Chapter 10: Boosting and Additive Trees

DD3364

November 20, 2012

Boosting Methods

Overview of boosting

- Boosting is a procedure to combine the output of many weak classifiers to produce a powerful committee.
- A weak classifier is one whose error rate is only slightly better than random guessing.
- Boosting produces a sequence of weak classifiers $G_{m}(x)$ for $m=1, \ldots, M$ whose predictions are then combined

$$
G(x)=\operatorname{sgn}\left(\sum_{m=1}^{M} \alpha_{m} G_{m}(x)\right)
$$

through a weighted majority to produce the final prediction.

- Each $\alpha_{m}>0$ is computed by the boosting algorithm and reflects how accurately G_{m} classified the data.

Most popular boosting algorithm: AdaBoost.M1

"AdaBoost.M1" algorithm of Freund and Schapire (1997)

- Have training data $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$
- Introduce a weight $w_{i}=1 / n$ for each training example.
- for $m=1, \ldots, M$
\star Let G_{m} be the weak classifier with minimum error:

$$
\operatorname{err}_{m}=\sum_{i=1}^{n} w_{i} \operatorname{Ind}\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)
$$

\star Set $\alpha_{m}=\log \left(\left(1-\right.\right.$ err $\left._{m}\right) /$ err $\left._{m}\right)$.
\star Set

$$
w_{i} \leftarrow w_{i} e^{\alpha_{m} \operatorname{Ind}\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)} \quad \text { for } i=1, \ldots, n
$$

This increases (decreases) w_{i} for x_{i} misclassified (correctly classified) by G_{M}
\star Normalize the w_{i} 's so that they sum to one.

What AdaBoost. M1 does

- As iterations proceed, observations difficult to classify correctly receive more influence.
- Each successive classifier is forced to concentrate on training observations missed by previous ones in the sequence

Binary classification example

True decision boundary

Training data
\mathcal{H} is the set of all possible oriented vertical and horizontal lines.

Example

Round 1

Chosen weak classifier
$\epsilon_{1}=0.19, \alpha_{1}=1.45$

Re-weight training points

$$
w_{i}^{(2)} \mathrm{s}
$$

Current strong classifier

$$
G(\mathbf{x})
$$

Example

Round 2

Chosen weak classifier

$$
\epsilon_{2}=0.1512, \alpha_{2}=1.725
$$

Re-weight training points

$$
w_{i}^{(3)} \text { 's }
$$

Current strong classifier

$$
G(\mathbf{x})
$$

Example

Round 3

Chosen weak classifier

$$
\epsilon_{3}=0.2324, \alpha_{3}=1.1946
$$

Re-weight training points

$$
w_{i}^{(4)} \text { s }
$$

Current strong classifier

$$
G(\mathbf{x})
$$

Example

Round 4

Chosen weak classifier
$\epsilon_{4}=0.2714, \alpha_{4}=0.9874$

Re-weight training points

$$
w_{i}^{(5)} \text {, }
$$

Current strong classifier

$$
G(\mathbf{x})
$$

Example

Round 5

Chosen weak classifier
$\epsilon_{5}=0.2616, \alpha_{5}=1.0375$

Re-weight training points

$$
w_{i}^{(6)} \text { 's }
$$

Current strong classifier

$$
G(\mathbf{x})
$$

Example

Round 6

Chosen weak classifier
$\epsilon_{6}=0.2262, \alpha_{6}=1.2298$

Re-weight training points

$$
w_{i}^{(7)} \text { 's }
$$

Current strong classifier

$$
G(\mathbf{x})
$$

Example

Round 7

Chosen weak classifier
$\epsilon_{7}=0.2680, \alpha_{7}=1.0049$

Re-weight training points

$$
w_{i}^{(8)} \mathrm{s}
$$

Current strong classifier

$$
G(\mathbf{x})
$$

Example

Round 8

Chosen weak classifier
$\epsilon_{8}=0.3282, \alpha_{8}=0.7165$

Re-weight training points

$$
w_{i}^{(9)} \text { 's }
$$

Current strong classifier

$$
G(\mathbf{x})
$$

Example

Round 9

Chosen weak classifier
$\epsilon_{9}=0.3048, \alpha_{9}=0.8246$

Re-weight training points

$$
w_{i}^{(10)} \text { 's }
$$

Current strong classifier

$$
G(\mathbf{x})
$$

Example

Round 10

Chosen weak classifier

$$
\epsilon_{10}=0.2943, \alpha_{10}=0.8744
$$

Re-weight training points

$$
w_{i}^{(11)} \text { 's }
$$

Current strong classifier

$$
G(\mathbf{x})
$$

Example

Round 11

Chosen weak classifier
$\epsilon_{11}=0.2876, \alpha_{11}=0.9071$

Re-weight training points

$$
w_{i}^{(12), s}
$$

Current strong classifier

$$
G(\mathbf{x})
$$

Example

Round 21

Chosen weak classifier

$$
\epsilon_{21}=0.3491, \alpha_{21}=0.6232
$$

Re-weight training points

$$
w_{i}^{(22)} \text { 's }
$$

Current strong classifier

$$
G(\mathbf{x})
$$

AdaBoost performance

AdaBoost can dramatically increases the performance of very weak classifier.

