Chapter 10: Boosting and Additive Trees

DD3364

November 20, 2012

Boosting Methods

Overview of boosting

e Boosting is a procedure to combine the output of many weak
classifiers to produce a powerful committee.

o A weak classifier is one whose error rate is only slightly better
than random guessing.

e Boosting produces a sequence of weak classifiers G, () for
m =1,..., M whose predictions are then combined

G(z) = sgn (Z U Gm(x)>

through a weighted majority to produce the final prediction.

e Each a;, > 0 is computed by the boosting algorithm and
reflects how accurately G, classified the data.

Most popular boosting algorithm: AdaBoost.M1

“AdaBoost.M1" algorithm of Freund and Schapire (1997)

e Have training data (z;,v;),i=1,2,...,n
e Introduce a weight w; = 1/n for each training example.

e form=1,....M
* Let GG,,, be the weak classifier with minimum error:
err,, = sz Ind(y; # G (24))
i=1
* Set au, = log((1 — errp,)/errp,).
* Set
w; 4 w; e@mMdWiFEGm (@) for j = 1,...,n
This increases (decreases) w; for x; misclassified (correctly
classified) by Gy

* Normalize the w;'s so that they sum to one.

What AdaBoost.M1 does

e As iterations proceed, observations difficult to classify
correctly receive more influence.

e Each successive classifier is forced to concentrate on training
observations missed by previous ones in the sequence

Binary classification example

X x x x x
[] * >><<x *) é(xxx X xx
... T x X XX <
e %o s % x
X X
° e . . ¥, e
] o 0 X xx
° .' ° X xxx X x
.: ... ® .’...x »(x X x
L. ‘8 °® x Xk x
oo @ X% %
e Qo ¢ ‘e o0, % 3
° ee o
° %
% o e o o, < o
True decision boundary Training data

‘H is the set of all possible oriented vertical and horizontal lines.

Example

’-

- °
L o g
'-0. Ea o 20°
. ’ ... ¢
oo & .. % oo

Chosen weak classifier Re-weight training points Current strong classifier
= - (2),
€1 =0.19, a1 = 1.45 w,;"’s G(x)

Example

L
Chosen weak classifier Re-weight training points Current strong classifier

€2 = 0.1512, ag = 1.725 w{®'s G(x)

Example

Chosen weak classifier Re-weight training points Current strong classifier

€3 = 0.2324, a3 = 1.1946 w{®'s G(x)

Example

XX X % =

Round 4

Chosen weak classifier Re-weight training points Current strong classifier

€4 = 0.2714, ay = 0.9874 w{®'s G(x)

Example

Chosen weak classifier Re-weight training points Current strong classifier

€5 = 0.2616, a5 = 1.0375 w{®s G(x)

Example

Chosen weak classifier Re-weight training points Current strong classifier

€6 = 0.2262, ag = 1.2298 w{™s G(x)

Example

Round 7

X%
X

Chosen weak classifier Current strong classifier

e7 = 0.2680, a7 = 1.0049 G(x)

Example

. X"');xxx

L. e @ “ox,

S .o ’kx s o o .. x
- : . () ... [:. .
% 2 g “ o o % o o o o

Chosen weak classifier Current strong classifier

eg = 0.3282, ag = 0.7165 G(x)

Example

Round 9

XX : *x X1 P

Chosen weak classifier Re-weight training points Current strong classifier

€ = 0.3048, ag = 0.8246 w10 G(x)

i

Example

Round 10

X X x X X X x pEETL x 5
. X e X
X I X K x ¥ x B x

Chosen weak classifier Re-weight training points Current strong classifier

€10 = 0.2943, a1 = 0.8744 w s G(x)

i

Example

Round 11

Chosen weak classifier Re-weight training points Current strong classifier

€11 = 0.2876, aqq = 0.9071 w1 G(x)

k3

Example

Round 21

x .o X x X x X X x 5

L]
X ox . . x
09~ “x 0% Tw X x
.. x 3 X x % X

Chosen weak classifier Re-weight training points Current strong classifier

a1 = 0.3491, aaq = 0.6232 w(?Ps G(x)

AdaBoost performance

AdaBoost can dramatically increases the performance of very weak
classifier.

