
FUNCTION APPROXIMATION

JOHAN JANSSON

1. TO READ

• Piecewise linear interpolation (117)
• Quadrature (118)

2. GOALS

2.1. Understanding.

• Piecewise linear and constant interpolation
• Interpolation error
• Numerical integration/quadrature (as polynomial interpolation, as time-stepping)
• Quadrature error
• Piecewise linear “hat functions” as basis for piecewise linear functions.
• L2 projection

2.2. Skills.

• Symbolically show with pen and paper the error estimate for piecewise linear interpola-
tion.

• Construct piecewise linear interpolants in 1D and 2D
• Implement Python functions for quadrature based on piecewise linear interpolation (trape-

zoid method), compare to time-stepping.

3. SOFTWARE INTERFACES

Follow the interface specifications in the template Python file in the “python” subdirectory. Copy
the templates into a new file named “approximation.py” and continue adding your own code.
When you’re finished or want to check how well you’re doing, submit your “approximation.py”
(must be named exactly that) to the Web-CAT system athttp://webcat.csc.kth.se.

Some of the templates make use of the DOLFIN Python module. Toget documentation about a
specific class or function, you can use the Python built-in documentation system (from the Python
prompt):

Simulation Technology Module.

1

http://webcat.csc.kth.se

2 JOHAN JANSSON

>>> import dolfin
>>> help(dolfin.Mesh)
Help on class Mesh in module dolfin.cpp:

class Mesh(Variable)
| A Mesh consists of a set of connected and numbered mesh entities.

...
>>> help(dolfin.Mesh.num_vertices)
Help on method Mesh_num_vertices in module _cpp:

Mesh_num_vertices(...) unbound dolfin.cpp.Mesh method
Mesh_num_vertices(Mesh self) -> uint

Return number of vertices.
...

Note that in Python a function may take a function as an argument, and also return a function as
return value. For example, to define the square of a function,you can do:

def f(t):
return 1.0/t + t

def square(g):
def gsquare(t):
return g(t)*g(t)

return gsquare

fsquare = square(f)
print fsquare(t)

Thus f(2.0) gives 2.5 and fsquare(2.0) gives 6.25, as expected.

4. EXAMINATION

The examination of this module consists of the questions below. Each question gives 1 point (a
question with two sub-questions gives0.5 + 0.5 = 1 point). To pass the module 2.5/4 points are
necessary.

5. QUESTIONS

5.1. Game/interactive simulation. The purpose of this module is to introduce piecewise linear
functions in 1D and 2D. This is a basis for the solution of partial differential equations by the
finite element method, which you will do in M6: PDE. Look at some of the sample finite ele-
ment solutions for PDE on the course home page to get a feel forhow piecewise linear function
approximation is used to solve advanced problems.

In this module, play around with the functions ingame/game.py and try to do the following
yourself with data of your choice:

FUNCTION APPROXIMATION 3

• Play around with piecewise constant and linear interpolation, can you get a feel for the
interpolation error?

• Construct a piecewise linear function as a sum of hat basis functions with your own
choice of parameters.

• Choose a point in a 2D mesh and plot the corresponding hat basis function.

5.2. Piecewise linear interpolation.

(1) Derive the interpolation error for piecewise linear interpolation as in ch. 117, and be able
to explain the steps.

(2) Construct a piecewise linear interpolant of the function f(x) = e−10x on [0, 1] with
5 nodes (4 sub-intervals) such that the maximum interpolation error on the whole in-
terval is less than0.15. Note: For linear interpolation the interpolation constant is
C = 1

8
. Hint: Use the error estimate derived in the previous subquestion, and compute

the second derivative in the left end point of each sub-interval. Implement the function
interpolant_exponential() to return the points. Plot the function and its inter-
polant.

5.3. Quadrature / Integration.

(1) Implementintegrate() (very similar toprimitive() from module 1). Think
about the error estimates and convergence rates now in termsof piecewise constant and
linear interpolation (see ch. 118).

(2) The analog of trapezoid integration/quadrature in 2D iscalled “vertex” (corner points of
a triangle) quadrature, and is defined by:

∫

K
f(x)dx ≈

∑

3

j=1

1

3
f(xj)VK , whereK is

one triangle in the domain,VK is the area ofK andxj are the vertices ofK.
Implementintegrate2D based on piecewise linear interpolation, use the given

vertex quadrature formula on the test cases:f1(x, y) = x andf2(x, y) = x2 + y2. Use
the code below for looping over the triangles and edges in themesh:

mesh = dolfin .UnitSquare (4 , 4)

integral = 0 . 0
for c in dolfin .cells (mesh) :

cell_integral = 0 . 0
for v in dolfin .vertices (c) :
cell_integral += . . .

integral += . . .

5.4. L2-projection.

(1) (Hard) Compute theL2-projectionPf of the same functionf(x) = e−10x as for 1D in-
terpolation with a “mesh” with the same distance between allpoints (use UnitInterval()),
see the template for sample code. Implement the computationof theL2-norm of the error

‖e‖L2 =

√

∫ b

a
e2dx, where the error ise = Pf − f as thel2_norm() function in the

template (Hint: in Python it’s possible for a function to return another function, use this
to to define a function which is the square of another function, and to define a function
for the error). Plotf(x), the interpolant and the projection. Compute the error of the
projection and the interpolant. Can you explain the difference in error for the piecewise
linear interpolant and theL2 -projection?

	1. To read
	2. Goals
	2.1. Understanding
	2.2. Skills

	3. Software Interfaces
	4. Examination
	5. Questions
	5.1. Game/interactive simulation
	5.2. Piecewise linear interpolation
	5.3. Quadrature / Integration
	5.4. L2-projection