In this chapter authors

- Show AdaBoost fits an additive model in a base learner, optimizing a novel exponential loss function
- Show the population minimizer of the exponential loss function is the log-odds of the class probabilities
- Present loss functions that are more robust than squared error or exponential loss
- Argue decision trees are an ideal base learner for data mining applications of boosting.
- Develop class of gradient boosted models (GBMs), for boosting trees with any loss function.
- Emphasize the importance of "slow learning".

Boosting Fits an Additive Model

Additive Models

- Boosting fits an additive expansion in a set of elementary basis functions.

$$
G(x)=\operatorname{sgn}\left(\sum_{m=1}^{M} \alpha_{m} G_{m}(x)\right)
$$

- The basis functions are the weak classifiers $G_{m}(x) \in\{-1,1\}$.
- More generally, basis function expansions take the form

$$
f(x)=\sum_{m=1}^{M} \beta_{m} b\left(x ; \gamma_{m}\right)
$$

where β_{m} 's are the expansion coefficients and $b(x ; \gamma) \in \mathbb{R}$ are simple functions of the input x parameterized by γ.

Examples of additive models

- Single-hidden-layer neural networks where

$$
b(x ; \gamma)=\frac{1}{1+\exp \left(-\gamma_{0}-\gamma_{1}^{t} x\right)}
$$

- Multivariate adaptive regression splines (MARS) Use truncated-power spline basis functions where γ parameterizes the variables and values for the knots.
- Trees
γ parameterizes the split variables and split points at the internal nodes, and the predictions at the terminal nodes.

Fitting these additive models

- Typically fit model by minimizing a loss function averaged over the training data:

$$
\min _{\beta_{1}, \gamma_{1}, \ldots, \beta_{M}, \gamma_{M}} \sum_{i=1}^{n} L\left(y_{i}, \sum_{m=1}^{M} \beta_{m} b\left(x_{i} ; \gamma_{m}\right)\right)
$$

- For many loss functions $L(x, f(x))$ and/or basis functions $b(x ; \gamma)$ this is too hard....

Forward Stagewise Additive Modeling

Approximate the global solution to fitting additive model

- More simply can greedily add one basis function at a time in the following fashion.
- Set $f_{0}(x)=0$
- for $m=1, \ldots, M$
* Compute

$$
\left(\hat{\beta}_{m}, \hat{\gamma}_{m}\right)=\underset{\beta_{m}, \gamma_{m}}{\arg \min } \sum_{i=1}^{n} L\left(y_{i}, \sum_{m=1}^{M} f_{m-1}\left(x_{i}\right)+\beta_{m} b\left(x_{i} ; \gamma_{m}\right)\right)
$$

* Set

$$
f_{m}(x)=f_{m-1}(x)+\hat{\beta}_{m} b\left(x ; \hat{\gamma}_{m}\right)
$$

\star Note: Previously added terms are not modified.

Exponential Loss and AdaBoost

Interpretation of the Adaboost algorithm

- Interpretation of AdaBoost.M1

AdaBoost.M1 \equiv forward stagewise additive modelling with an exponential loss function.

- Definition of exponential loss

$$
L(y, f(x))=\exp \{-y f(x)\}
$$

- Will now go through the derivation of this result.

Interpretation of the Adaboost algorithm

- Interpretation of AdaBoost.M1

AdaBoost.M1 \equiv forward stagewise additive modelling with an exponential loss function.

- Definition of exponential loss

$$
L(y, f(x))=\exp \{-y f(x)\}
$$

- Will now go through the derivation of this result....

Specifics of forward stagewise additive modelling (fsam)

- At each iteration of forward stagewise additive modelling must solve this optimization problem

$$
\begin{aligned}
\left(\beta_{m}, G_{m}\right) & =\arg \min _{\beta, G} \sum_{i=1}^{n} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\beta G\left(x_{i}\right)\right) \\
& =\arg \min _{\beta, G} \sum_{i=1}^{n} \exp \left\{-y_{i}\left(f_{m-1}\left(x_{i}\right)+\beta G\left(x_{i}\right)\right)\right\}
\end{aligned}
$$

where we assume an exponential loss and $G(x) \in\{-1,1\}$.

- Can re-write

$$
\begin{aligned}
\sum_{i=1}^{n} \exp \left\{-y_{i}\left(f_{m-1}\left(x_{i}\right)+\beta G\left(x_{i}\right)\right)\right\} & =\sum_{i=1}^{n} \exp \left\{-y_{i} f_{m-1}\left(x_{i}\right)\right\} \exp \left\{-y_{i} \beta G\left(x_{i}\right)\right\} \\
& =\sum_{i=1}^{n} w_{i}^{(m)} \exp \left\{-y_{i} \beta G\left(x_{i}\right)\right\}
\end{aligned}
$$

Optimization of the fsam cost function

- The optimization problem becomes

$$
\min _{\beta, G} \sum_{i=1}^{n} w_{i}^{(m)} \exp \left\{-y_{i} \beta G\left(x_{i}\right)\right\}=\min _{\beta}\left(\min _{G} \sum_{i=1}^{n} w_{i}^{(m)} \exp \left\{-y_{i} \beta G\left(x_{i}\right)\right\}\right)
$$

- Note

$$
y_{i} G\left(x_{i}\right)= \begin{cases}1 & \text { if } y_{i}=G\left(x_{i}\right) \\ -1 & \text { if } y_{i} \neq G\left(x_{i}\right)\end{cases}
$$

and this implies $\exp \left\{-y_{i} \beta G\left(x_{i}\right)\right\}$ is equal to

$$
e^{\beta} \operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right)+e^{-\beta}\left(1-\operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right)\right)
$$

- The above implies $\sum_{i=1}^{n} w_{i}^{(m)} \exp \left\{-y_{i} \beta G\left(x_{i}\right)\right\}$ can be written as:

$$
\left(e^{\beta}-e^{-\beta}\right) \sum_{i=1}^{n} w_{i}^{(m)} \operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right)+e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)}
$$

Optimization of the fsam cost function: G_{m} ?