In this chapter authors

e Show AdaBoost fits an additive model in a base learner,
optimizing a novel exponential loss function

e Show the population minimizer of the exponential loss
function is the log-odds of the class probabilities

e Present loss functions that are more robust than squared error
or exponential loss

e Argue decision trees are an ideal base learner for data mining
applications of boosting.

e Develop class of gradient boosted models (GBMs), for
boosting trees with any loss function.

e Emphasize the importance of “slow learning” .

Boosting Fits an Additive Model

Additive Models

e Boosting fits an additive expansion in a set of elementary
basis functions.

M
G(z) = sgn (Z am, Gm(.L)>

m=1

e The basis functions are the weak classifiers G, (z) € {—1,1}.

e More generally, basis function expansions take the form

M
F@) =" Bumb(w;)
m=1

where ,,'s are the expansion coefficients and b(x;~) € R are
simple functions of the input x parameterized by ~.

Examples of additive models

¢ Single-hidden-layer neural networks where

1
bz ~) =
(z37) T+ exp(—0 = 712)

e Multivariate adaptive regression splines (MARS)
Use truncated-power spline basis functions where ~y
parameterizes the variables and values for the knots.

e Trees
~ parameterizes the split variables and split points at the
internal nodes, and the predictions at the terminal nodes.

Fitting these additive models

e Typically fit model by minimizing a loss function averaged
over the training data:

e For many loss functions L(x, f(z)) and/or basis functions
b(x;) this is too hard....

Forward Stagewise Additive Modeling

Approximate the global solution to fitting additive model

e More simply can greedily add one basis function at a time in
the following fashion.

e Set fo(z) =0

e form=1,..., M

*x Compute

n M
(Bms4m) = argmin » L (y > fmea(@i) + B b(xi;vm)>

mom =1 m=1

* Set
Fn(@) = frmn—1(2) + B b(2:)

* Note: Previously added terms are not modified.

Exponential Loss and AdaBoost

Interpretation of the Adaboost algorithm

e Interpretation of AdaBoost.M1

AdaBoost.M1 = forward stagewise additive modelling
with an exponential loss function.

e Definition of exponential loss

L(y, f(z)) = exp{—y f(z)}

Interpretation of the Adaboost algorithm

e Interpretation of AdaBoost.M1

AdaBoost.M1 = forward stagewise additive modelling
with an exponential loss function.

e Definition of exponential loss

L(y, f(z)) = exp{—y f(z)}

e Will now go through the derivation of this result....

Specifics of forward stagewise additive modelling (fsam)

e At each iteration of forward stagewise additive modelling
must solve this optimization problem

(Bms Gm) = avgmin 3 L(yis fn-1 (@) + BG(s)

i=1
= argmin > exp{—yi (fm—1(z:) + BG(x:))}
=1
where we assume an exponential loss and G(x) € {—1,1}.

e Can re-write

n

Do expl{—yi (fm—r(2:) + BG(2:))} = Y exp{—yi fnr(2:)} exp{—y:iB G(x:)}

i=1 i=1

= Z w!™ exp{—y:3 G(x:) }
i=1

Optimization of the fsam cost function

e The optimization problem becomes

min gwi exp{~y:B G(z:)} = min (mme’”)exp{ yiB Gz)})

=1

e Note

vi G(IL) _ {1 If Yi = G(IZ)

-1 if Yi 3& G(iL)

and this implies exp{—y; 3 G(x;)} is equal to

e’ Ind(y; # G(x;)) +e7 (1= Ind(y; # G(x:)))

e The above implies -7 | w\™ exp{—y,3 G(x:)} can be written as:

