
This is page i
Printer: Opaque this

BODYandSOUL
MATHEMATICAL SIMULATION

TECHNOLOGY
Draft

(To be downloaded and then opened to get links to work)

c© Johan Jansson and Claes Johnson 2010
with contributions by Kenneth Eriksson, Don Estep, Peter Hansbo and Johan Hoffman

All Rights Reserved

November 10, 2010

This is page 119
Printer: Opaque this

17
Newton’s Laws of Motion

• 1st Law: In the absence of a net force, a body either is at
rest or moves in a straight line with constant speed.

• 2nd Law: A body experiencing a force F experiences an
acceleration a related to F by F = ma, where m is the
mass of the body. Alternatively, force is equal to the time
derivative of momentum.

• 3rd Law: Whenever a first body exerts a force F on a
second body, the second body exerts a force -F on the first
body. F and -F are equal in magnitude and opposite in
direction.

17.1 Time-Stepping Newton’s Equations of Motion

Newton’s World is based on the following incremental equations of motion
with smallest unit of time dt:

dx = vdt, dv = adt, (17.1)

as another way of writing

dx

dt
= v,

dv

dt
= a, (17.2)

which combined with Newton’s 2nd Law F = a assuming M = 1, take the
form:

dx = vdt, dv = Fdt, (17.3)

120 17. Newton’s Laws of Motion

or
dx

dt
= v,

dv

dt
= F. (17.4)

These equations are solved by time-stepping with time step dt:

dxn = vndt dvn = andt, (17.5)

where
dxn = xn+1 − xn, dvn = vn+1 − vn, (17.6)

and xn = x(ndt) and vn = v(ndt) are the position and velocity at time ndt
after n successive time steps with time step dt.

With each tick of time, velocity and position are thus updated according
to

vn+1 = vn + Fndt, xn+1 = xn + vndt, for n = 0, 1, ..., (17.7)

from given initial values v(0) and x(0) at initial time t = 0, where Fn =
F (ndt) is the force acting on the body at time ndt. We refer to this update
formula as Euler’s method also called Forward Euler.

An alternative update formula is obtained by updating first velocity to
vn+1 and using this value when updating to xn+1:

vn+1 = vn + Fndt, xn+1 = xn + vn+1dt, (17.8)

which we will refer to as Smart-Euler’s method. You will soon discover the
difference between Euler and Smart-Euler.

A variant of Smart-Euler is

vn+1 = vn + Fndt, xn+1 = xn +
1

2
(vn + vn+1)dt, (17.9)

where the mean velocity 1
2 (vn + vn+1) is used instead of either vn or vn+1.

Below we shall meet variants with Fn depending on xn+1. The basic
method of this form is the Trapezoidal Method :

vn+1 = vn +
1

2
(Fn + Fn+1)dt, xn+1 = xn +

1

2
(vn + vn+1)dt, (17.10)

where Fn = F (ndt, xn) and Fn+1 = F ((n + 1)dt, xn+1), which requires
iteration because Fn+1 depends on xn+1, which depends on vn+1.

Below we shall recover Midpoint Euler in the form of the continuous
Galerkin cG(1), and Backward Euler with vn and Fn in (17.7) replaced by
vn+1 and Fn+1, as discontinuous Galerkin dG(0).

We also refer to the Trapezoidal Method as Midpoint Euler, with Forward
and Backward Euler as “Endpoint Euler”.

We distinguish between explicit methods like Forward Euler with direct
update, and implicit methods requiring iteration, like Midpoint Euler or
Backward Euler, where the update formula for vn+1 and Fn+1 is repeated
with latest values inserted in the righthand side. With a (small) fixed num-
ber of iterations, implicit methods can be viewed as explicit direct update
methods.

17.2 Basic Solutions of the Equations of Motion 121

FIGURE 17.1. Eyeblink as time step.

