THE FIXED POINT ITERATION ALGORITHM -
LINEAR/NONLINEAR ALGEBRAIC EQUATIONS

JOHAN JANSSON NINNI CARLSUND LEVIN

1. To READ

Time-stepping Newton’s equations of motion (17.1)
Contraction Mapping (ch. 76)
Newton’s method (ch. 77)

Solving Linear Algebraic Systems (94)

2. GOALS

2.1. Understanding.

e Understand that implicit time-stepping (Trapezoid for raxéde) re-
quires solving a (possibly non-linear) algebraic equasigstem.

e If g(z) is contraction mapping then the fixed-point iteration=
g(x) converges.

e Understand Newton’s method as the best fixed-point method.

e Understand that standard iterative methods (like Jacdbigp@st
Descent and Conjugate Gradient) for linear algebraic systare
fixed-point iteration methods.

2.2. Skills.

e Be able to formulate an algebraic equatiory&s) = 0 and a fixed-
point iterationz = g(z) (r = z — a.f (z) as template case).
e Be able to derive the condition for convergence of a fixedypii
eration (definition of contraction mapping).
e Be able to derive Newton’s method for solving an algebraicign
system.
1

2 JOHAN JANSSON NINNI CARLSUND LEVIN

e Be familiar with some basic iterative (fixed-point) methddsleast
Jacobi's method) for solving linear algebraic systems.

3. SOFTWARE INTERFACES

Follow the interface specifications in the template Pythlenriithe “python”
subdirectory. The filéxedpoint.py includes the functions (some of them to
be finished) needed for this module, continue adding your cvde to the
functions. When you're finished or want to check how well yeudoing,
submit your “fixedpoint.py” (must be named exactly that)le Web-CAT
system ahttp://webcat.csc.kth.se

You will also find a filemain.py where you can implement the different
test cases specified in the questions below.

4. EXAMINATION

The examination of this module consists of the questionevhbelEach
guestion gives 1 point (a question with two sub-questionsgg)i.5+0.5 = 1
point). To pass the module 2/3 points are necessary (4/5 lm@W, since
it counts every available subquestion as 1 point).

5. QUESTIONS

5.1. Fixed-point iteration/Newton’s method.

e Formulate a fixed-pointiteration: (= g()) for the non-linear equa-
tion 22 — 42 + 3 = 0 and derive the conditions for convergence
(contraction mapping).

Compute a solution using your fix-point iteration. You mae us
the functionf i xedpoi nt () (or write your own).

In order to submit to Web-CAT, complete the implementation (
implement your own solution) isquar e_equat i on().

e Solve the following system

() =(0)

http://webcat.csc.kth.se

THE FIXED POINT ITERATION ALGORITHM - LINEAR/NONLINEAR ALGEBRAIC EQUATIONS

by Newton’s method (you may use the functinewt on(), or

write your own). The system has one root (nZ) = (?)

compute the other root.
Complete the implementation sfquar e_syst en() to be able
to submit to Web-CAT.

5.2. Implicit time-stepping.

e Make a new version of theol ve() function from module 3 (still
using thet i mest ep() function from module 3), and now imple-
ment the fixed-point iteration (you may usexedpoi nt ()).

e Extend your nevgol ve() function to Newton’s method (you may
usenewt on() andf i xedpoi nt _adapt er ()). Verify that your
solver now can take larger time steps than the fixed-poimantal-
lows.

5.3. Linear systems. We wish to solve the linear system of equations,
Ax = b, by:

Jacobi:

Jacobi's method can be described as:
Az =b=[A=D+M])=2=D"'(~Mz+0b) = g(z)
where the matrixD is the diagonal oA andM = A — D.

Implement Jacobi’s method for solving linear systems ofagigns.
Complete the functionp acobi (A, b) to be able to submit to
Web-CAT. You may uséi xedpoi nt () if you wish.

Steepest Descent (hard):

The Steepest Descent method can be described as:
r=x—a(Az —b) =g(x) (r= Az —Db)
()
(r, Ar)
Complete the implementation of Steepest Descent in theitunc

st eepest _descent (A, b). You can use the FEM linear sys-
tem fromgener at e_dat a() as atest case if you wish.

JOHAN JANSSON NINNI CARLSUND LEVIN

Conjugate Gradient (hard):

The Conjugate Gradient method is very similar to Steepest De
scent, but has much faster convergence.

Test the implementation of Conjugate Gradient given in thecf
tion conj ugat e_gradi ent (A, b) (very similar to Steepest
Descent) and verify that the convergence is much fasteefféera-
tions). You can use the FEM linear system frgener at e_dat a()
as a test case if you wish.

	1. To read
	2. Goals
	2.1. Understanding
	2.2. Skills

	3. Software Interfaces
	4. Examination
	5. Questions
	5.1. Fixed-point iteration/Newton's method
	5.2. Implicit time-stepping
	5.3. Linear systems