(e’ —e” Zw(m)lnd(y # G(z4)) ﬁZw(m)

Optimization of the fsam cost function: G,,"

e The optimization problem becomes

arg ngn; w™ exp{—y:8 G(x:)}

_ . o (m) -8B (m)
= arg min ((e e Zw Ind(y; # G(x:)) Zw)

:argmcin <Z w{™ Ind(y; # G(:EZ))>

=1
e Therefore

G = argm&n (i w™ Ind(y; # G(J:J))

i=1

Optimization of the fsam cost function: G,,"

e The optimization problem becomes

arg mmz w; Y exp{—y:8G(x:)}

_ . o (m) -8B (m)
= arg min ((e e Zw Ind(y; # G(x:)) Zw)

:argmcin (Z w{™ Ind(y; # G(:EZ))>

=1
e Therefore

G = argm&n (i w™ Ind(y; # G(J:J))

i=1

G, minimizes the weighted error in the AdaBoost
algorithm. (if the w£m>'s have the same definition....)

Optimization of the fsam cost function:

e Plugging G, into the original optimization problem

. n (m) -)
n (mén;wi exp{ yqﬁG(L)})

and using the previous result, it becomes

: _ (m)| d Gm —B (m)
arg min <(e e Zw nd(y; # (1)) Zw >

e This quantity is minimized when

1 1—errn,
B = Llog err.
2 ertm

where
S w™Ind(y: # Go(1))

—1 w(m)

erry, =

Optimization of the fsam cost function:

e Plugging G, into the original optimization problem

. n (m) -)
n (mén;wi exp{ yqﬁG(L)})

and using the previous result, it becomes

: _ (m)| d Gm —B (m)
arg min <(e e Zw nd(y; # (1)) Zw >

e This quantity is minimized when

1. 1—erry,
B = 5 log err
errm
where
o — i " Ind(y; # G (1))
" (™
=1

o Expression for 3,,, same (upto a multiplicative constant) as for
.y in AdaBoost.M1 (if the wgm)’s have same definition....)

Optimization of the fsam cost function:

(m-+1)

7

Update of the weights: Expression for w
® Need the following result
—y; Gm () = —Ind(y; = G(x;)) + Ind(y; # G(x3))
= —(1 —Ind(y; # G(2:))) + Ind(y; # G(i))
= —1+42Ind(y; # G(z:))
e The updated weights can then be written as
W™D = @ UiIm(@5) — =9 (m 1 () +8m G (@)
— (™ ¢~¥iBmGm (@)

= W™ ¢2Pm M(Wi#Com () =P

e As factor e P is the same for all weights it has no effect.

Optimization of the fsam cost function:

(m-+1)

7

Update of the weights: Expression for w
® Need the following result
—y; Gm () = —Ind(y; = G(x;)) + Ind(y; # G(x3))
= —(1 —Ind(y; # G(2:))) + Ind(y; # G(i))
= —1+42Ind(y; # G(z:))
e The updated weights can then be written as
W™D = @ UiIm(@5) — =9 (m 1 () +8m G (@)
— (™ ¢~¥iBmGm (@)

= W™ ¢2Pm M(Wi#Com () =P

e As factor e P is the same for all weights it has no effect.

e Expression for weight update for each example is the
same as for AdaBoost.M1 as a,,, = 205,,.

Adaboost minimizes the exponential loss

e Hence can view AdaBoost.M1 as a method that
approximates minimizing

n M

ar, min exp(—v: Gm (i
g611G1»»~BM7GM 1:21 p(yzmzﬂﬂm m (i)

via a forward-stagewise additive modeling approach.

Adaboost minimizes the exponential loss

For a simulated problem the training-set mis-classification error
and average exponential loss:

1.0

0.8

0.6

Training Error

0.4

Exponential Loss

0.2

Misclassification Rate

0.0

0 100 200 300 400

Boosting Iterations

While the mis-classification error decreases to zero ~ 250
iterations, the exponential loss keeps decreasing.