17.2 Basic Solutions of the Equations of Motion

Newton’s equations of motion, with given initial position x0 and velocity
v0, take the form

dv

dt
=

F

m
,

dx

dt
= v for t > 0, x(0) = x0, v(0) = v0. (17.11)

If F = 0, then the solution is given by

v(t) = v0, x = v0t + x0 for t ≥ 0, (17.12)

because if v(t) = v0 then dv = 0, and if x(t) = v0t then dx = v0dt.
If F = 2, m = 1 and v0 = 0, then the solution is given by

v(t) = 2t, x = t2 + x0 for t ≥ 0, (17.13)

because if v(t) = 2t then dv = 2dt, and if x(t) = t2 then dx = (t+dt)2−t2 =
(t + dt + t) dt ≈ 2t dt using the formula

a2 − b2 = (a + b)(a − b). (17.14)

By combination, we thus obtain the following solution formula for the
basic case with F constant:

v(t) =
F

m
t + v0, x(t) =

F

m

t2

2
+ v0t + x0. (17.15)

It is important that you understand the derivation of this formula. The key
is to understand that dv

dt = 1 if v = t and that dx
dt = 2t if x = t2.

122 17. Newton’s Laws of Motion

17.3 The Fight: Newton vs Leibniz

Leibniz and Newton developed the basics of Calculus independently, in the
second half of the 17th century. Newton accused Leibniz for plagiarism
backed by the Royal Society of London, which made Leibniz very unhappy
in his later years, see Newton vs. Leibniz. Of course, since Leibniz was such
an honest scientist, he did not steal anything from Newton. In fact, it is
Leibniz’ Calculus which is now taught, which is a machine for symbolic and
numerical computation with derivatives and integrals, and not Newton’s
theory of fluxions based on geometric arguments which is very difficult to
understand and use.

17.4 Crash Test

• Crash test simulation

• Crash experiment

17.5 Watch

• Newton’s Laws

• Newton’s 2nd Law

• Conservation of Momentum.

17.6 Conservation of Momentum and Kinetic
Energy

The momentum m of a body of mass M traveling with velocity v is defined
by m = Mv. If the body is not acted upon by any force (F = 0), then
momentum is conserved :

dm

dt
=

d

dt
(Mv) = M

dv

dt
= Ma = F = 0 (17.16)

If the body is acted upon by a force F , then momentum m changes accord-
ing to

dm

dt
= F (17.17)

If we multiply this equation by v and interprete Fv = W as rate of work
W , then we we can write

dk

dt
=

d

dt

Mv2

2
= Mv

dv

dt
= M

dv

dt
v = Fv = W, (17.18)

17.7 Does Time-Stepping Respect Conservation of Kinetic Energy? 123

where k = Mv2

2 is the kinetic energy. We here used the fact that d
dtv

2 =
2v dv

dt , which we will prove shortly. We conclude that the kinetic energy
changes according to

dk

dt
= W = Fv. (17.19)

In particular, if F = 0 then the kinetic energy is conserved.
For a system of particles interacting by elastic collisions, total momentum

and kinetic energy are conserved if exterior forces vanish, because interior
forces and work cancel.

If the velocity is a a vector v = (v1, v2, v3), so is momentum Mv, while
kinetic energy K is a number (scalar)

k =
M |v|2

2
=

M(v2
1 + v2

2 + v2
3)

2
. (17.20)

If we agree to generalize conservation of momentum to dm
dt = F and

conservation of kinetic energy to dk
dt = W (= Fv), then we understand that

• Conservation of momentum is the same as Newton’s 2nd Law.

• Conservation of kinetic energy is obtained by multiplying Newton’s
2nd Law by velocity.

You will find these insights very helpful below.

17.7 Does Time-Stepping Respect Conservation of
Kinetic Energy?

When you start to compute with Forward Euler, Smart Euler and Mid-
point Euler, you will find that Forward Euler gains kinetic energy, Smart
Euler loses kinetic energy, while Midpoint Euler as a compromise essen-
tially conserves kinetic energy, in problems where kinetic energy should
be conserved. You will also discover that the loss and gain decrease with
decreasing time step.

We shall meet conservation of energy in a more general context in the
next chapter, as conservation of total energy as the sum of kinetic energy
and potential/elastic energy

17.8 To Think About

• How did Newton discover the 2nd Law?

• Who won the War of Calculus, Newton or Leibniz?

124 17. Newton’s Laws of Motion

FIGURE 17.2. Heraclitus in Raphael’s School of Athens: Pantha rei...Everything
flows...There is nothing permanent except change... .Much learning does not teach
understanding...No man ever steps in the same river twice, for it’s not the same
river and he’s not the same man...The eyes are more exact witnesses than the
ears...Justice will overtake fabricators of lies and false witnesses...Big results re-
quire big ambitions...The way up and the way down are one and the same... Man
is most nearly himself when he achieves the seriousness of a child at play...Men
who wish to know about the world must learn about it in its particular details. .

