Chapter 10: Boosting and Additive Trees

DD3364

November 20, 2012

Boosting Methods

- Boosting is a procedure to combine the output of many **weak** classifiers to produce a powerful **committee**.
- A weak classifier is one whose error rate is only slightly better than random guessing.
- Boosting produces a sequence of weak classifiers $G_m(x)$ for $m = 1, \ldots, M$ whose predictions are then combined

$$G(x) = \operatorname{sgn}\left(\sum_{m=1}^M \alpha_m \, G_m(x)\right)$$

through a weighted majority to produce the final prediction.

• Each $\alpha_m > 0$ is computed by the boosting algorithm and reflects how accurately G_m classified the data.

Most popular boosting algorithm: AdaBoost.M1

"AdaBoost.M1" algorithm of Freund and Schapire (1997)

- Have training data $(x_i, y_i), i = 1, 2, \dots, n$
- Introduce a weight $w_i = 1/n$ for each training example.
- for m = 1,..., M
 * Let G_m be the weak classifier with minimum error:

$$\operatorname{err}_m = \sum_{i=1}^n w_i \operatorname{Ind}(y_i \neq G_m(x_i))$$

* Set $\alpha_m = \log((1 - \operatorname{err}_m)/\operatorname{err}_m)$.

* Set

$$w_i \leftarrow w_i e^{\alpha_m \operatorname{Ind}(y_i \neq G_m(x_i))}$$
 for $i = 1, \dots, n$

This increases (decreases) w_i for x_i misclassified (correctly classified) by G_M

 \star Normalize the w_i 's so that they sum to one.

- As iterations proceed, observations difficult to classify correctly receive more influence.
- Each successive classifier is forced to concentrate on training observations missed by previous ones in the sequence

Binary classification example

 ${\mathcal H}$ is the set of all possible oriented vertical and horizontal lines.

Round 1

Chosen weak classifier

$$\epsilon_1 = 0.19, \, \alpha_1 = 1.45$$

Re-weight training points

 $w_i^{(2)}$'s

Current strong classifier

Chosen weak classifier

$$\epsilon_2 = 0.1512$$
, $\alpha_2 = 1.725$

Round 2

Re-weight training points

Current strong classifier

Round 3

Chosen weak classifier

$$\epsilon_3 = 0.2324$$
, $\alpha_3 = 1.1946$

Re-weight training points

 $w_i^{(4)}$'s

Current strong classifier

Round 4

Chosen weak classifier

$$\epsilon_4 = 0.2714$$
, $\alpha_4 = 0.9874$

Re-weight training points

 $w_{i}^{(5)}$'s

Current strong classifier

Round 5

Chosen weak classifier

 $\epsilon_5 = 0.2616$, $\alpha_5 = 1.0375$

Re-weight training points

 $w_i^{(6)}$'s

Current strong classifier

Round 6

Chosen weak classifier

$$\epsilon_6 = 0.2262, \, \alpha_6 = 1.2298$$

Re-weight training points $w_i^{(7)}\textbf{,}\mathbf{s}$

Current strong classifier

Round 7

Chosen weak classifier

 $\epsilon_7 = 0.2680, \alpha_7 = 1.0049$

Re-weight training points $w_i^{(8)}$'s

Current strong classifier

Round 8

Chosen weak classifier

 $\epsilon_8 = 0.3282$, $\alpha_8 = 0.7165$

Re-weight training points $w_i^{(9)}\textbf{,}\mathbf{s}$

Current strong classifier

Round 9

Chosen weak classifier

 $\epsilon_9 = 0.3048, \, \alpha_9 = 0.8246$

Re-weight training points

 $w_i^{(10)}$'s

Current strong classifier

Round 10

Chosen weak classifier

 $\epsilon_{10}=0.2943$, $\alpha_{10}=0.8744$

Re-weight training points

 $w_i^{(11)}$'s

Current strong classifier

Round 11

Chosen weak classifier

 $\epsilon_{11} = 0.2876$, $\alpha_{11} = 0.9071$

Re-weight training points

 $w_i^{(12)}$'s

Current strong classifier

.....

Round 21

Chosen weak classifier

 $\epsilon_{21} = 0.3491$, $\alpha_{21} = 0.6232$

Re-weight training points

 $w_i^{(22)}$'s

Current strong classifier

AdaBoost performance

AdaBoost can dramatically increases the performance of very weak classifier.