Loss Functions and Robustness

Loss functions for classification

e Exponential Loss

L(y, f(z)) = exp{~y f(2)}

e Binomial deviance loss

L(y, f(z)) = —log (1 + exp{—2yf(x)})

where

1

ple) = POV =112) = T o)

e Misclassification loss

Ly, f(x)) = Ind(y f(z) < 0)

e These loss functions are functions of the “margin”: y f(x)
e Classification rule
G(z) = sign{f(z)}

= training examples with
- positive margin y; f(x;) > 0 are correctly classified and

- negative margin y; f(z;) < 0 are misclassified
e Decision boundary defined by f(z) =0

e Classification algorithms attempt to produce positive margins
for each training data point.

e Loss criterion for classification should penalize negative
margins more heavily than positive margins.

Loss functions for classification

g - —— Misclassification
—— Exponential
© Binomial Deviance
o 7 —— Squared Error
—— Support Vector
e
o
wv
v
o v |
i R
e
wn
°
o
S
T T T T T
-2 -1 0 1 2

Loss functions for classification

e Exponential and deviance loss continuous approx. to
mis-classification loss.

e They increasingly penalize negative margin values more
heavily than they reward positive ones.

e Binomial deviance penalty increases linearly with negative
margin.

e Exponential loss penalty increases exponentially with negative
margin.

e — in training the exponential criterion concentrates more
of its efforts on large negative margin examples than the
binomial criterion.

e Thus binomial criterion is far more robust than the
exponential criterion in noisy settings - mislabels, overlapping classes.

Robust loss functions for regression

e Squared error loss

L(y, f(z)) = (y - f(x))?
Population optimum for this loss function: f(z) = E[Y | z]

e Absolute loss

Ly, f(z)) =y = f ()]

Population optimum for this loss function: f(z) = median(Y | x)

Robust loss functions for regression

e Squared error loss
L(y, f(2)) = (y — f(2))*
Population optimum for this loss function: f(z) = E[Y | z]

e Absolute loss

Ly, f(z)) = |y — f(2)]

Population optimum for this loss function: f(z) = median(Y | x)

e On finite samples squared error loss puts far more emphasis
on observations with large |y; — f(x;)| than absolute loss.

e Thus squared error loss is less robust and performance
degrades for long-tailed error distributions and mis-labellings.

Robust loss functions for regression

e Huber loss

= f2)? for ly — f(z)| <6
Ly, (=) = {25|y — f(x)| — 6% otherwise

- strong resistance to gross outliers while

- being nearly as efficient as least squares for Gaussian errors

e Combines the good properties of squared-error loss near zero
and absolute error loss when |y — f] is large.

Robust loss functions for regression

Squared Error
~—— Absolute Error
© - —— Huber
©
b
o N\ 7
— N
<« - \ /
N\ /
~
o 4 N
T T T T T T T

Have a problem

e When robustness is an issue
- squared-error loss for regression and

- exponential loss for classification
are not the best criterion to be optimizing.

e But, both these loss functions lead to elegant modular
boosting algorithms in the context of forward stagewise
additive modelling.

e For classification: perform a weighted fit of the base learner to
the outputs y; with weights w; = exp{—vy; f(z;)}

e More robust criteria in their place do not give rise to such
simple feasible boosting algorithms

Have a problem

e When robustness is an issue
- squared-error loss for regression and

- exponential loss for classification
are not the best criterion to be optimizing.

e But, both these loss functions lead to elegant modular
boosting algorithms in the context of forward stagewise
additive modelling.

e For classification: perform a weighted fit of the base learner to
the outputs y; with weights w; = exp{—vy; f(z;)}

e More robust criteria in their place do not give rise to such
simple feasible boosting algorithms

e Later derive simple boosting algorithms based on any
differentiable loss criterion.

“Off-the-Shelf’ Procedures for Data Mining

TABLE 10.1. Some characteristics of different learning methods. Key: A= good,
=fair, and ¥ =poor.