• Given the velocities of two elastic spheres about to impact, seek the
velocities after impact. Conservation of (total) momentum? Conser-
vation of (total) kinetic energy?

17.9 To Think About: Airbus 340-600

Consider the following data for an Airbus 340-600:

• take-off weight W : 368 tons

• wing area S: 439 square meter

• wing load W
S : 8383 Newton/square meter

• sea-level thrust T : 4 × 25.4 tons

• W
T = 3.62

17.10 To Think About: Fokker 50 125

• seats 380.

What is the take-off time and distance? What is the power required at
crusing? Why is the engine power given as thrust in tons rather than horse-
powers?

17.10 To Think About: Fokker 50

Consider the following data for a Fokker 50:

• take-off weight W : 20 tons

• wing area S: 70 square meter

• wing load W
S : 3000 Newton/square meter

• engine power P : 2 × 2050 kWatts

• P
W : 100 Watts/kilo

• crusing speed: 526 km/hour

• seats 50.

How many kW are required at crusing if F = 10 (which means that the
thrust is 2 tons)? Are the engines oversized (for crusing?)?

17.11 To Watch: Airbus 340-600

• Crash 340-600 April 16 2009.

• Take off

• Emergence landing on Hudson River

• Construction in 116 seconds.

17.12 To Watch: Spitfire

• The story

• Spitfire vs MX2

• Start off

126 17. Newton’s Laws of Motion

FIGURE 17.3. Airbus 340-600 and Supermarine Spitfires on mission.

• Under bridge

The Supermarine Spitfire is a British single-seat fighter aircraft used by
the Royal Air Force and many other Allied countries through the Second
World War. Specifications (Spitfire Mk Vb): max weight 3000 kg, engine
Rolls-Royce Merlin 45 supercharged V12 engine, 1,470 hp at 9,250 ft (1,096
kW at 2,820 m), max speed 605 km/hour.

17.13 To Think About: Take-Off

To accellerate an airplane of weight W kp from rest to 60 meter/second
in 60 seconds, requires an accelleration of 1 meter/second squared, that is
a force of W Newton. For a jumbojet of 400 tons a thrust of 40 tons is
required (because 1 kp is about 10 Newton), and the length of the starting
lane is 1

2602 = 1.800 meters. Doubling the thrust to 80 tons, reduces the
time to 30 seconds and the starting lane to 900 meters, which is more
realistic. To cruise at a finesse F = 20 requires a thrust of 400

20 = 20 tons,
about a quarter of the thrust needed for take-off.

Can you figure out how much the length of the starting lane increases if
you take into account that the drag increases as velocity squared, and thus
the engine power available for acceleration decreases with speed (until the
maximum speed is attained and no further accelleration is possible).

17.14 To Think About: Galileo’s Experiment

Suppose you drop at the same time a tennis ball and a much heavier sim-
ilar size pétanque (boule) ball from the Tower of Pisa, like Galileo did?
How much quicker will the pétanque ball reach the ground? Compare the
Reference Frame. Can you scale the balls so that they fall equally fast?

This is page 127
Printer: Opaque this

18
Particle-Spring System

Fear always springs from ignorance (Ralph Waldo Emerson, Ameri-
can Poet, Lecturer and Essayist, 1803-1882)

Let x(t) be the position at time t of a unit point mass or particle moving
without friction along a line subject to a linear spring force F (x) = −x.
See Intro to Springs.

Newton’s equations of motion take the form:

dx = vdt, dv = −xdt. (18.1)

u=0 u>0

FIGURE 18.1. Particle-spring system: One particle/mass gliding without friction
along a line attached to one of a spring attached to a fixed wall: Here u(t) = x(t)
is the position at time t measured from some the reference point with zero spring
force

128 18. Particle-Spring System

FIGURE 18.2. A 2particle-2spring system with dampers

18.1 Watch

• Particle-Spring

• Particle-Spring Frequency Response

• Particle-Spring Cows on Ice

18.2 To Think About

• How does a spring function?

