
Optimering, exempel ∗

Exempel 1 (optimering över kompakt mängd)

Bestäm största och minsta värdet till funktionen f(x, y) = x4 + y4 + 4x2 + 16 i cirkelskivan
{x2 + y2 ≤ 4}.

Lösning: Cirkelskivan är kompakt så detta är ett optimeringsproblem över en kompakt mängd.
Vi följer arbetsrutinens tre steg:

1. Hitta alla stationära punkter i det inre av mängden.

Dessa ges av ∇f(x, y) = 0, dvs

fx(x, y) = 4x3 + 8x2 = 4x(x2 + 2) = 0, ⇒ x = 0,

fy(x, y) = 4y3 = 0, ⇒ y = 0.

Funktionens enda stationära punkt är alltså origo. Den ligger också i det inre av mängden.

2. Bestäm funktionens största och minsta värde på randen av mängden.

Randen beskrivs av x2 + y2 = 4. Vi parameteriserar randen med x-variabeln, dvs

y = ±
√

4 − x2, |x| ≤ 2,

där plustecknet motsvarar övre halvan av cirkeln och minustecknet den undre halvan. Låt
g(x) vara funktionens värde på randen, dvs

g(x) = f(x,±
√

4 − x2) = x4 + (4 − x2)2 + 4x2 + 16 = 2x4 − 4x2 + 32.

Vi noterar att g inte beror på valet av tecken, eftersom f antar samma värde för y som för
−y. Största/minsta värdet på randen är därför största/minsta värdet av g(x) i intervallet
−2 ≤ x ≤ 2. Detta är ett optimeringsproblem i en variabel, som man löser genom att
derivera g(x) och undersöka värdet i dess stationära punkter samt på randen. Vi har:

g′(x) = 8x3 − 8x = 8x(x2 − 1).

De stationära punkterna g′(x) = 0 är alltså x = −1, 0, 1. Vi får följande tabell:

x -2 -1 0 1 2

g′(x) - - 0 + 0 - 0 + +
g(x) 48 ց 30 ր 32 ց 30 ր 48

∗Exemplen och delar av lösningarna tagna från "Funktioner av flera variabler" av Leo Ullemar.
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Detta visar att största värdet på randen är 48, som antas för x = ±2, och minsta värdet
är 30, som antas för x = ±1.

3. Välj ut största och minsta värdet av f evaluerad i de stationära punkterna och dess största
och minsta värde på randen.

I vårt fall betyder det att vi ska välja ut största och minsta värdet av f(0, 0), 48 och 30.
Eftersom f(0, 0) = 16 blir svaret därför att största värdet är 48 och minsta värdet är 16.

Alternativ: I punkt 2 kan vi även tänka oss att introducera polära koordinater. Det motsvarar
att parameterisera randen med vinkeln θ istället för med x. Randen ges då av

x = 2cos θ,

y = 2 sin θ,

med 0 ≤ θ ≤ 2π. Som tidigare låter vi g vara funktionens värde på randen. Den blir nu en
funktion av θ,

g(θ) = f(2 cos θ, 2 sin θ) = 16(cos4 θ + sin4 θ + cos2 θ + 1).

Största och minsta värde på randen är givet av största och minsta värde av g(θ) för 0 ≤ θ ≤ 2π.
Som ovan hittar vi dessa genom att derivera g(θ) och betrakta dess värden i de stationära
punkterna samt på randen. Vi har:

g′(θ) = 16(−4 sin θ cos3 θ + 4cos θ sin3 θ − 2 sin θ cos θ)

= −32 sin θ cos θ(2 cos2 θ − 2 sin2 θ + 1)

= −16 sin(2θ)(2 cos(2θ) + 1).

Vi vet att sin(2θ) = 0 när 2θ = nπ för alla heltal n, dvs θ = nπ/2. För 0 ≤ θ ≤ 2π är därför
sin(2θ) = 0 när θ = 0, π/2, π, 3π/2 och 2π. Dessa är således stationära punkter till g. Vidare
vet vi att cos(2θ) = −1/2 när 2θ = ±2π/3 + n2π för alla heltal n, dvs θ = ±π/3 + nπ. För
0 ≤ θ ≤ 2π är därför cos(2θ) = −1/2 när θ = π/3, 2π/3, 4π/3 och 5π/3. Dessa är således också
stationära punkter till g.