In this chapter authors

- Show AdaBoost fits an additive model in a base learner, optimizing a novel exponential loss function
- Show the population minimizer of the exponential loss function is the log-odds of the class probabilities
- Present loss functions that are more robust than squared error or exponential loss
- Argue decision trees are an ideal base learner for data mining applications of boosting.
- Develop class of gradient boosted models (GBMs), for boosting trees with any loss function.
- Emphasize the importance of "slow learning".

Boosting Fits an Additive Model

• Boosting fits an additive expansion in a set of elementary *basis functions*.

$$G(x) = \operatorname{sgn}\left(\sum_{m=1}^{M} \alpha_m \, G_m(x)\right)$$

- The basis functions are the weak classifiers G_m(x) ∈ {−1, 1}.
- · More generally, basis function expansions take the form

$$f(x) = \sum_{m=1}^{M} \beta_m \, b(x; \gamma_m)$$

where β_m 's are the expansion coefficients and $b(x; \gamma) \in \mathbb{R}$ are simple functions of the input x parameterized by γ .

• Single-hidden-layer neural networks where

$$b(x;\gamma) = \frac{1}{1 + \exp(-\gamma_0 - \gamma_1^t x)}$$

• Multivariate adaptive regression splines (MARS) Use truncated-power spline basis functions where γ parameterizes the variables and values for the knots.

Trees

 γ parameterizes the split variables and split points at the internal nodes, and the predictions at the terminal nodes.

• Typically fit model by minimizing a loss function averaged over the training data:

$$\min_{\beta_1,\gamma_1,\ldots,\beta_M,\gamma_M} \sum_{i=1}^n L\left(y_i, \sum_{m=1}^M \beta_m b(x_i; \gamma_m)\right)$$

• For many loss functions L(x,f(x)) and/or basis functions $b(x;\gamma)$ this is too hard....

Forward Stagewise Additive Modeling

Approximate the global solution to fitting additive model

- More simply can greedily add one basis function at a time in the following fashion.
- Set $f_0(x) = 0$
- for $m = 1, \ldots, M$
 - \star Compute

$$(\hat{\beta}_m, \hat{\gamma}_m) = \underset{\beta_m, \gamma_m}{\operatorname{arg\,min}} \sum_{i=1}^n L\left(y_i, \sum_{m=1}^M f_{m-1}(x_i) + \beta_m b(x_i; \gamma_m)\right)$$

 \star Set

$$f_m(x) = f_{m-1}(x) + \hat{\beta}_m b(x; \hat{\gamma}_m)$$

* Note: Previously added terms are not modified.

Exponential Loss and AdaBoost

• Interpretation of AdaBoost.M1

• Definition of exponential loss

$$L(y,f(x))=\exp\{-y\,f(x)\}$$

• Will now go through the derivation of this result....

• Interpretation of AdaBoost.M1

• Definition of exponential loss

$$L(y,f(x)) = \exp\{-y\,f(x)\}$$

• Will now go through the derivation of this result....

Specifics of forward stagewise additive modelling (fsam)

• At each iteration of **forward stagewise additive modelling** must solve this optimization problem

$$(\beta_m, G_m) = \arg\min_{\beta, G} \sum_{i=1}^n L(y_i, f_{m-1}(x_i) + \beta G(x_i))$$
$$= \arg\min_{\beta, G} \sum_{i=1}^n \exp\{-y_i \left(f_{m-1}(x_i) + \beta G(x_i)\right)\}$$

where we assume an exponential loss and $G(x) \in \{-1, 1\}$.

Can re-write

$$\sum_{i=1}^{n} \exp\{-y_i \left(f_{m-1}(x_i) + \beta G(x_i)\right)\} = \sum_{i=1}^{n} \exp\{-y_i f_{m-1}(x_i)\} \exp\{-y_i \beta G(x_i)\}$$
$$= \sum_{i=1}^{n} w_i^{(m)} \exp\{-y_i \beta G(x_i)\}$$

Optimization of the fsam cost function

• The optimization problem becomes

$$\min_{\beta,G} \sum_{i=1}^{n} w_i^{(m)} \exp\{-y_i \beta \, G(x_i)\} = \min_{\beta} \left(\min_{G} \sum_{i=1}^{n} w_i^{(m)} \exp\{-y_i \beta \, G(x_i)\} \right)$$

Note

$$y_i G(x_i) = \begin{cases} 1 & \text{if } y_i = G(x_i) \\ -1 & \text{if } y_i \neq G(x_i) \end{cases}$$

and this implies $\exp\{-y_i\beta\,G(x_i)\}$ is equal to

$$e^{\beta} \operatorname{Ind}(y_i \neq G(x_i)) + e^{-\beta} (1 - \operatorname{Ind}(y_i \neq G(x_i)))$$

• The above implies $\sum_{i=1}^{n} w_i^{(m)} \exp\{-y_i \beta G(x_i)\}$ can be written as:

$$(e^{\beta} - e^{-\beta}) \sum_{i=1}^{n} w_i^{(m)} \operatorname{Ind}(y_i \neq G(x_i)) + e^{-\beta} \sum_{i=1}^{n} w_i^{(m)}$$

Optimization of the fsam cost function: G_m ?