• How to motivate that spring force is proportional to elongation?

18.3 Conservation of Total Energy

The total energy E a particle connected to a linear spring modeled by ẋ = v
and v̇ = −x is defined by

E =
1

2
(x2 + v2). (18.2)

Let us now prove that Midpoint Euler conserves the total energy. This
follows by multiplying the time-stepping equations

xn+1 − xn =
1

2
(vn+1 + vn)dt, vn+1 − vn = −1

2
(xn+1 + xn)dt

by 1
2 (xn+1 + xn) and 1

2 (vn+1 + vn), respectively, to get by summation and
reordering (using that (a + b)(a − b) = a2 − b2),

En+1 ≡ 1

2
((xn+1)2 + (vn+1)2) =

1

2
((xn)2 + (vn)2) ≡ En (18.3)

which expresses conservation of the total energy as En+1 = En.
We understand that as the particle moves back and forth, kinetic energy

is transformed into elastic energy stored as the spring stretches or com-
presses, which is transformed back into kinetic energy as the stretching
and compression is eased.

This is page 129
Printer: Opaque this

19
Planetary System

I demonstrate by means of philosophy that the earth is round,
and is inhabited on all sides; that it is insignificantly small, and
is borne through the stars. (Johannes Kepler)

The equations of motion for a planet (viewed as a pointlike particle) of
unit mass orbiting a fixed Sun of unit mass centered at the origin, take the
form

dx = vdt, v = Fdt, (19.1)

where
F (x) = − x

|x|3 (19.2)

is the gravitational force. This is a force acting at distance, because the
origin is the Sun at the origin, and it acts at x with distance |x| from the
origin.

Note that (19.2) is Newton’s famous inverse square law of gravitation
stating that the magnitude of the gravitational force F between two bodies
with mass M1 and M − 2 at distance r is given by

F = G
M1M2

r2
, (19.3)

where G is the gravitational constant.
We shall prove below that (19.2) this is a consequence of the fact that

the gravitational potential satisfies a certain differential equation named
Laplace’s equation, and we shall uncover the assumptions leading to Laplace’s
equation. We can this way motivate that the exponent in Newton’s Law is
2 and nothing else.

130 19. Planetary System

FIGURE 19.1. Jupiter.

FIGURE 19.2. The Crab nebulosa: A macroscopic particle system.

19. Planetary System 131

FIGURE 19.3. Galileo presenting mathematical arguments to
disbelieving Catholic priests.

132 19. Planetary System

FIGURE 19.4. Galileo’s telescope.

19.1 Watch

• Poincaré and the chaos of the three-body problem.

19.2 To Think About

• What are Kepler’s Laws?

• What is the simplest solution of a 2-body problem?

19.3 To Read

• BS How to prove Kepler’s laws yourself.

• BS Solar System

19.4 Watch

• Kepler’s Laws I

• Kepler’s Laws II.

This is page 201
Printer: Opaque this

39
Particle-Spring Systems

I do not keep up with the details of particle physics. (Murray
Gell-Mann)

It’s indeed surprising that replacing the elementary particle
with a string leads to such a big change in things. I’m tempted
to say that it has to do with the fuzziness it introduces. (Edward
Witten)

There are no Quantum Jumps, nor are there Particles! (H. D.
Zeh)

39.1 Equations of Motion

We now generalize from pointlike hard particles to flexible systems consist-
ing of hard particles connected by elastic springs, referred to as particle-
spring systems. We start with a system consisting of two particles of mass
M1 and M2, the positions of which we record by the coordinates x1(t) and
x2(t). We connect the particles by an elastic spring with rest length L12

and spring constant E, which establishes a force between the particles, with
the force acting on M1 given by

F12 = E(r12 − L12)e12, (39.1)

202 39. Particle-Spring Systems

where r12 = |x1−x2|. This is an attractive force if |r12| < L12 and repulsive
if |r12| > L12, and let

e12 =
x2 − x1

r12
(39.2)

be the vector of unit length pointing from x1 to x2. Of course (why?) the
force F21 acting on particle M2 is the reverse of F12 so that F21 = −F12

(Newton’s 3rd Law).
We say that this is a linear spring since the spring force is directly pro-

portional to the elongation |r12|− L12 from the rest length.
The equations of motion are