- The optimization problem becomes

$$
\begin{aligned}
& \arg \min _{G} \sum_{i=1}^{n} w_{i}^{(m)} \exp \left\{-y_{i} \beta G\left(x_{i}\right)\right\} \\
= & \arg \min _{G}\left(\left(e^{\beta}-e^{-\beta}\right) \sum_{i=1}^{n} w_{i}^{(m)} \operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right)+e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)}\right) \\
= & \arg \min _{G}\left(\sum_{i=1}^{n} w_{i}^{(m)} \operatorname{lnd}\left(y_{i} \neq G\left(x_{i}\right)\right)\right)
\end{aligned}
$$

- Therefore

$$
G_{m}=\arg \min _{G}\left(\sum_{i=1}^{n} w_{i}^{(m)} \operatorname{lnd}\left(y_{i} \neq G\left(x_{i}\right)\right)\right)
$$

Optimization of the fsam cost function: G_{m} ?

- The optimization problem becomes

$$
\begin{aligned}
& \arg \min _{G} \sum_{i=1}^{n} w_{i}^{(m)} \exp \left\{-y_{i} \beta G\left(x_{i}\right)\right\} \\
= & \arg \min _{G}\left(\left(e^{\beta}-e^{-\beta}\right) \sum_{i=1}^{n} w_{i}^{(m)} \operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right)+e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)}\right) \\
= & \arg \min _{G}\left(\sum_{i=1}^{n} w_{i}^{(m)} \operatorname{lnd}\left(y_{i} \neq G\left(x_{i}\right)\right)\right)
\end{aligned}
$$

- Therefore

$$
G_{m}=\arg \min _{G}\left(\sum_{i=1}^{n} w_{i}^{(m)} \operatorname{lnd}\left(y_{i} \neq G\left(x_{i}\right)\right)\right)
$$

G_{m} minimizes the weighted error in the AdaBoost algorithm. (if the $w_{i}^{(m)}$'s have the same definition....)

Optimization of the fsam cost function: β_{m} ?

- Plugging G_{m} into the original optimization problem

$$
\min _{\beta}\left(\min _{G} \sum_{i=1}^{n} w_{i}^{(m)} \exp \left\{-y_{i} \beta G\left(x_{i}\right)\right\}\right)
$$

and using the previous result, it becomes

$$
\arg \min _{\beta}\left(\left(e^{\beta}-e^{-\beta}\right) \sum_{i=1}^{n} w_{i}^{(m)} \operatorname{Ind}\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)+e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)}\right)
$$

- This quantity is minimized when

$$
\beta_{m}=\frac{1}{2} \log \frac{1-\mathrm{err}_{m}}{\operatorname{err}_{m}}
$$

where

$$
\operatorname{err}_{m}=\frac{\sum_{i=1}^{n} w_{i}^{(m)} \operatorname{lnd}\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)}{\sum_{i=1}^{n} w_{i}^{(m)}}
$$

Optimization of the fsam cost function: β_{m} ?

- Plugging G_{m} into the original optimization problem

$$
\min _{\beta}\left(\min _{G} \sum_{i=1}^{n} w_{i}^{(m)} \exp \left\{-y_{i} \beta G\left(x_{i}\right)\right\}\right)
$$

and using the previous result, it becomes

$$
\arg \min _{\beta}\left(\left(e^{\beta}-e^{-\beta}\right) \sum_{i=1}^{n} w_{i}^{(m)} \operatorname{Ind}\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)+e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)}\right)
$$

- This quantity is minimized when

$$
\beta_{m}=\frac{1}{2} \log \frac{1-\mathrm{err}_{m}}{\operatorname{err}_{m}}
$$

where

$$
\operatorname{err}_{m}=\frac{\sum_{i=1}^{n} w_{i}^{(m)} \operatorname{lnd}\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)}{\sum_{i=1}^{n} w_{i}^{(m)}}
$$

- Expression for β_{m} same (upto a multiplicative constant) as for α_{m} in AdaBoost.M1 (if the $w_{i}^{(m)}$'s have same definition....)

Optimization of the fsam cost function: $w_{i}^{(m)}$?

Update of the weights: Expression for $w_{i}^{(m+1)}$

- Need the following result

$$
\begin{aligned}
-y_{i} G_{m}\left(x_{i}\right) & =-\operatorname{Ind}\left(y_{i}=G\left(x_{i}\right)\right)+\operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right) \\
& =-\left(1-\operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right)\right)+\operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right) \\
& =-1+2 \operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right)
\end{aligned}
$$

- The updated weights can then be written as

$$
\begin{aligned}
w_{i}^{(m+1)}=e^{-y_{i} f_{m}\left(x_{i}\right)} & =e^{-y_{i}\left(f_{m-1}(x)+\beta_{m} G_{m}(x)\right)} \\
& =w_{i}^{(m)} e^{\left.-y_{i} \beta_{m} G_{m}(x)\right)} \\
& =w_{i}^{(m)} e^{2 \beta_{m} \operatorname{lnd}\left(y_{i} \neq G_{m}(x)\right)} e^{-\beta_{m}}
\end{aligned}
$$

- As factor $e^{-\beta_{m}}$ is the same for all weights it has no effect.
- Expression for weight update for each example is the same as for AdaBoost. M1 as $\alpha_{m}=2 \beta_{m}$.