Characteristic Neural SVM Trees MARS k-NN,
Nets Kernels

Natural handling of data v v A A v

of “mixed” type

Handling of missing values v v A A A

Robustness to outliers in v v A v A

input space

Insensitive to monotone v v A v v

transformations of inputs

Computational scalability v v A A v

(large N)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linear A A v v

combinations of features

Interpretability v v A v

Predictive power A A v A

Book's conclusion

e Trees are great except....
- they are inaccurate at making predictions.

e Boosting decision trees improve their accuracy but at the cost
of

- speed
- interpretability and

- for AdaBoost, robustness against overlapping class
distributions and especially mislabeling of the training data.

e A gradient boosted model (GBM) is a generalization of tree
boosting that attempts to mitigate these problems.

e It aims to produce an accurate and effective off-the-shelf
procedure for data mining.

Boosting Trees

Regression Tree Recap

e Tree partitions the input space into R;, 5 =1,...,J.

Terminal/leaf nodes of tree represent the regions R;

Constant +; assigned to each leaf.

The predictive rule is

reR; = f(x) ="

A tree with parameters © = {Rj,yj}‘j]:l is expressed as

J
T(:C; @) = Z’Yj Ind(a: S 'Rj)

=1

(J is usually treated as a meta-parameter)

Learning a Regression Tree

e |deally parameters found by minimizing the empirical risk

e Very hard optimization problem, instead settle for
approximate suboptimal solutions

e Typical approach: Divide optimization into two parts
- Find v; given R;
Typically trivial - 4; the mean of the training y's falling in R;.

- Find Rj
Difficult part! Approximate solutions found. One strategy is to use

a greedy, top-down recursive partitioning algorithm.

The boosted tree model

e A boosted tree is a sum of regression/classification trees

M
= Z T(z;0m)
m=1

learned in a forward stagewise manner.

e At each step solve
@m = argmm Z (Yiy frn—1(x;) + T(x5;0m))

for the parameters ©,, = {Rjm, ij};@l of the next tree.

e How do we solve this optimization problem?

Learning a boosted tree model

e Find v, given R, - easy
fjm = argmin > L(Yi, fm-1(2i) + Vjm)
Yim xiGij
e Find R;;,’s - not so easy....

A few exceptions
- Squared-error loss

At each stage fit a regression tree to residuals y; — fn—1(2;)

- Two-class classification and exponential loss

Gives rise to an AdaBoost method for boosting classification
trees...

Adaboost for boosting classification trees

o If the trees are restricted to type where

Bm (xu m) and each ’)’ij{—l,l}

e The solution to
O, = argmln Z (Wi, fm—1(z:) + T(2i;Om))

is the tree that minimizes the

Zw Ind(y; # T(x:; Om))

with weights

wi™ = exp{~y; fno1(z:)}

e Straightforward to implement a greedy recursive-partitioning
algorithm with this loss as a splitting criterion.

Adaboost for boosting classification trees

e If the there is no restriction on the type of tree then the

solution to
R N
m = i L iy Jm— % T iy Im
0 arglggl; Wir fm—1(2i) + T(23;O))

is the tree that minimizes the
N
Z wgm) exp{—y;T(zi; Om)}
i=1

with weights

wi™ = exp{~y; fn—1(z:)}

Numerical Optimization via Gradient Boosting

Numerical Optimization

e If the loss, L(-,-), is differentiable, can

~

O, = arg Igin Zf\il L(yi, fr—1(zi) + T(zi;0m))
be approximately solved with numerical optimization.

e Consider this...

Numerical Optimization

e If the loss, L(-,-), is differentiable, can

~

O, = arg rgin Zf\il L(yi, fr—1(zi) + T(zi;0m))
be approximately solved with numerical optimization.

Consider this...

The loss associated with using any f(z) to predict y is

L(f) = 350 Dlyss f (@)
Goal: Find f which minimizes L(f).