ẋ1(t) = v1(t), ẋ2(t) = v2(t),

v̇1(t) =
F12

M1
, v̇2(t) =

F21

M2
,

(39.3)

or in incremental form using Smart-Euler:

v1,n+1 = v1,n +
Fn

12

M1
dt, v2,n+1 = v2,n +

Fn
21

M2
,

x1,n+1 = x1,n + v1,n+1dt, x2,n+1 = x2,n + v1,n+1dt,
(39.4)

where xi,n = xi(ndt), vi,n = vi(ndt) for i = 1, 2, and Fn
12 = E(rn

12−L12)en
12

with en
12 = x2,n−x1,n

rn
12

and rn
12 = |x2,n − x1,n|.

39.2 Experiments

• Flying Circus Cow

• Inside Flying Circus Cow

• Particle-spring elastic system

39.3 Generalization

We can directly generalize to any number of particles connected by any
set of linear springs, including crossing springs. We can generlize to non-
linear springs with a non-linear relation between spring force and spring
elongation. See e.g. N-Body Systems.

39.4 Demo + Lab

• Test, Modify and Create Yourself (particlespring)

This is page 259
Printer: Opaque this

62
x(t) =

∫ t

0 v(s)ds solves ẋ(t) = v(t)

Without mathematics we cannot penetrate deeply into philoso-
phy. Without philosophy we cannot penetrate deeply into math-
ematics. Without both we cannot penetrate deeply into any-
thing. (Leibniz)

62.1 The Most Basic IVP

The solution of the IVP of finding x : [0, T] → R such that

ẋ(t) = v(t) for 0 < t ≤ T, x(0) = 0, (62.1)

where v : [0, T] → R is a given function and [0, T] a given time-interval, is
denoted by

x(t) =

∫ t

0
v(s) ds, t ∈ [0, T], (62.2)

and is referred to as the integral or primitive function of v(t). So far the

integral
∫ t
0 v(s) ds is just a sign or name of the solution x(t), and it remains

to give it a concrete meaning. We shall see that the S-like integral sign
∫

can be viewed as indicating a certain form of Summation, which we shall
make precise. The integral sign

∫
was the strike of genius of Leibniz, long

before logotypes became the carriers of the inner meaning of companies
and organizations.

260 62. x(t) =
R t

0
v(s)ds solves ẋ(t) = v(t)

The Forward Euler method for the IVP (62.1), is given by

x((n+1)dt) = x(ndt)+v(ndt)dt for n = 0, 1, 2, ..., N, with (N+1)dt = T,
(62.3)

or equally well

x((n+1)ds) = x(nds)+v(nds)ds for n = 0, 1, 2, ..., N, with (N+1)ds = T,
(62.4)

with dt = ds the time step. If we replace x(nds) by x((n − 1)ds) + v((n −
1)ds)ds, and so on, we see that x((n + 1)ds) can be expressed as as a sum

x((n+1)ds) =
n∑

m=0

v(mds)ds = v(0)ds+v(ds)ds+v(2ds)ds+...+v(nds)ds.

(62.5)
We are thus led to view

∫ t

0
v(s)ds and

n∑

m=0

v(mds) ds, (62.6)

to be similar, which we shall make precise below. We refer to the sum
representation of the integral as a Riemann sum. We sum up so far:

Observation 1: The integral x(t) =
∫ t
0 v(s)ds satisfies by definition

ẋ(t) =
d

dt

∫ t

0
v(s)ds = v(t) for 0 < t ≤ T. (62.7)

The integral x(t) =
∫ t
0 v(s)ds represents a Riemann sum

∑n
m=0 v(mds) ds

with (n + 1)dt = t.

Observation 2: The solution of the IVP, with possibly non-zero initial
value x0, of finding x : [0, T] → R such that

ẋ(t) = v(t) for 0 < t ≤ T, x(0) = x0, (62.8)

is given by

x(t) = x0 +

∫ t

0
v(s)ds. (62.9)

This is because the derivative of a constant function (the function w(t) =
x0), is zero (ẇ = 0).

Observation 3: Since ẋ(t) = v(t) and v̇(t) = a(t) with x(t) distance, v(t)
velocity and a(t) accelleration, we can say that

• distance is the integral of velocity,

• velocity is the integral of accelleration.