Optimization of the fsam cost function: $w_{i}^{(m)}$?

Update of the weights: Expression for $w_{i}^{(m+1)}$

- Need the following result

$$
\begin{aligned}
-y_{i} G_{m}\left(x_{i}\right) & =-\operatorname{Ind}\left(y_{i}=G\left(x_{i}\right)\right)+\operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right) \\
& =-\left(1-\operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right)\right)+\operatorname{Ind}\left(y_{i} \neq G\left(x_{i}\right)\right) \\
& =-1+2 \operatorname{lnd}\left(y_{i} \neq G\left(x_{i}\right)\right)
\end{aligned}
$$

- The updated weights can then be written as

$$
\begin{aligned}
w_{i}^{(m+1)}=e^{-y_{i} f_{m}\left(x_{i}\right)} & =e^{-y_{i}\left(f_{m-1}(x)+\beta_{m} G_{m}(x)\right)} \\
& =w_{i}^{(m)} e^{\left.-y_{i} \beta_{m} G_{m}(x)\right)} \\
& =w_{i}^{(m)} e^{2 \beta_{m} \operatorname{lnd}\left(y_{i} \neq G_{m}(x)\right)} e^{-\beta_{m}}
\end{aligned}
$$

- As factor $e^{-\beta_{m}}$ is the same for all weights it has no effect.
- Expression for weight update for each example is the same as for AdaBoost. M1 as $\alpha_{m}=2 \beta_{m}$.

Adaboost minimizes the exponential loss

- Hence can view AdaBoost.M1 as a method that approximates minimizing

$$
\arg \min _{\beta_{1}, G_{1}, \ldots \beta_{M}, G_{M}} \sum_{i=1}^{n} \exp \left(-y_{i} \sum_{m=1}^{M} \beta_{m} G_{m}\left(x_{i}\right)\right)
$$

via a forward-stagewise additive modeling approach.

Adaboost minimizes the exponential loss

For a simulated problem the training-set mis-classification error and average exponential loss:

While the mis-classification error decreases to zero ≈ 250 iterations, the exponential loss keeps decreasing.

Loss Functions and Robustness

Loss functions for classification

- Exponential Loss

$$
L(y, f(x))=\exp \{-y f(x)\}
$$

- Binomial deviance loss

$$
L(y, f(x))=-\log (1+\exp \{-2 y f(x)\})
$$

where

$$
p(x)=P(Y=1 \mid x)=\frac{1}{1+\exp \{-2 f(x)\}}
$$

- Misclassification loss

$$
L(y, f(x))=\operatorname{Ind}(y f(x)<0)
$$

- These loss functions are functions of the "margin": y $f(x)$
- Classification rule

$$
G(x)=\operatorname{sign}\{f(x)\}
$$

\Longrightarrow training examples with

- positive margin $y_{i} f\left(x_{i}\right)>0$ are correctly classified and
- negative margin $y_{i} f\left(x_{i}\right)<0$ are misclassified
- Decision boundary defined by $f(x)=0$
- Classification algorithms attempt to produce positive margins for each training data point.
- Loss criterion for classification should penalize negative margins more heavily than positive margins.

Loss functions for classification

Loss functions for classification

- Exponential and deviance loss continuous approx. to mis-classification loss.
- They increasingly penalize negative margin values more heavily than they reward positive ones.
- Binomial deviance penalty increases linearly with negative margin.
- Exponential loss penalty increases exponentially with negative margin.
- \Longrightarrow in training the exponential criterion concentrates more of its efforts on large negative margin examples than the binomial criterion.
- Thus binomial criterion is far more robust than the exponential criterion in noisy settings - mislabels, overlapping classes.

Robust loss functions for regression

- Squared error loss

$$
L(y, f(x))=(y-f(x))^{2}
$$

Population optimum for this loss function: $f(x)=E[Y \mid x]$

- Absolute loss

$$
L(y, f(x))=|y-f(x)|
$$

Population optimum for this loss function: $f(x)=\operatorname{median}(Y \mid x)$

- On finite samples squared error loss puts far more emphasis on observations with large $\left|y_{i}-f\left(x_{i}\right)\right|$ than absolute loss.
- Thus squared error loss is less robust and performance degrades for long-tailed error distributions and mis-labellings.

Robust loss functions for regression

- Squared error loss

$$
L(y, f(x))=(y-f(x))^{2}
$$

Population optimum for this loss function: $f(x)=E[Y \mid x]$

- Absolute loss

$$
L(y, f(x))=|y-f(x)|
$$

Population optimum for this loss function: $f(x)=\operatorname{median}(Y \mid x)$

- On finite samples squared error loss puts far more emphasis on observations with large $\left|y_{i}-f\left(x_{i}\right)\right|$ than absolute loss.
- Thus squared error loss is less robust and performance degrades for long-tailed error distributions and mis-labellings.