Re-interpret this optimization problem as find

f =arg mfin L(f)

where f = {f(x1),..., f(zn)}

Numerical Optimization

e Numerical optimization approximates

f=arg mfin L(f)
as a sum of vectors

M
fry =Y hp, hy eRY
m=0

where fy = hy is an initial guess and each f,,, is estimated
from f,, 1.

Steepest Descent

e Steepest descent chooses

h;, = —Pm 8m

where

- pm is a scalar and

- gm € RY is the gradient of L(f) evaluated at f = f,,, ;.

e Components of g,, are

0Lt
vm 6f(x2) flxi)=Ffim-1

e Step length is the solution to
pm = argmin L(fn—1 — pgm)

e Solution is updated: f,, = f,,_1 — pm Em

Forward stagewise Tree Boosting & Gradient Boosting

Forward stagewise boosting is also a very greedy strategy:

~

O = arg %lin vaz1 L(yi, fm—1(xi) + T'(2i; Om))

Tree predictions T'(z;; ©,,) are analogous to the negative
gradients —g1m,-- -, —gNm.

But t,,, = {T(x1;0m),...,T(zN; Om)} are constrained to be
predictions of a J,,-terminal node decision tree

Whereas —g,, is the unconstrained maximal descent direction.

Forward stagewise Tree Boosting & Gradient Boosting

Forward stagewise boosting is also a very greedy strategy:

~

O = arg %lin vaz1 L(yi, fm—1(xi) + T'(2i; Om))

Tree predictions T'(z;; ©,,) are analogous to the negative
gradients —g1m,-- -, —gNm.

But t,,, = {T(x1;0m),...,T(zN; Om)} are constrained to be
predictions of a J,,-terminal node decision tree

Whereas —g,, is the unconstrained maximal descent direction.

Also analogous

pm=argmin L(f,_1—pgm) to 4jm=argmin Zx-eR- L(yi, frm—1(xi)+vim)
P Yim reTm

but perform a line search for each terminal node.

Forward stagewise Tree Boosting & Gradient Boosting

e If only goal is minimizing
f=arg mfin L(f)
then perform steepest descent.

o However, the ultimate goal is to generalize fy/(z) to new
unseen data.

e A possible solution is as follows....

Gradient Tree Boosting

e Fit a tree T'(x; ©,,) at mth iteration whose predictions t,, are
as close as possible to the negative gradient

N
(:)m = arg Hgn 2(_gim - T(xi; @))2

e From the solution regions 7~€jm set

Yjm = arg r%g} Z L(yi, fm—1(x) + Yjm)
Ti€Rjm

e The regions 7~€jm will not be identical to the regions R, that
solve the original problem, but they are similar enough.

Gradients for common loss functions

Setting Loss function —0L(y;, f(z;:))/0f(x;)

Regression Llysi—f(:))? yi—f(wi)

Regression lyi— f(z:)] sign{y; —f ()}

Regression Huber yi—f(xq) if [yi—f(2:)|<6m
Omsign{yi—f(zi)} i lyi—f(2:)|>0m

Classification Deviance kth component: Ind(y;=Gx)—pr ()

where the K-class deviance loss function is
L(y,p(z))=— 31—, Ind(y=Gy) log pi(z)=— 31—, Ind(y=G)+log(>[<, exp{fi(z)})

if pi(@)=exp{fr(2)}/ /<, exp{fi(2)}

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fo(x) = arg min, Zf;l L(yi,7)-
2. Form =1 to M:
(a) Fori=1,2,..., N compute

S

Tim = —

(b) Fit a regression tree to the targets r;,, giving terminal regions
Rjnm J=12... Jm.

(¢) For j=1,2,...,J,, compute

Yim _aIgmln Z (Yis frm—1(zi) +7).

Ti;€ERjm

(d) Update fm(x) = fm—l(+ Z —1Vim (33 S ij)~

3. Output f(z) = far ().

Right-Sized Trees for Boosting

Size of trees in a boosted tree

e Learning a large pruned tree at each round performs poorly.

