
THE FIXED POINT ITERATION ALGORITHM -
LINEAR/NONLINEAR ALGEBRAIC EQUATIONS

JOHAN JANSSON NINNI CARLSUND LEVIN

1. TO READ

Time-stepping Newton’s equations of motion (17.1)

Contraction Mapping (ch. 76)

Newton’s method (ch. 77)

Solving Linear Algebraic Systems (94)

2. GOALS

2.1. Understanding.

• Understand that implicit time-stepping (Trapezoid for example) re-
quires solving a (possibly non-linear) algebraic equationsystem.

• If g(x) is contraction mapping then the fixed-point iterationx =
g(x) converges.

• Understand Newton’s method as the best fixed-point method.
• Understand that standard iterative methods (like Jacobi, Steepest

Descent and Conjugate Gradient) for linear algebraic systems are
fixed-point iteration methods.

2.2. Skills.

• Be able to formulate an algebraic equation asf(x) = 0 and a fixed-
point iterationx = g(x) (x = x− αf(x) as template case).

• Be able to derive the condition for convergence of a fixed-point it-
eration (definition of contraction mapping).

• Be able to derive Newton’s method for solving an algebraic equation
system.

1



2 JOHAN JANSSON NINNI CARLSUND LEVIN

• Be familiar with some basic iterative (fixed-point) methods(at least
Jacobi’s method) for solving linear algebraic systems.

3. SOFTWARE INTERFACES

Follow the interface specifications in the template Python file in the “python”
subdirectory. The filefixedpoint.py includes the functions (some of them to
be finished) needed for this module, continue adding your owncode to the
functions. When you’re finished or want to check how well you’re doing,
submit your “fixedpoint.py” (must be named exactly that) to the Web-CAT
system athttp://webcat.csc.kth.se.

You will also find a filemain.py where you can implement the different
test cases specified in the questions below.

4. EXAMINATION

The examination of this module consists of the questions below. Each
question gives 1 point (a question with two sub-questions gives0.5+0.5 = 1
point). To pass the module 2/3 points are necessary (4/5 in Web-CAT, since
it counts every available subquestion as 1 point).

5. QUESTIONS

5.1. Fixed-point iteration/Newton’s method.

• Formulate a fixed-point iteration (x = g(x)) for the non-linear equa-
tion x2

− 4x + 3 = 0 and derive the conditions for convergence
(contraction mapping).

Compute a solution using your fix-point iteration. You may use
the functionfixedpoint() (or write your own).
In order to submit to Web-CAT, complete the implementation (or
implement your own solution) insquare_equation().

• Solve the following system
(

x2
− y

x− y2

)

=

(

3
1

)

http://webcat.csc.kth.se


THE FIXED POINT ITERATION ALGORITHM - LINEAR/NONLINEAR ALGEBRAIC EQUATIONS3

by Newton’s method (you may use the functionnewton(), or

write your own). The system has one root in

(

x

y

)

=

(

2
1

)

,

compute the other root.
Complete the implementation ofsquare_system() to be able
to submit to Web-CAT.

5.2. Implicit time-stepping.

• Make a new version of thesolve() function from module 3 (still
using thetimestep() function from module 3), and now imple-
ment the fixed-point iteration (you may usefixedpoint()).

• Extend your newsolve() function to Newton’s method (you may
usenewton() andfixedpoint_adapter()). Verify that your
solver now can take larger time steps than the fixed-point variant al-
lows.

5.3. Linear systems. We wish to solve the linear system of equations,
Ax = b, by:

Jacobi:

Jacobi’s method can be described as:

Ax = b ⇒ [A = D +M ] ⇒ x = D−1(−Mx+ b) = g(x)

where the matrixD is the diagonal ofA andM = A−D.

Implement Jacobi’s method for solving linear systems of equations.
Complete the functionjacobi(A, b) to be able to submit to
Web-CAT. You may usefixedpoint() if you wish.

Steepest Descent (hard):

The Steepest Descent method can be described as:

x = x− α(Ax− b) = g(x) (r = Ax− b)

α =
(r, r)

(r, Ar)

Complete the implementation of Steepest Descent in the function
steepest_descent(A, b). You can use the FEM linear sys-
tem fromgenerate_data() as a test case if you wish.



4 JOHAN JANSSON NINNI CARLSUND LEVIN

Conjugate Gradient (hard):

The Conjugate Gradient method is very similar to Steepest De-
scent, but has much faster convergence.

Test the implementation of Conjugate Gradient given in the func-
tion conjugate_gradient(A, b) (very similar to Steepest
Descent) and verify that the convergence is much faster (fewer itera-
tions). You can use the FEM linear system fromgenerate_data()
as a test case if you wish.


	1. To read
	2. Goals
	2.1. Understanding
	2.2. Skills

	3. Software Interfaces
	4. Examination
	5. Questions
	5.1. Fixed-point iteration/Newton's method
	5.2. Implicit time-stepping
	5.3. Linear systems