• The optimization problem becomes

$$\arg \min_{G} \sum_{i=1}^{n} w_{i}^{(m)} \exp\{-y_{i}\beta G(x_{i})\}$$

= $\arg \min_{G} \left((e^{\beta} - e^{-\beta}) \sum_{i=1}^{n} w_{i}^{(m)} \operatorname{Ind}(y_{i} \neq G(x_{i})) + e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)} \right)$
= $\arg \min_{G} \left(\sum_{i=1}^{n} w_{i}^{(m)} \operatorname{Ind}(y_{i} \neq G(x_{i})) \right)$

Therefore

$$G_m = \arg\min_{G} \left(\sum_{i=1}^n w_i^{(m)} \operatorname{Ind}(y_i \neq G(x_i)) \right)$$

 G_m minimizes the weighted error in the AdaBoost algorithm. (if the $w_i^{(m)}$'s have the same definition....)

Optimization of the fsam cost function: G_m ?

• The optimization problem becomes

$$\arg \min_{G} \sum_{i=1}^{n} w_{i}^{(m)} \exp\{-y_{i}\beta G(x_{i})\}$$

= $\arg \min_{G} \left((e^{\beta} - e^{-\beta}) \sum_{i=1}^{n} w_{i}^{(m)} \operatorname{Ind}(y_{i} \neq G(x_{i})) + e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)} \right)$
= $\arg \min_{G} \left(\sum_{i=1}^{n} w_{i}^{(m)} \operatorname{Ind}(y_{i} \neq G(x_{i})) \right)$

Therefore

$$G_m = \arg\min_G \left(\sum_{i=1}^n w_i^{(m)} \mathsf{Ind}(y_i \neq G(x_i))\right)$$

 G_m minimizes the weighted error in the AdaBoost algorithm. (if the $w_i^{(m)}$'s have the same definition....)

Optimization of the fsam cost function: β_m ?

• Plugging G_m into the original optimization problem

$$\min_{\beta} \left(\min_{G} \sum_{i=1}^{n} w_i^{(m)} \exp\{-y_i \beta G(x_i)\} \right)$$

and using the previous result, it becomes

$$\arg\min_{\beta} \left((e^{\beta} - e^{-\beta}) \sum_{i=1}^{n} w_i^{(m)} \mathsf{Ind}(y_i \neq G_m(x_i)) + e^{-\beta} \sum_{i=1}^{n} w_i^{(m)} \right)$$

• This quantity is minimized when

$$\beta_m = \frac{1}{2}\log\frac{1 - \mathsf{err}_m}{\mathsf{err}_m}$$

where

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{n} w_{i}^{(m)} \operatorname{Ind}(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{n} w_{i}^{(m)}}$$

• Expression for β_m same (upto a multiplicative constant) as for α_m in AdaBoost.M1 (if the $w_i^{(m)}$'s have same definition....)

Optimization of the fsam cost function: β_m ?

• Plugging G_m into the original optimization problem

$$\min_{\beta} \left(\min_{G} \sum_{i=1}^{n} w_i^{(m)} \exp\{-y_i \beta G(x_i)\} \right)$$

and using the previous result, it becomes

$$\arg\min_{\beta} \left((e^{\beta} - e^{-\beta}) \sum_{i=1}^{n} w_i^{(m)} \mathsf{Ind}(y_i \neq G_m(x_i)) + e^{-\beta} \sum_{i=1}^{n} w_i^{(m)} \right)$$

• This quantity is minimized when

$$\beta_m = \frac{1}{2}\log\frac{1 - \mathsf{err}_m}{\mathsf{err}_m}$$

where

$$\mathsf{err}_{m} = \frac{\sum_{i=1}^{n} w_{i}^{(m)} \mathsf{Ind}(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{n} w_{i}^{(m)}}$$

• Expression for β_m same (upto a multiplicative constant) as for α_m in AdaBoost.M1 (if the $w_i^{(m)}$'s have same definition....)
Optimization of the fsam cost function: $w_i^{(m)}$?