Robust loss functions for regression

- Huber loss

$$
L(y, f(x))= \begin{cases}(y-f(x))^{2} & \text { for }|y-f(x)| \leq \delta \\ 2 \delta|y-f(x)|-\delta^{2} & \text { otherwise }\end{cases}
$$

- strong resistance to gross outliers while
- being nearly as efficient as least squares for Gaussian errors
- Combines the good properties of squared-error loss near zero and absolute error loss when $|y-f|$ is large.

Robust loss functions for regression

Have a problem

- When robustness is an issue
- squared-error loss for regression and
- exponential loss for classification are not the best criterion to be optimizing.
- But, both these loss functions lead to elegant modular boosting algorithms in the context of forward stagewise additive modelling.
- For classification: perform a weighted fit of the base learner to the outputs y_{i} with weights $w_{i}=\exp \left\{-y_{i} f\left(x_{i}\right)\right\}$
- More robust criteria in their place do not give rise to such simple feasible boosting algorithms
- Later derive simple boosting algorithms based on any
differentiahle lose criterion

Have a problem

- When robustness is an issue
- squared-error loss for regression and
- exponential loss for classification are not the best criterion to be optimizing.
- But, both these loss functions lead to elegant modular boosting algorithms in the context of forward stagewise additive modelling.
- For classification: perform a weighted fit of the base learner to the outputs y_{i} with weights $w_{i}=\exp \left\{-y_{i} f\left(x_{i}\right)\right\}$
- More robust criteria in their place do not give rise to such simple feasible boosting algorithms
- Later derive simple boosting algorithms based on any differentiable loss criterion.

"Off-the-Shelf" Procedures for Data Mining

TABLE 10.1. Some characteristics of different learning methods. Key: $\Delta=$ good, * $=$ fair, and $\boldsymbol{\nabla}=$ poor.

Characteristic	Neural Nets	SVM	Trees	MARS	k-NN, Kernels
Natural handling of data of "mixed" type	∇	∇	Δ	Δ	∇
Handling of missing values	∇	∇	-	-	A
Robustness to outliers in input space	∇	∇	Δ	∇	A
Insensitive to monotone transformations of inputs	∇	∇	\triangle	∇	∇
Computational scalability (large N)	∇	∇	Δ	-	∇
Ability to deal with irrelevant inputs	∇	∇	-	-	∇
Ability to extract linear combinations of features	-	Δ	∇	∇	-
Interpretability	∇	∇	-	\triangle	∇
Predictive power	A	\triangle	∇	-	Δ

Book's conclusion

- Trees are great except....
- they are inaccurate at making predictions.
- Boosting decision trees improve their accuracy but at the cost of
- speed
- interpretability and
- for AdaBoost, robustness against overlapping class distributions and especially mislabeling of the training data.
- A gradient boosted model (GBM) is a generalization of tree boosting that attempts to mitigate these problems.
- It aims to produce an accurate and effective off-the-shelf procedure for data mining.

Boosting Trees

Regression Tree Recap

- Tree partitions the input space into $\mathcal{R}_{j}, j=1, \ldots, J$.
- Terminal/leaf nodes of tree represent the regions \mathcal{R}_{j}
- Constant γ_{j} assigned to each leaf.
- The predictive rule is

$$
x \in \mathcal{R}_{j} \Longrightarrow f(x)=\gamma_{j}
$$

- A tree with parameters $\Theta=\left\{\mathcal{R}_{j}, \gamma_{j}\right\}_{j=1}^{J}$ is expressed as

$$
T(x ; \Theta)=\sum_{j=1}^{J} \gamma_{j} \operatorname{lnd}\left(x \in \mathcal{R}_{j}\right)
$$

(J is usually treated as a meta-parameter)

Learning a Regression Tree

- Ideally parameters found by minimizing the empirical risk

$$
\hat{\Theta}=\arg \min _{\Theta} \sum_{j=1}^{J} \sum_{x_{i} \in \mathcal{R}_{j}} L\left(y_{i}, \gamma_{j}\right)
$$

- Very hard optimization problem, instead settle for approximate suboptimal solutions
- Typical approach: Divide optimization into two parts
- Find γ_{j} given \mathcal{R}_{j}

Typically trivial - $\hat{\gamma}_{j}$ the mean of the training y 's falling in \mathcal{R}_{j}.

- Find \mathcal{R}_{j}

Difficult part! Approximate solutions found. One strategy is to use a greedy, top-down recursive partitioning algorithm.

The boosted tree model

- A boosted tree is a sum of regression/classification trees

$$
f_{M}(x)=\sum_{m=1}^{M} T\left(x ; \Theta_{m}\right)
$$

learned in a forward stagewise manner.

- At each step solve

$$
\hat{\Theta}_{m}=\arg \min _{\Theta_{m}} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+T\left(x_{i} ; \Theta_{m}\right)\right)
$$

for the parameters $\Theta_{m}=\left\{\mathcal{R}_{j m}, \gamma_{j m}\right\}_{j=1}^{J_{m}}$ of the next tree.

- How do we solve this optimization problem?

