted tree model

e Find v, given R, - easy
fjm = argmin > L(Yi, fm-1(2i) + Vjm)
Yim xiGij
e Find R;;,’s - not so easy....

A few exceptions
- Squared-error loss

At each stage fit a regression tree to residuals y; — fn—1(2;)

- Two-class classification and exponential loss

Gives rise to an AdaBoost method for boosting classification
trees...



Adaboost for boosting classification trees

o If the trees are restricted to type where

Bm (xu m) and each ’)’ij{—l,l}

e The solution to
O, = argmln Z (Wi, fm—1(z:) + T(2i;Om))

is the tree that minimizes the

Zw Ind(y; # T(x:; Om))

with weights

wi™ = exp{~y; fno1(z:)}

e Straightforward to implement a greedy recursive-partitioning
algorithm with this loss as a splitting criterion.



Adaboost for boosting classification trees

e If the there is no restriction on the type of tree then the

solution to
R N
m = i L iy Jm— % T iy Im
0 arglggl; Wir fm—1(2i) + T(23;O))

is the tree that minimizes the
N
Z wgm) exp{—y;T(zi; Om)}
i=1

with weights

wi™ = exp{~y; fn—1(z:)}



Numerical Optimization via Gradient Boosting



Numerical Optimization

e If the loss, L(-,-), is differentiable, can

~

O, = arg Igin Zf\il L(yi, fr—1(zi) + T(zi;0m))
be approximately solved with numerical optimization.

e Consider this...



Numerical Optimization

e If the loss, L(-,-), is differentiable, can

~

O, = arg rgin Zf\il L(yi, fr—1(zi) + T(zi;0m))
be approximately solved with numerical optimization.

Consider this...

The loss associated with using any f(z) to predict y is

L(f) = 350 Dlyss f (@)
Goal: Find f which minimizes L(f).

Re-interpret this optimization problem as find

f =arg mfin L(f)

where f = {f(x1),..., f(zn)}



Numerical Optimization

e Numerical optimization approximates

f=arg mfin L(f)
as a sum of vectors

M
fry =Y hp, hy eRY
m=0

where fy = hy is an initial guess and each f,,, is estimated
from f,, 1.



Steepest Descent

e Steepest descent chooses

h;, = —Pm 8m

where

- pm is a scalar and

- gm € RY is the gradient of L(f) evaluated at f = f,,, ;.

e Components of g,, are

0Lt
vm 6f(x2) flxi)=Ffim-1

e Step length is the solution to
pm = argmin L(fn—1 — pgm)

e Solution is updated: f,, = f,,_1 — pm Em



Forward stagewise Tree Boosting & Gradient Boosting

Forward stagewise boosting is also a very greedy strategy:

~

O = arg %lin vaz1 L(yi, fm—1(xi) + T'(2i; Om))

Tree predictions T'(z;; ©,,) are analogous to the negative
gradients —g1m,-- -, —gNm.

But t,,, = {T(x1;0m),...,T(zN; Om)} are constrained to be
predictions of a J,,-terminal node decision tree

Whereas —g,, is the unconstrained maximal descent direction.



Forward stagewise Tree Boosting & Gradient Boosting

Forward stagewise boosting is also a very greedy strategy:

~

O = arg %lin vaz1 L(yi, fm—1(xi) + T'(2i; Om))

Tree predictions T'(z;; ©,,) are analogous to the negative
gradients —g1m,-- -, —gNm.

But t,,, = {T(x1;0m),...,T(zN; Om)} are constrained to be
predictions of a J,,-terminal node decision tree

Whereas —g,, is the unconstrained maximal descent direction.

Also analogous

pm=argmin L(f,_1—pgm) to 4jm=argmin Zx-eR- L(yi, frm—1(xi)+vim)
P Yim reTm

but perform a line search for each terminal node.



Forward stagewise Tree Boosting & Gradient Boosting

e If only goal is minimizing
f=arg mfin L(f)
then perform steepest descent.

o However, the ultimate goal is to generalize fy/(z) to new
unseen data.

e A possible solution is as follows....



Gradient Tree Boosting

e Fit a tree T'(x; ©,,) at mth iteration whose predictions t,, are
as close as possible to the negative gradient

N
(:)m = arg Hgn 2(_gim - T(xi; @))2

e From the solution regions 7~€jm set

Yjm = arg r%g} Z L(yi, fm—1(x) + Yjm)
Ti€Rjm

e The regions 7~€jm will not be identical to the regions R, that
solve the original problem, but they are similar enough.