Update of the weights: Expression for $w_i^{(m+1)}$

• Need the following result

$$-y_i G_m(x_i) = -\ln d(y_i = G(x_i)) + \ln d(y_i \neq G(x_i))$$

= -(1 - \lnd(y_i \neq G(x_i))) + \lnd(y_i \neq G(x_i))
= -1 + 2 \lnd(y_i \neq G(x_i))

• The updated weights can then be written as

$$w_i^{(m+1)} = e^{-y_i f_m(x_i)} = e^{-y_i (f_{m-1}(x) + \beta_m G_m(x))}$$
$$= w_i^{(m)} e^{-y_i \beta_m G_m(x))}$$
$$= w_i^{(m)} e^{2\beta_m \ln(y_i \neq G_m(x))} e^{-\beta_m}$$

- As factor $e^{-\beta_m}$ is the same for all weights it has no effect.
- Expression for weight update for each example is the same as for AdaBoost.M1 as $\alpha_m = 2\beta_m$.

Optimization of the fsam cost function: $w_i^{(m)}$?

Update of the weights: Expression for $w_i^{(m+1)}$

• Need the following result

$$-y_i G_m(x_i) = -\ln d(y_i = G(x_i)) + \ln d(y_i \neq G(x_i))$$

= -(1 - \lnd(y_i \neq G(x_i))) + \lnd(y_i \neq G(x_i))
= -1 + 2 \lnd(y_i \neq G(x_i))

• The updated weights can then be written as

$$\begin{split} w_i^{(m+1)} &= e^{-y_i f_m(x_i)} = e^{-y_i (f_{m-1}(x) + \beta_m G_m(x))} \\ &= w_i^{(m)} e^{-y_i \beta_m G_m(x))} \\ &= w_i^{(m)} e^{2\beta_m \ln(y_i \neq G_m(x))} e^{-\beta_m} \end{split}$$

- As factor $e^{-\beta_m}$ is the same for all weights it has no effect.
- Expression for weight update for each example is the same as for AdaBoost.M1 as $\alpha_m = 2\beta_m$.

Adaboost minimizes the exponential loss

• Hence can view **AdaBoost.M1** as a method that approximates minimizing

$$\arg\min_{\beta_1,G_1,\dots,\beta_M,G_M} \sum_{i=1}^n \exp(-y_i \sum_{m=1}^M \beta_m G_m(x_i))$$

via a forward-stagewise additive modeling approach.

Adaboost minimizes the exponential loss

For a simulated problem the training-set mis-classification error and average exponential loss:

While the mis-classification error decreases to zero ≈ 250 iterations, the exponential loss keeps decreasing.

Loss Functions and Robustness

• Exponential Loss

$$L(y, f(x)) = \exp\{-y f(x)\}\$$

Binomial deviance loss

$$L(y, f(x)) = -\log(1 + \exp\{-2yf(x)\})$$

where

$$p(x) = P(Y = 1 \mid x) = \frac{1}{1 + \exp\{-2f(x)\}}$$

• Misclassification loss

$$L(y,f(x)) = \operatorname{Ind}(y\,f(x) < 0)$$

- These loss functions are functions of the "margin": y f(x)
- Classification rule

$$G(x) = \mathrm{sign}\{f(x)\}$$

 \implies training examples with

- positive margin $y_i f(x_i) > 0$ are correctly classified and
- negative margin $y_i f(x_i) < 0$ are misclassified
- Decision boundary defined by f(x) = 0
- Classification algorithms attempt to produce positive margins for each training data point.
- Loss criterion for classification should penalize negative margins more heavily than positive margins.

Loss functions for classification

Loss functions for classification

- *Exponential* and *deviance* loss continuous approx. to *mis-classification* loss.
- They increasingly penalize negative margin values more heavily than they reward positive ones.
- Binomial deviance penalty increases linearly with negative margin.
- Exponential loss penalty increases exponentially with negative margin.
- \implies in training the exponential criterion concentrates more of its efforts on large negative margin examples than the binomial criterion.
- Thus binomial criterion is far more robust than the exponential criterion in noisy settings - mislabels, overlapping classes.

Squared error loss

$$L(y, f(x)) = (y - f(x))^2$$

Population optimum for this loss function: $f(x) = E[Y \mid x]$

• Absolute loss

$$L(y, f(x)) = |y - f(x)|$$

Population optimum for this loss function: $f(x) = \text{median}(Y \mid x)$

- On finite samples squared error loss puts far more emphasis on observations with large $|y_i - f(x_i)|$ than absolute loss.
- Thus squared error loss is less robust and performance degrades for long-tailed error distributions and mis-labellings.