Vi får tabellen:

θ 0 π/3 π/2 2π/3 π 4π/3 3π/2 5π/3 2π

g′(θ) 0 - 0 + 0 - 0 + 0 - 0 + 0 - 0 + 0
g(θ) 48 ց 30 ր 32 ց 30 ր 48 ց 30 ր 32 ց 30 ր 48

Detta visar som tidigare att största värdet på randen är 48, som antas för θ = 0, π, 2π, och
minsta värdet är 30, som antas för θ = π/3, 2π/3, 4π/3 och 5π/3.

Exempel 2 (optimering över icke-kompakt mängd)

Bestäm största och minsta värdet till funktionen

f(x, y) =
x2 + xy

1 + y2
,

i bandet 0 ≤ x ≤ 1.
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Lösning: Mängden är i detta fall obegränsad (innehåller godtyckligt stora värden på y) dvs inte
kompakt. Vi kan hantera det på flera olika sätt. Här visar vi två alternativ.

Alternativ 1: Vi återför problemet på en kompakt mängd genom att visa att största och minsta
värdet inte kan antas för stora y. Vi har att, för 0 ≤ x ≤ 1,

|f(x, y)| ≤ x2 + |x||y|
1 + y2

≤ 1 + |y|
1 + y2

=
1

|y| ·
1 + 1/|y|
1 + 1/y2

.

Detta går mot noll när y → ±∞, dvs för 0 ≤ x ≤ 1,

lim
|y|→∞

f(x, y) = 0.

Definitionen av gränsvärde säger oss då att för alla värden ε > 0 kan vi hitta ett η så att
|f(x, y)| < ε för alla |y| > η. Vi noterar också att

f(1, 0) = 1, f(1,−2) = −0.2.

Vi väljer nu tex ε = 0.1. Det finns då ett η så att −0.1 ≤ f(x, y) ≤ 0.1 för alla |y| > η. Men
vi har då alltså funnit exempel på funktionsvärden som är strikt större än och strikt mindre än
samtliga värden som funktionen antar när |y| > η. Vi konstaterar att funktionsn största och
minsta värde måste ligga i det kompakta området 0 ≤ x ≤ 1 och −η ≤ y ≤ η.

Detta problem löses sedan på vanligt sätt för kompakta områden, dvs 1) hitta alla stationära
punkter i det inre, 2) hitta största/minsta värde på randen och 3) välj ut största/minsta värdet
av f evaluerad i de stationära punkterna och på randen.

Alternativ 2: Vi återför problemet på ett optimeringsproblem i en variabel genom att först
optimera i x för fixt y. För enkelhetens skull söker vi här bara minsta värdet. Definiera

h(y) = min
0≤x≤1

f(x, y). (1)

Detta är ett minimeringsproblem i en variabel, för varje fixt y. Det minsta värdet av hela f ges
sedan genom att minimera h som funktion av y.

För att beräkna h i (1) behöver vi derivera f i x-led och hitta dess stationära punkter i det
inre av intervallet [0, 1]. Det ger

f ′
x
(x, y) =

2x + y

1 + y2
= 0 ⇔ x = −y/2.

Denna punkt ligger i det inre av intervallet endast när −2 < y < 0. Den ger då

f(−y/2, y) =
−y2

4(1 + y2)
.

Vi måste också betrakta funktionens värde i randpunkterna x = 0 och x = 1,

f(0, y) = 0, f(1, y) =
1 + y

1 + y2
.

Detta ger oss tre olika fall:

Fall 1: y ≤ −2. Vi har ingen stationär punkt i det inre. Minsta värdet är det minsta av värdena
på randen, dvs

h(y) = min

(

0,
1 + y

1 + y2

)

=
1 + y

1 + y2
,

eftersom y ≤ −2.
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Fall 2: −2 < y < 0. Vi har en inre stationär punkt x = −y/2. Vi får tabellen

x 0 −y/2 1

f ′
x
(x, y) y

1+y2 < 0 – 0 + 2+y

1+y2 > 0

f(x, y) 0 ց −y
2

4(1+y2) ր 1+y

1+y2

Minsta värdet är därför

h(y) =
−y2

4(1 + y2)
.

Fall 3: y ≥ 0. Vi har ingen stationär punkt i det inre. Minsta värdet är det minsta av värdena
på randen, dvs

h(y) = min

(

0,
1 + y

1 + y2

)

= 0,

eftersom y ≥ 0.