Gradients for common loss functions

Setting Loss function —0L(y;, f(z;:))/0f(x;)

Regression Llysi—f(:))? yi—f(wi)

Regression lyi— f(z:)] sign{y; —f ()}

Regression Huber yi—f(xq) if [yi—f(2:)|<6m
Omsign{yi—f(zi)} i lyi—f(2:)|>0m

Classification  Deviance kth component: Ind(y;=Gx)—pr ()

where the K-class deviance loss function is
L(y,p(z))=— 31—, Ind(y=Gy) log pi(z)=— 31—, Ind(y=G)+log(>[<, exp{fi(z)})

if pi(@)=exp{fr(2)}/ /<, exp{fi(2)}



Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fo(x) = arg min, Zf;l L(yi,7)-
2. Form =1 to M:
(a) Fori=1,2,..., N compute

S

Tim = —

(b) Fit a regression tree to the targets r;,, giving terminal regions
Rjnm J=12... Jm.

(¢) For j=1,2,...,J,, compute

Yim _aIgmln Z (Yis frm—1(zi) +7).

Ti;€ERjm

(d) Update fm(x) = fm—l( + Z —1Vim (33 S ij)~

3. Output f(z) = far ().




Right-Sized Trees for Boosting



Size of trees in a boosted tree

e Learning a large pruned tree at each round performs poorly.



Size of trees in a boosted tree

e Learning a large pruned tree at each round performs poorly.

e Better if
- Restrict all trees to be same size J,,, = J Vm

- Perform cross-validation to choose an optimal J



Size of trees in a boosted tree

e Learning a large pruned tree at each round performs poorly.

e Better if
- Restrict all trees to be same size J,,, = J Vm

- Perform cross-validation to choose an optimal J

e Interaction level of tree-based approximations is limited by J:
- if J =2 then fp () can only be of the form

>k M6 (Xk)

- if J =3 then fp(z) can be of the form

>k (X)) + 2255 mik (X, Xi)
- if J =4 then fp () can be of the form

2o e (Xi) + 350 Mk (X, Xie) + 32550 min (X5, Xio, Xi)

- etc...



Size of trees in a boosted tree

e For many practical problems low-order interactions dominate.

e Therefore models that produce strong higher-order interaction
effects suffer in accuracy.

e Authors claim that 4 < J < 8 works well in the context of
boosting.



Boosting with different sized trees

< \ —— Stumps
o 7 ~—— 10 Node
h 100 Node
\ ~—— Adaboost
@ |
(=}
s
]
2 o
- o
S =
o |
o
T T T T T
0 100 200 300 400

Number of Terms

_—t if 3100 X7 > xdo(.5)
—1 otherwise

where X1, ..., Xj0 are standard indpt Gaussian and X%O(.5) = 9.34.



Regularization



Shrinkage & Subsampling

Options for regularization
e Control number of boosting rounds
- Too large M = danger of over-fitting

. There is a M* that minimizes future risk



Shrinkage & Subsampling

Options for regularization
e Control number of boosting rounds
- Too large M = danger of over-fitting

. There is a M* that minimizes future risk

e Shrinkage
- Scale the contribution of each tree by factor 0 < v < 1
J
fm(x) = fm—1(z) +v- Z’yjm Ind(z € Rjm)
j=1

- Smaller v = larger M to obtain low training error

- Empirical finding: small v < .1 and sufficiently large M
— better result than no Shrinkage. Especially for regression problems



Test Set Deviance

Test Set Deviance
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Shrinkage example

1 if 300 X7 > xFo(5)
—1 otherwise

where X1,..., X0 are
standard indpt Gaussian and
Xi0(-5) = 9.34.

Deviance: —2 logpa(X)



Shrinkage & Subsampling

Options for regularization

e Subsampling

- Stochastic gradient boosting - each iteration sample a
fraction 7 of the training observations (without replacement).

A typical value is p = .5

Empirically subsampling without shrinkage works poorly

But subsampling with shrinkage works well

Now have 4 parameters to estimate J, M, v, and 7



Subsample example
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Boosting Iterations Boosting lterations

T if 3000 X7 > xio(.5)
—1 otherwise

Y =

where X1,..., Xq0 are standard indpt Gaussian and x%o(.5) = 9.34.