Squared error loss

$$L(y, f(x)) = (y - f(x))^2$$

Population optimum for this loss function: $f(x) = E[Y \mid x]$

• Absolute loss

$$L(y, f(x)) = |y - f(x)|$$

Population optimum for this loss function: $f(x) = \text{median}(Y \mid x)$

- On finite samples squared error loss puts far more emphasis on observations with large $|y_i f(x_i)|$ than absolute loss.
- Thus squared error loss is less robust and performance degrades for long-tailed error distributions and mis-labellings.

Robust loss functions for regression

Huber loss

$$L(y, f(x)) = \begin{cases} (y - f(x))^2 & \text{for } |y - f(x)| \le \delta \\ 2\delta |y - f(x)| - \delta^2 & \text{otherwise} \end{cases}$$

- strong resistance to gross outliers while
- being nearly as efficient as least squares for Gaussian errors
- Combines the good properties of squared-error loss near zero and absolute error loss when |y f| is large.

Robust loss functions for regression

- When robustness is an issue
 - squared-error loss for regression and

- **exponential loss** for classification are **not** the best criterion to be optimizing.

- But, both these loss functions lead to elegant modular boosting algorithms in the context of *forward stagewise additive modelling*.
- For classification: perform a weighted fit of the base learner to the outputs y_i with weights $w_i = \exp\{-y_i f(x_i)\}$
- More robust criteria in their place do not give rise to such simple feasible boosting algorithms
- Later derive simple boosting algorithms based on any differentiable loss criterion.

- When robustness is an issue
 - squared-error loss for regression and

- **exponential loss** for classification are **not** the best criterion to be optimizing.

- But, both these loss functions lead to elegant modular boosting algorithms in the context of *forward stagewise additive modelling*.
- For classification: perform a weighted fit of the base learner to the outputs y_i with weights $w_i = \exp\{-y_i f(x_i)\}$
- More robust criteria in their place do not give rise to such simple feasible boosting algorithms
- Later derive simple boosting algorithms based on any differentiable loss criterion.

"Off-the-Shelf" Procedures for Data Mining

TABLE 10.1. Some characteristics of different learning methods. Key: $\blacktriangle = good$, $\blacklozenge = fair$, and $\blacktriangledown = poor$.

Characteristic	Neural	SVM	Trees	MARS	k-NN,
	Nets				Kernels
Natural handling of data of "mixed" type	•	▼	A	A	•
Handling of missing values	▼	▼		A	A
Robustness to outliers in input space	▼	▼	A	▼	A
Insensitive to monotone transformations of inputs	•	•	A	•	•
Computational scalability (large N)	•	▼	A	A	•
Ability to deal with irrel- evant inputs	•	•	A	A	•
Ability to extract linear combinations of features			▼	•	•
Interpretability	•	▼	•	A	▼
Predictive power			▼	•	

- Trees are great except....
 - they are inaccurate at making predictions.
- Boosting decision trees improve their accuracy but at the cost of
 - speed
 - interpretability and
 - for AdaBoost, robustness against overlapping class distributions and especially mislabeling of the training data.
- A gradient boosted model (GBM) is a generalization of tree boosting that attempts to mitigate these problems.
- It aims to produce an accurate and effective off-the-shelf procedure for data mining.

Boosting Trees

Regression Tree Recap

- Tree partitions the input space into $\mathcal{R}_j, j = 1, \dots, J$.
- Terminal/leaf nodes of tree represent the regions \mathcal{R}_i
- Constant γ_j assigned to each leaf.
- The predictive rule is

$$x \in \mathcal{R}_j \implies f(x) = \gamma_j$$

• A tree with parameters $\Theta = \{\mathcal{R}_j, \gamma_j\}_{j=1}^J$ is expressed as

$$T(x;\Theta) = \sum_{j=1}^{J} \gamma_j \operatorname{Ind}(x \in \mathcal{R}_j)$$

(J is usually treated as a meta-parameter)

• Ideally parameters found by minimizing the empirical risk

$$\hat{\Theta} = \arg\min_{\Theta} \sum_{j=1}^{J} \sum_{x_i \in \mathcal{R}_j} L(y_i, \gamma_j)$$

- Very hard optimization problem, instead settle for approximate suboptimal solutions
- Typical approach: Divide optimization into two parts
 - Find γ_j given \mathcal{R}_j

Typically trivial - $\hat{\gamma}_j$ the mean of the training y's falling in \mathcal{R}_j .

- Find \mathcal{R}_j

Difficult part! Approximate solutions found. One strategy is to use a greedy, top-down recursive partitioning algorithm.