62.2 Interpreting the Integral as an Area 261

FIGURE 62.1. Integral as Riemann sum as area under graph.

62.2 Interpreting the Integral as an Area

The area A(v, t) bounded by the graph of the function v : [0, t] → R and
the s-axis of a (v, s)-coordinate system, can viewed as a sum of rectangu-
lar strips of height v(mdt) and width dt (asssuming for definiteness that
v(mdt) ≥ 0), and thus

A(v, t) =
n∑

m=0

v(mds)ds, t = (n + 1)ds. (62.10)

We are thus led to interprete the integral as an area:
∫ t

0
v(s)ds = A(v, t) = area under the graph of v(s) on the interval [0, t]

(62.11)
as illustrated in Fig. 60.1.

62.3 The Trapezoidal Rule

Replacing the shaded rectangle area in Fig. 60.1 with the area of a trapezoid
right vertical of length v((m + 1)dt as illustrated in Fig. 60.2, we obtain
the alternative Riemman sum approximation
∫ t

0
v(s)ds ≈

n−1∑

m=0

v(mds) + v((m + 1)ds)

2
ds =

v(0)

2
ds+

n−1∑

m=1

v(mds)ds+
v(t)

2
ds.

(62.12)

262 62. x(t) =
R t

0
v(s)ds solves ẋ(t) = v(t)

FIGURE 62.2. Piecewise linear approximation of the Trapezoidal Rule vs piece-
wise constant approximation of Euler Midpoint. Piecewise linear approximation
is a basic element of computational mathematics including the finite elemeent
method, as you will discover below...Simple and profound...

which is the Trapezoidal Rule. We compare with a Midpoint Euler method
defining the height of the rectangle to be the function value at the midpoint
of the interval. This value is close to the mean-value of the endpoint values
used in the Trapezoidal Method, which thus is close to Midpoint Euler.

62.4 Not All Integrals are Areas

Note that distance is the integral of velocity but it is not very natural to
say that distance is the area under the velocity graph.

Summing up: The integral is defined as the solution to an IVP. Some
integrals can be interpreted as areas, but all integrals are not areas. Some
cars (integrals) are Volvos (areas) but all cars (integrals) are not Volvos
(areas). There are also Saabs...

Nevertheless, many Calculus books introduce the integral as the area
under a graph, based on the pedagocial idea to define a new concept (the
integral) in terms of something supposedly more familiar (area), but this
is questionable from mathematical point of view and also confusing, when
students discover that all integrals are not areas. To say that an integral is
solution to an IVP, is not questionable, because this is what an integral is.

62.5 Watch 263

FIGURE 62.3. IVP of Usain Bolt

62.5 Watch

• Jesse Owens 1936 IVP: 100 on 10.3 sec

• Usain Bolt 2009 IVP: 100 m on 9.58 sec

This is page 264
Printer: Opaque this

This is page 265
Printer: Opaque this

63
The Fundamental Theorem of Calculus

63.1 Integration as Inverse of Differentation

The formula (62.7) is referred to as the Fundamental Theorem of Calculus :
Integration of the function v(t) followed by differentiation, gives back the
function v(t):

d

dt

∫ t

0
v(s)ds = v(t) for t > 0. (63.1)

Alternatively, The Fundamental Theorem of Calculus can be expressed
as ∫ t

0
u̇(s)ds = u(t) for t > 0, (63.2)

stating: Integration of the derivative u̇(t) of the function u(t), gives back
the function u(t). This follows from the fact that the derivative with respect
to t of both sides of (63.2) equals u̇(t), combined with the fact that two
functions with the same derivative taking the same value for t = 0, must
coincide. Two cars traveling with the same velocity starting at the same
time from the same location will arrive at the same time to the destination.
Right?

We shall see that (63.2) can be viewed to express the following identity:

The sum (

∫ t

0
or

n∑

m=0

) of the parts (du = u̇ds) = the whole (u(t)).

(63.3)

266 63. The Fundamental Theorem of Calculus

FIGURE 63.1. Analog mechanical integrator computing the integral
R

y(x)dx of
a funtion y(x). Can you explain how it works?