Learning a boosted tree model

- Find $\gamma_{j m}$ given $\mathcal{R}_{j m}$ - easy

$$
\hat{\gamma}_{j m}=\arg \min _{\gamma_{j m}} \sum_{x_{i} \in \mathcal{R}_{j m}} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\gamma_{j m}\right)
$$

- Find $\mathcal{R}_{j m}$'s - not so easy....

A few exceptions

- Squared-error loss

At each stage fit a regression tree to residuals $y_{i}-f_{m-1}\left(x_{i}\right)$

- Two-class classification and exponential loss

Gives rise to an AdaBoost method for boosting classification trees...

Adaboost for boosting classification trees

- If the trees are restricted to type where

$$
\beta_{m} T\left(x_{i} ; \Theta_{m}\right) \quad \text { and each } \quad \gamma_{j m} \in\{-1,1\}
$$

- The solution to

$$
\hat{\Theta}_{m}=\arg \min _{\Theta_{m}} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+T\left(x_{i} ; \Theta_{m}\right)\right)
$$

is the tree that minimizes the

$$
\sum_{i=1}^{N} w_{i}^{(m)} \operatorname{Ind}\left(y_{i} \neq T\left(x_{i} ; \Theta_{m}\right)\right)
$$

with weights

$$
w_{i}^{(m)}=\exp \left\{-y_{i} f_{m-1}\left(x_{i}\right)\right\}
$$

- Straightforward to implement a greedy recursive-partitioning algorithm with this loss as a splitting criterion.

Adaboost for boosting classification trees

- If the there is no restriction on the type of tree then the solution to

$$
\hat{\Theta}_{m}=\arg \min _{\Theta_{m}} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+T\left(x_{i} ; \Theta_{m}\right)\right)
$$

is the tree that minimizes the

$$
\sum_{i=1}^{N} w_{i}^{(m)} \exp \left\{-y_{i} T\left(x_{i} ; \Theta_{m}\right)\right\}
$$

with weights

$$
w_{i}^{(m)}=\exp \left\{-y_{i} f_{m-1}\left(x_{i}\right)\right\}
$$

Numerical Optimization via Gradient Boosting

Numerical Optimization

- If the loss, $L(\cdot, \cdot)$, is differentiable, can

$$
\hat{\Theta}_{m}=\arg \min _{\Theta_{m}} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+T\left(x_{i} ; \Theta_{m}\right)\right)
$$

be approximately solved with numerical optimization.

- Consider this...
- The loss associated with using any $f(x)$ to predict y is

$$
I(f)=\sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}\right)\right)
$$

- Goal: Find f which minimizes $L(f)$
- Re-interpret this optimization problem as find

where $\mathbf{f}=\left\{f\left(x_{1}\right), \ldots, f\left(x_{N}\right)\right\}$

Numerical Optimization

- If the loss, $L(\cdot, \cdot)$, is differentiable, can

$$
\hat{\Theta}_{m}=\arg \min _{\Theta_{m}} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+T\left(x_{i} ; \Theta_{m}\right)\right)
$$

be approximately solved with numerical optimization.

- Consider this...
- The loss associated with using any $f(x)$ to predict y is

$$
L(f)=\sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}\right)\right)
$$

- Goal: Find f which minimizes $L(f)$.
- Re-interpret this optimization problem as find

$$
\hat{\mathbf{f}}=\arg \min _{\mathbf{f}} L(\mathbf{f})
$$

where $\mathbf{f}=\left\{f\left(x_{1}\right), \ldots, f\left(x_{N}\right)\right\}$.

Numerical Optimization

- Numerical optimization approximates

$$
\hat{\mathbf{f}}=\arg \min _{\mathbf{f}} L(\mathbf{f})
$$

as a sum of vectors

$$
\mathbf{f}_{M}=\sum_{m=0}^{M} \mathbf{h}_{m}, \quad \mathbf{h}_{m} \in \mathbb{R}^{N}
$$

where $\mathbf{f}_{0}=\mathbf{h}_{0}$ is an initial guess and each \mathbf{f}_{m} is estimated from \mathbf{f}_{m-1}.

Steepest Descent

- Steepest descent chooses

$$
\mathbf{h}_{m}=-\rho_{m} \mathbf{g}_{m}
$$

where

- ρ_{m} is a scalar and
- $\mathbf{g}_{m} \in \mathbb{R}^{N}$ is the gradient of $L(\mathbf{f})$ evaluated at $\mathbf{f}=\mathbf{f}_{m-1}$.
- Components of \mathbf{g}_{m} are

$$
g_{i m}=\left.\frac{\partial L\left(y_{i}, f\left(x_{i}\right)\right)}{\partial f\left(x_{i}\right)}\right|_{f\left(x_{i}\right)=f_{i, m-1}}
$$

- Step length is the solution to

$$
\rho_{m}=\arg \min _{\rho} L\left(\mathbf{f}_{m-1}-\rho \mathbf{g}_{m}\right)
$$

- Solution is updated: $\mathbf{f}_{m}=\mathbf{f}_{m-1}-\rho_{m} \mathbf{g}_{m}$

Forward stagewise Tree Boosting \& Gradient Boosting

- Forward stagewise boosting is also a very greedy strategy:

$$
\hat{\Theta}_{m}=\arg \min _{\Theta_{m}} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+T\left(x_{i} ; \Theta_{m}\right)\right)
$$