• A boosted tree is a sum of regression/classification trees

$$f_M(x) = \sum_{m=1}^M T(x; \Theta_m)$$

learned in a forward stagewise manner.

At each step solve

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

for the parameters $\Theta_m = \{\mathcal{R}_{jm}, \gamma_{jm}\}_{j=1}^{J_m}$ of the next tree.

• How do we solve this optimization problem?

Learning a boosted tree model

• Find
$$\gamma_{jm}$$
 given \mathcal{R}_{jm} - easy

$$\hat{\gamma}_{jm} = \arg\min_{\gamma_{jm}} \sum_{x_i \in \mathcal{R}_{jm}} L(y_i, f_{m-1}(x_i) + \gamma_{jm})$$

A few exceptions

- Squared-error loss

At each stage fit a regression tree to residuals $y_i - f_{m-1}(x_i)$

- Two-class classification and exponential loss

Gives rise to an AdaBoost method for boosting classification trees...

• If the trees are restricted to type where

 $\beta_m T(x_i; \Theta_m)$ and each $\gamma_{jm} \in \{-1, 1\}$

The solution to

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

is the tree that minimizes the

$$\sum_{i=1}^N w_i^{(m)} \operatorname{Ind}(y_i \neq T(x_i; \Theta_m))$$

with weights

$$w_i^{(m)} = \exp\{-y_i f_{m-1}(x_i)\}$$

• Straightforward to implement a greedy recursive-partitioning algorithm with this loss as a splitting criterion.

Adaboost for boosting classification trees

• If the there is no restriction on the type of tree then the solution to

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

is the tree that minimizes the

$$\sum_{i=1}^{N} w_i^{(m)} \exp\{-y_i T(x_i; \Theta_m)\}$$

with weights

$$w_i^{(m)} = \exp\{-y_i f_{m-1}(x_i)\}$$

Numerical Optimization via Gradient Boosting

Numerical Optimization

• If the loss, $L(\cdot, \cdot)$, is differentiable, can

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

be approximately solved with numerical optimization.

- Consider this...
- The loss associated with using any f(x) to predict y is

$$L(f) = \sum_{i=1}^{N} L(y_i, f(x_i))$$

- Goal: Find f which minimizes L(f).
- Re-interpret this optimization problem as find

$$\hat{\mathbf{f}} = \arg\min_{\mathbf{f}} L(\mathbf{f})$$

where $\mathbf{f} = \{f(x_1), \dots, f(x_N)\}.$

Numerical Optimization

• If the loss, $L(\cdot, \cdot)$, is differentiable, can

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

be approximately solved with numerical optimization.

- Consider this...
- The loss associated with using any f(x) to predict y is

$$L(f) = \sum_{i=1}^{N} L(y_i, f(x_i))$$

- Goal: Find f which minimizes L(f).
- · Re-interpret this optimization problem as find

$$\hat{\mathbf{f}} = \arg\min_{\mathbf{f}} L(\mathbf{f})$$

where $f = \{f(x_1), ..., f(x_N)\}.$

• Numerical optimization approximates

$$\hat{\mathbf{f}} = \arg\min_{\mathbf{f}} L(\mathbf{f})$$

as a sum of vectors

$$\mathbf{f}_M = \sum_{m=0}^M \mathbf{h}_m, \quad \mathbf{h}_m \in \mathbb{R}^N$$

where $\mathbf{f}_0 = \mathbf{h}_0$ is an initial guess and each \mathbf{f}_m is estimated from \mathbf{f}_{m-1} .

Steepest descent chooses

$$\mathbf{h}_m = -\rho_m \, \mathbf{g}_m$$

where

- ρ_m is a scalar and
- $\mathbf{g}_m \in \mathbb{R}^N$ is the gradient of $L(\mathbf{f})$ evaluated at $\mathbf{f} = \mathbf{f}_{m-1}$.
- Components of \mathbf{g}_m are

$$g_{im} = \left. \frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \right|_{f(x_i) = f_{i,m-1}}$$

Step length is the solution to

$$\rho_m = \arg\min_{\rho} L(\mathbf{f}_{m-1} - \rho \, \mathbf{g}_m)$$

• Solution is updated: $\mathbf{f}_m = \mathbf{f}_{m-1} - \rho_m \, \mathbf{g}_m$

Forward stagewise Tree Boosting & Gradient Boosting

• Forward stagewise boosting is also a very greedy strategy:

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

- Tree predictions T(x_i; Θ_m) are analogous to the negative gradients -g_{1m},..., -g_{Nm}.
- But $\mathbf{t}_m = \{T(x_1; \Theta_m), \dots, T(x_N; \Theta_m)\}$ are constrained to be predictions of a J_m -terminal node decision tree
- Whereas $-\mathbf{g}_m$ is the unconstrained maximal descent direction.
- Also analogous

 $\rho_m = \arg\min_{\rho} L(\mathbf{f}_{m-1} - \rho \, \mathbf{g}_m) \quad \text{to} \quad \hat{\gamma}_{jm} = \arg\min_{\gamma_{jm}} \sum_{x_i \in \mathcal{R}_{jm}} L(y_i, f_{m-1}(x_i) + \gamma_{jm})$

but perform a line search for each terminal node.