Sammanfattningsvis är

h(y) =















1+y

1+y2 , y ≤ −2,
−y

2

4(1+y2)
, −2 < y < 0,

0, y ≥ 0.

Detta är en kontinuerligt deriverbar funktion (undersök detta!) av en variabel som kan minimeras
på vanligt sätt genom att hitta stationära punkter och betraka beteendendet när y → ±∞.

Exempel 3 (optimering med bivillkor)

Bestäm största och minsta värdet till funktionen f(x, y) = x4 + y4 + 4x2 + 16 på randen till
cirkelskivan {x2 + y2 ≤ 4}.

Lösning: Här visar vi alltså ytterligare ett alternativ för att hitta största/minsta värdet på
randen i Exempel 1 ovan. Vi betraktar problemet som ett optimeringsproblem för f över hela
planet D = R

2 med bivillkoret att

g(x, y) = x2 + y2 − 4 = 0.

Enligt Lagranges multiplikatormetod måste minst ett av systemen

(A)











f ′
x
(x, y) + λg′

x
(x, y) = 0,

f ′
y
(x, y) + λg′

y
(x, y) = 0,

g(x, y) = 0,

(B)











g′
x
(x, y) = 0,

g′
y
(x, y) = 0,

g(x, y) = 0,

vara uppfyllt i de inre extrempunkterna till problemet. Vi beräknar först de partiella derivatorna
för f och g,

f ′
x
(x, y) = 4x(x2 + 2), f ′

y
(x, y) = 4y3, g′

x
(x, y) = 2x, g′

y
(x, y) = 2y.

Systemen blir i vårt fall

(A)











2x(2x2 + 4 + λ) = 0,

2y(2y2 + λ) = 0,

x2 + y2 − 4 = 0,

(B)











2x = 0,

2y = 0,

x2 + y2 − 4 = 0.
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Det är lätt att se att system B saknar lösning. (De första två ekvationerna ger att x = y = 0,
vilket inte satisfierar den sista ekvationen.) Vi löser istället system A. Från första ekvationen får
vi att antingen är x = 0 eller 2x2 +4+λ = 0. Andra ekvationen ger på samma sätt att antingen
är y = 0 eller 2y2 + λ = 0. Det ger oss fyra möjliga fall:

Fall 1: x = y = 0.
Omöjligt av samma anledning som för system B; sista ekvationen satisfieras ej.

Fall 2: 2x2 + 4 + λ = 0 och y = 0.
Sätter vi in y = 0 i sista ekvationen får vi x = ±2. Då ger 2x2 + 4 + λ = 0 att λ = −12.
Vi har en lösning till systemet (x, y, λ) = (±2, 0,−12).

Fall 3: x = 0 och 2y2 + λ = 0.
Sätter vi in x = 0 i sista ekvationen får vi y = ±2. Då ger 2y2 + λ = 0 att λ = −8. Vi
har en lösning till systemet (x, y, λ) = (0,±2,−8).

Fall 4: 2x2 + 4 + λ = 0 och 2y2 + λ = 0.
Vi subtraherar dessa villkor från varandra och dividerar med två. Det ger

x2 − y2 + 2 = 0,

dvs y2 = x2 + 2. Sätter vi in detta i sista ekvationen får vi 2x2 − 2 = 0, och vi får att
x = ±1. Det ger sedan y = ±

√
x2 + 2 = ±

√
3 och λ = −2y2 = −6. Vi har en lösning till

systemet (x, y, λ) = (±1,±
√

3,−6).

De möjliga extrempunkterna är alltså:

(±2, 0,−12), (0,±2,−8), (±1,±
√

3,−6).

Evaluerar vi f i punkterna1 får vi

f(±2, 0) = 24 + 4 · 22 + 16 = 48,

f(0,±2) = 24 + 16 = 32,

f(±1,±
√

3) = 1 + 32 + 4 + 16 = 30.

Eftersom randen är en kompakt mängd (och alla randpunkter ligger i det inre av D = R
2) kommer

funktionens största och minsta värde återfinnas bland ovanstående tal. Svaret blir alltså som
tidigare att största värdet är 48 och minsta är 30.

1Notera att Lagrangemultiplikatorn λ inte bidrar.
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