- Tree predictions $T\left(x_{i} ; \Theta_{m}\right)$ are analogous to the negative gradients $-g_{1 m}, \ldots,-g_{N m}$.
- But $\mathbf{t}_{m}=\left\{T\left(x_{1} ; \Theta_{m}\right), \ldots, T\left(x_{N} ; \Theta_{m}\right)\right\}$ are constrained to be predictions of a J_{m}-terminal node decision tree
- Whereas $-\mathbf{g}_{m}$ is the unconstrained maximal descent direction.
- Also analogous

Forward stagewise Tree Boosting \& Gradient Boosting

- Forward stagewise boosting is also a very greedy strategy:

$$
\hat{\Theta}_{m}=\arg \min _{\Theta_{m}} \sum_{i=1}^{N} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+T\left(x_{i} ; \Theta_{m}\right)\right)
$$

- Tree predictions $T\left(x_{i} ; \Theta_{m}\right)$ are analogous to the negative gradients $-g_{1 m}, \ldots,-g_{N m}$.
- But $\mathbf{t}_{m}=\left\{T\left(x_{1} ; \Theta_{m}\right), \ldots, T\left(x_{N} ; \Theta_{m}\right)\right\}$ are constrained to be predictions of a J_{m}-terminal node decision tree
- Whereas $-\mathbf{g}_{m}$ is the unconstrained maximal descent direction.
- Also analogous

$$
\rho_{m}=\arg \min _{\rho} L\left(\mathbf{f}_{m-1}-\rho \mathbf{g}_{m}\right) \quad \text { to } \quad \hat{\gamma}_{j m}=\arg \min _{\gamma_{j m}} \sum_{x_{i} \in \mathcal{R}_{j m}} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\gamma_{j m}\right)
$$

but perform a line search for each terminal node.

Forward stagewise Tree Boosting \& Gradient Boosting

- If only goal is minimizing

$$
\hat{\mathbf{f}}=\arg \min _{\mathbf{f}} L(\mathbf{f})
$$

then perform steepest descent.

- However, the ultimate goal is to generalize $f_{M}(x)$ to new unseen data.
- A possible solution is as follows....

Gradient Tree Boosting

- Fit a tree $T\left(x ; \Theta_{m}\right)$ at m th iteration whose predictions \mathbf{t}_{m} are as close as possible to the negative gradient

$$
\tilde{\Theta}_{m}=\arg \min _{\Theta} \sum_{i=1}^{N}\left(-g_{i m}-T\left(x_{i} ; \Theta\right)\right)^{2}
$$

- From the solution regions $\tilde{\mathcal{R}}_{j m}$ set

$$
\hat{\gamma}_{j m}=\arg \min _{\gamma_{j m}} \sum_{x_{i} \in \tilde{\mathcal{R}}_{j m}} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\gamma_{j m}\right)
$$

- The regions $\tilde{\mathcal{R}}_{j m}$ will not be identical to the regions $\mathcal{R}_{j m}$ that solve the original problem, but they are similar enough.

Gradients for common loss functions

Setting Loss function $\quad-\partial L\left(y_{i}, f\left(x_{i}\right)\right) / \partial f\left(x_{i}\right)$

Regression	$\frac{1}{2}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$	$y_{i}-f\left(x_{i}\right)$				
Regression	$\left\|y_{i}-f\left(x_{i}\right)\right\|$	$\operatorname{sign}\left\{y_{i}-f\left(x_{i}\right)\right\}$	\quad	Regression	Huber	$\begin{cases}y_{i}-f\left(x_{i}\right) & \text { if }\left\|y_{i}-f\left(x_{i}\right)\right\| \leq \delta_{m} \\ \delta_{m} \operatorname{sign}\left\{y_{i}-f\left(x_{i}\right)\right\} & \text { if }\left\|y_{i}-f\left(x_{i}\right)\right\|>\delta_{m}\end{cases}$
:---	:---	:---				

Classification Deviance k th component: $\operatorname{Ind}\left(y_{i}=G_{k}\right)-p_{k}\left(x_{i}\right)$
where the K-class deviance loss function is
$L(y, p(x))=-\sum_{k=1}^{K} \operatorname{lnd}\left(y=G_{k}\right) \log p_{k}(x)=-\sum_{k=1}^{K} \operatorname{lnd}\left(y=G_{k}\right)+\log \left(\sum_{l=1}^{K} \exp \left\{f_{l}(x)\right\}\right)$
if $p_{k}(x)=\exp \left\{f_{k}(x)\right\} / \sum_{l=1}^{K} \exp \left\{f_{l}(x)\right\}$

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize $f_{0}(x)=\arg \min _{\gamma} \sum_{i=1}^{N} L\left(y_{i}, \gamma\right)$.
2. For $m=1$ to M :
(a) For $i=1,2, \ldots, N$ compute

$$
r_{i m}=-\left[\frac{\partial L\left(y_{i}, f\left(x_{i}\right)\right)}{\partial f\left(x_{i}\right)}\right]_{f=f_{m-1}}
$$

(b) Fit a regression tree to the targets $r_{i m}$ giving terminal regions $R_{j m}, j=1,2, \ldots, J_{m}$.
(c) For $j=1,2, \ldots, J_{m}$ compute

$$
\gamma_{j m}=\arg \min _{\gamma} \sum_{x_{i} \in R_{j m}} L\left(y_{i}, f_{m-1}\left(x_{i}\right)+\gamma\right) .
$$

(d) Update $f_{m}(x)=f_{m-1}(x)+\sum_{j=1}^{J_{m}} \gamma_{j m} I\left(x \in R_{j m}\right)$.
3. Output $\hat{f}(x)=f_{M}(x)$.