Forward stagewise Tree Boosting & Gradient Boosting

• Forward stagewise boosting is also a very greedy strategy:

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

- Tree predictions $T(x_i; \Theta_m)$ are analogous to the negative gradients $-g_{1m}, \ldots, -g_{Nm}$.
- But $\mathbf{t}_m = \{T(x_1; \Theta_m), \dots, T(x_N; \Theta_m)\}$ are constrained to be predictions of a J_m -terminal node decision tree
- Whereas $-\mathbf{g}_m$ is the unconstrained maximal descent direction.
- Also analogous

$$\rho_m = \arg\min_{\rho} L(\mathbf{f}_{m-1} - \rho \, \mathbf{g}_m) \quad \text{to} \quad \hat{\gamma}_{jm} = \arg\min_{\gamma_{jm}} \sum_{x_i \in \mathcal{R}_{jm}} L(y_i, f_{m-1}(x_i) + \gamma_{jm})$$

but perform a *line search* for each terminal node.

Forward stagewise Tree Boosting & Gradient Boosting

• If only goal is minimizing

$$\hat{\mathbf{f}} = \arg\min_{\mathbf{f}} L(\mathbf{f})$$

then perform steepest descent.

- However, the ultimate goal is to generalize $f_M(x)$ to new unseen data.
- A possible solution is as follows....

Gradient Tree Boosting

 Fit a tree T(x; Θ_m) at mth iteration whose predictions t_m are as close as possible to the negative gradient

$$\tilde{\Theta}_m = \arg\min_{\Theta} \sum_{i=1}^{N} (-g_{im} - T(x_i; \Theta))^2$$

• From the solution regions $ilde{\mathcal{R}}_{jm}$ set

$$\hat{\gamma}_{jm} = \arg\min_{\gamma_{jm}} \sum_{x_i \in \tilde{\mathcal{R}}_{jm}} L(y_i, f_{m-1}(x_i) + \gamma_{jm})$$

• The regions \mathcal{R}_{jm} will not be identical to the regions \mathcal{R}_{jm} that solve the original problem, but they are similar enough.

Setting	Loss function	$-\partial L(y_i, f(x_i))/\partial f(x_i)$		
Regression	$\frac{1}{2}(y_i - f(x_i))^2$	$y_i - f(x_i)$		
Regression	$ y_i - f(x_i) $	$sign\{y_i\!-\!f(x_i)\}$		
Regression	Huber	$\begin{cases} y_i - f(x_i) \\ \delta_m \operatorname{sign} \{y_i - f(x_i)\} \end{cases}$	if $ y_i - f(x_i) \le \delta_m$ if $ y_i - f(x_i) > \delta_m$	
Classification	Deviance	kth component: $Ind(y_i=G_k)-p_k(x_i)$		

where the $K\mbox{-}{\rm class}$ deviance loss function is

$$\begin{split} L(y,p(x)) &= -\sum_{k=1}^{K} \operatorname{Ind}(y = G_k) \ \log p_k(x) = -\sum_{k=1}^{K} \operatorname{Ind}(y = G_k) + \log \left(\sum_{l=1}^{K} \exp\{f_l(x)\} \right) \\ & \text{if } p_k(x) = \exp\{f_k(x)\} / \sum_{l=1}^{K} \exp\{f_l(x)\} \end{split}$$

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^N L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg \min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

(d) Update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm}).$$

3. Output $\hat{f}(x) = f_M(x)$.
Right-Sized Trees for Boosting

• Learning a large pruned tree at each round performs poorly.

• Better if

- Restrict all trees to be same size $J_m = J \ \forall m$
- Perform cross-validation to choose an optimal \boldsymbol{J}
- Interaction level of tree-based approximations is limited by J:
 - if J=2 then $f_M(x)$ can only be of the form

 $\sum_k \eta_k(X_k)$

- if J = 3 then $f_M(x)$ can be of the form

 $\sum_k \eta_k(X_k) + \sum_{jk} \eta_{jk}(X_j, X_k)$

- if J = 4 then $f_M(x)$ can be of the form

 $\sum_{k} \eta_k(X_k) + \sum_{jk} \eta_{jk}(X_j, X_k) + \sum_{jkl} \eta_{jk}(X_j, X_k, X_l)$

- etc...