Size of trees in a boosted tree

e Learning a large pruned tree at each round performs poorly.

e Better if
- Restrict all trees to be same size J,,, = J Vm

- Perform cross-validation to choose an optimal J

Size of trees in a boosted tree

e Learning a large pruned tree at each round performs poorly.

e Better if
- Restrict all trees to be same size J,,, = J Vm

- Perform cross-validation to choose an optimal J

e Interaction level of tree-based approximations is limited by J:
- if J =2 then fp () can only be of the form

>k M6 (Xk)

- if J =3 then fp(z) can be of the form

>k (X)) + 2255 mik (X, Xi)
- if J =4 then fp () can be of the form

2o e (Xi) + 350 Mk (X, Xie) + 32550 min (X5, Xio, Xi)

- etc...

Size of trees in a boosted tree

e For many practical problems low-order interactions dominate.

e Therefore models that produce strong higher-order interaction
effects suffer in accuracy.

e Authors claim that 4 < J < 8 works well in the context of
boosting.

Boosting with different sized trees

< \ —— Stumps
o 7 ~—— 10 Node
h 100 Node
\ ~—— Adaboost
@ |
(=}
s
]
2 o
- o
S =
o |
o
T T T T T
0 100 200 300 400

Number of Terms

_—t if 3100 X7 > xdo(.5)
—1 otherwise

where X1, ..., Xj0 are standard indpt Gaussian and X%O(.5) = 9.34.

Regularization

Shrinkage & Subsampling

Options for regularization
e Control number of boosting rounds
- Too large M = danger of over-fitting

. There is a M* that minimizes future risk

Shrinkage & Subsampling

Options for regularization
e Control number of boosting rounds
- Too large M = danger of over-fitting

. There is a M* that minimizes future risk

e Shrinkage
- Scale the contribution of each tree by factor 0 < v < 1
J
fm(x) = fm—1(z) +v- Z’yjm Ind(z € Rjm)
j=1

- Smaller v = larger M to obtain low training error

- Empirical finding: small v < .1 and sufficiently large M
— better result than no Shrinkage. Especially for regression problems

Test Set Deviance

Test Set Deviance

15

0.0

15

10

0.0

Stumps
Deviance

Stumps
Misclassification Error

Test Set Misclassification Error

01 02 03 04

0.0

o

500 1000 1500

Boosting lterations

6-Node Trees
Deviance

2000

500 1000 1500

Boosting lterations

6-Node Trees
Misclassification Error

2000

Test Set Misclassification Error

o

500 1000 1500

Boosting lterations

2000

500 1000 1500

Boosting lterations

2000

Shrinkage example

1 if 300 X7 > xFo(5)
—1 otherwise

where X1,..., X0 are
standard indpt Gaussian and
Xi0(-5) = 9.34.

Deviance: —2 logpa(X)

Shrinkage & Subsampling

Options for regularization

e Subsampling

- Stochastic gradient boosting - each iteration sample a
fraction 7 of the training observations (without replacement).

A typical value is p = .5

Empirically subsampling without shrinkage works poorly

But subsampling with shrinkage works well

Now have 4 parameters to estimate J, M, v, and 7

Subsample example

4-Node Trees

Deviance Absolute Error
=)
3
=]
<+
©
<
| 5 ©
8 &
s e
g vn:_: | s 3 | No shrinkage
8 g o —— Shrink=0.1
3 o < — Sample=0.5
2 ST B —— Shrink=0.1 Sample=0.5
g » A
[g °
S =
Q
a
° ° b——/—"l

[200 400 600 800 1000 0 200 400 600 800 1000

Boosting Iterations Boosting lterations

T if 3000 X7 > xio(.5)
—1 otherwise

Y =

where X1,..., Xq0 are standard indpt Gaussian and x%o(.5) = 9.34.