Right-Sized Trees for Boosting

Size of trees in a boosted tree

- Learning a large pruned tree at each round performs poorly.
- Better if
- Restrict all trees to be same size $J_{m}=J \forall m$
- Perform cross-validation to choose an optimal J
- Interaction level of tree-based approximations is limited by J
- if $J=2$ then $f_{M}(x)$ can only be of the form

- if $J=3$ then $f_{M}(x)$ can be of the form

$$
\sum_{k} \eta_{k}\left(X_{k}\right)+\sum_{j k} \eta_{j k}\left(X_{j}, X_{k}\right)
$$

- if $J=4$ then $f_{M}(x)$ can be of the form

$$
\sum_{k} \eta_{k}\left(X_{k}\right)+\sum_{j k} \eta_{j k}\left(X_{j}, X_{k}\right)+\sum_{j k l} \eta_{j k}\left(X_{j}, X_{k}, X_{l}\right)
$$

- etc...

Size of trees in a boosted tree

- Learning a large pruned tree at each round performs poorly.
- Better if
- Restrict all trees to be same size $J_{m}=J \forall m$
- Perform cross-validation to choose an optimal J
- Interaction level of tree-based approximations is limited by J - if $J=2$ then $f_{M}(x)$ can only be of the form

- if $J=4$ then $f_{M}(x)$ can be of the form

Size of trees in a boosted tree

- Learning a large pruned tree at each round performs poorly.
- Better if
- Restrict all trees to be same size $J_{m}=J \forall m$
- Perform cross-validation to choose an optimal J
- Interaction level of tree-based approximations is limited by J :
- if $J=2$ then $f_{M}(x)$ can only be of the form

$$
\sum_{k} \eta_{k}\left(X_{k}\right)
$$

- if $J=3$ then $f_{M}(x)$ can be of the form

$$
\sum_{k} \eta_{k}\left(X_{k}\right)+\sum_{j k} \eta_{j k}\left(X_{j}, X_{k}\right)
$$

- if $J=4$ then $f_{M}(x)$ can be of the form

$$
\sum_{k} \eta_{k}\left(X_{k}\right)+\sum_{j k} \eta_{j k}\left(X_{j}, X_{k}\right)+\sum_{j k l} \eta_{j k}\left(X_{j}, X_{k}, X_{l}\right)
$$

- etc...

Size of trees in a boosted tree

- For many practical problems low-order interactions dominate.
- Therefore models that produce strong higher-order interaction effects suffer in accuracy.
- Authors claim that $4 \leq J \leq 8$ works well in the context of boosting.

Boosting with different sized trees

where X_{1}, \ldots, X_{10} are standard indpt Gaussian and $\chi_{10}^{2}(.5)=9.34$.

Regularization

Shrinkage \& Subsampling

Options for regularization

- Control number of boosting rounds
- Too large $M \Longrightarrow$ danger of over-fitting
\therefore There is a M^{*} that minimizes future risk
- Shrinkage
- Scale the contribution of each tree by factor $0<\nu<1$

Smaller $\nu \Longrightarrow$ larger M to obtain low training error
Empirical finding: small $\nu<.1$ and sufficiently large M \Longrightarrow better result than no shrinkage. Especially for regression problems

Shrinkage \& Subsampling

Options for regularization

- Control number of boosting rounds
- Too large $M \Longrightarrow$ danger of over-fitting
\therefore There is a M^{*} that minimizes future risk
- Shrinkage
- Scale the contribution of each tree by factor $0<\nu<1$

$$
f_{m}(x)=f_{m-1}(x)+\nu \cdot \sum_{j=1}^{J} \gamma_{j m} \operatorname{Ind}\left(x \in \mathcal{R}_{j m}\right)
$$

- Smaller $\nu \Longrightarrow$ larger M to obtain low training error
- Empirical finding: small $\nu<.1$ and sufficiently large M \Longrightarrow better result than no shrinkage. Especially for regression problems

Shrinkage example

Stumps
Misclassification Error

6-Node Trees Misclassification Error

$Y= \begin{cases}1 & \text { if } \sum_{j=1}^{10} X_{j}^{2}>\chi_{10}^{2}(.5) \\ -1 & \text { otherwise }\end{cases}$
where X_{1}, \ldots, X_{10} are
standard indpt Gaussian and $\chi_{10}^{2}(.5)=9.34$.

Deviance: $-2 \log \hat{p}_{G}(X)$

Shrinkage \& Subsampling

Options for regularization

- Subsampling
- Stochastic gradient boosting - each iteration sample a fraction η of the training observations (without replacement).
- A typical value is $\eta=.5$
- Empirically subsampling without shrinkage works poorly
- But subsampling with shrinkage works well
- Now have 4 parameters to estimate J, M, ν, and η

Subsample example

4-Node Trees

Deviance

Absolute Error

$$
Y= \begin{cases}1 & \text { if } \sum_{j=1}^{10} X_{j}^{2}>\chi_{10}^{2}(.5) \\ -1 & \text { otherwise }\end{cases}
$$

where X_{1}, \ldots, X_{10} are standard indpt Gaussian and $\chi_{10}^{2}(.5)=9.34$.