- Learning a large pruned tree at each round performs poorly.
- Better if
 - Restrict all trees to be same size $J_m = J \ \forall m$
 - Perform cross-validation to choose an optimal \boldsymbol{J}
- Interaction level of tree-based approximations is limited by J:
 if J = 2 then f_M(x) can only be of the form

 $\sum_k \eta_k(X_k)$

- if J = 3 then $f_M(x)$ can be of the form

 $\sum_k \eta_k(X_k) + \sum_{jk} \eta_{jk}(X_j, X_k)$

- if J = 4 then $f_M(x)$ can be of the form

 $\sum_{k} \eta_k(X_k) + \sum_{jk} \eta_{jk}(X_j, X_k) + \sum_{jkl} \eta_{jk}(X_j, X_k, X_l)$

- etc...

- Learning a large pruned tree at each round performs poorly.
- Better if
 - Restrict all trees to be same size $J_m = J \ \forall m$
 - Perform cross-validation to choose an optimal \boldsymbol{J}
- Interaction level of tree-based approximations is limited by J:
 - if J=2 then $f_M(x)$ can only be of the form

 $\sum_k \eta_k(X_k)$

- if J = 3 then $f_M(x)$ can be of the form

$$\sum_k \eta_k(X_k) + \sum_{jk} \eta_{jk}(X_j, X_k)$$

- if J = 4 then $f_M(x)$ can be of the form

 $\sum_k \eta_k(X_k) + \sum_{jk} \eta_{jk}(X_j, X_k) + \sum_{jkl} \eta_{jk}(X_j, X_k, X_l)$

- etc...

- For many practical problems low-order interactions dominate.
- Therefore models that produce strong higher-order interaction effects suffer in accuracy.
- Authors claim that $4 \le J \le 8$ works well in the context of boosting.

Boosting with different sized trees

where X_1, \ldots, X_{10} are standard indpt Gaussian and $\chi^2_{10}(.5) = 9.34$.

Regularization

Options for regularization

- Control number of boosting rounds
 - Too large $M \implies$ danger of over-fitting
 - \therefore There is a M^{\ast} that minimizes future risk
- Shrinkage
 - Scale the contribution of each tree by factor $0 < \nu < 1$

$$f_m(x) = f_{m-1}(x) + \nu \cdot \sum_{j=1}^J \gamma_{jm} \operatorname{Ind}(x \in \mathcal{R}_{jm})$$

- Smaller $\nu\implies$ larger M to obtain low training error
- Empirical finding: small $\nu < .1$ and sufficiently large M \implies better result than no shrinkage. Especially for regression problems

Options for regularization

- Control number of boosting rounds
 - Too large $M\implies$ danger of over-fitting
 - \therefore There is a M^{\ast} that minimizes future risk
- Shrinkage
 - Scale the contribution of each tree by factor $0 < \nu < 1$

$$f_m(x) = f_{m-1}(x) + \nu \cdot \sum_{j=1}^J \gamma_{jm} \operatorname{Ind}(x \in \mathcal{R}_{jm})$$

- Smaller $\nu\implies$ larger M to obtain low training error
- Empirical finding: small $\nu < .1$ and sufficiently large M \implies better result than no shrinkage. Especially for regression problems

Shrinkage example

$$Y = \begin{cases} 1 & \text{if } \sum_{j=1}^{10} X_j^2 > \chi_{10}^2(.5) \\ -1 & \text{otherwise} \end{cases}$$

where X_1, \ldots, X_{10} are standard indpt Gaussian and $\chi^2_{10}(.5) = 9.34.$

Deviance: $-2 \log \hat{p}_G(X)$

Options for regularization

- Subsampling
 - Stochastic gradient boosting each iteration sample a fraction η of the training observations (without replacement).
 - A typical value is $\eta=.5$
 - Empirically subsampling without shrinkage works poorly
 - But subsampling with shrinkage works well
 - Now have 4 parameters to estimate J, M, ν , and η

Subsample example

4-Node Trees

$$Y = \begin{cases} 1 & \text{if } \sum_{j=1}^{10} X_j^2 > \chi_{10}^2(.5) \\ -1 & \text{otherwise} \end{cases}$$

where X_1, \ldots, X_{10} are standard indpt Gaussian and $\chi^2_{10}(.5) = 9.34$.