Integration means summing little pieces to make up the whole. In Leibniz
notation this is expressed as

∫ t

0

du

ds
ds =

∫ t

0
du = u(t) − u(0). (63.4)

Elementary and profound.
Below we shall study the dependence of the integral

∫ t
0 v(s)ds of a given

function v(s) on the time step ds, and see that it is a uniquely determined
number for vanishing time step, which is approximated using a finite time
step, with accuracy depending on the variation of the function f(t) with
t. We will thus give a mathematical analysis of the meaning of the Fun-
damental Theoreom of Calculus, which we will refer to as a mathematical
proof of the Fundamental Theorem.

This experience will illustrate the role and meaning of a mathematical
proof as a process of dissecting the structure and meaning of a certain
mathematical statement.

63.2 Read More

• Short Course in Calculus

• The Fundamental Theorem of Calculus

63.3 To Think About 267

63.3 To Think About

• What could it mean to prove the Fundamental Theorem?

• Other interpretations of the whole = sum of parts?

• Suppose u(T) = u(0) = 0. What then about
∫ T
0 u′(t) dt?

63.4 Watch

• Babbages Difference Engine No. 2

• Leibniz binary ball computer

•
√

2 pepper grinder

• Kraftwerk Pocket Calculator

• Kraftwerk Numbers

• Computer World

And as in arithmetic unpractised men must, and professors them-
selves may often, err, and cast up false; so also in any other subject
of reasoning, the ablest, most attentive, and most practised men may
deceive themselves, and infer false conclusions; not but that reason
itself is always right reason, as well as arithmetic is a certain and
infallible art: but no one man’s reason, nor the reason of any one
number of men, makes the certainty; no more than an account is
therefore well cast up because a great many men have unanimously
approved it. And therefore, as when there is a controversy in an ac-
count, the parties must by their own accord set up for right reason
the reason of some arbitrator, or judge, to whose sentence they will
both stand, or their controversy must either come to blows, or be
undecided, for want of a right reason constituted by Nature; so is it
also in all debates of what kind soever: and when men that think
themselves wiser than all others clamour and demand right reason
for judge, yet seek no more but that things should be determined
by no other men’s reason but their own, it is as intolerable in the
society of men, as it is in play after trump is turned to use for trump
on every occasion that suit whereof they have most in their hand.
For they do nothing else, that will have every of their passions, as it
comes to bear sway in them, to be taken for right reason, and that
in their own controversies: bewraying their want of right reason by
the claim they lay to it. (Leviathan, Thomas Hobbes)

This is page 313
Printer: Opaque this

75
Proof of the Fundamental Theorem

The quadrature of all figures follow from the inverse method of
tangents, and thus the whole science of sums and quadratures
can be reduced to analysis, a thing nobody even had any hopes
of before. (Leibniz)

Knowing thus the Algorithm of this calculus, which I call Dif-
ferential Calculus, all differential equations can be solved by a
common method. (Leibniz)

Let us now study the effect of the time step in solution of

u̇(t) = f(t), for t > 0, u(0) = u0, (75.1)

by Forward Euler time stepping

u(ndt + dt) = u(ndt) + f(ndt)dt, n = 0, 1, 2, ... (75.2)

We compare taking one step with time step dt with two steps of time step
dt
2 , for a given n:

u(ndt + dt) − ū(ndt + dt) = f(ndt)dt − (f(ndt) + f(ndt +
dt

2
))

dt

2

= (f(ndt) − f(ndt +
dt

2
))

dt

2
,

(75.3)

where ū is computed with time step dt
2 , and we assume that the same intial

value for t = ndt is used so that ū(ndt) = u(ndt). Assuming that f(t) is

314 75. Proof of the Fundamental Theorem

FIGURE 75.1. The fundamental step in the proof of the Fundamental Theorem.

Lipschitz continuous with Lipschitz constant L, we then find that

|u(ndt + dt) − ū(ndt + dt)| ≤ L

4
dt2. (75.4)

Summing now the contributions from all time steps with n = 0, 1, 2, ..., N ,
where T = (N + 1)dt is a final time, we get using that

∑N
n=0 dt = T ,

|u(T) − ū(T)| ≤ LT

4
dt, (75.5)

where thus u(T) is computed with time step dt and ū(T) with time step
dt
2 . Repeating the argument with successively refined times step dt

4 , dt
8 , ...,

we get

|u(T)− ū(T)| ≤ LT

2
dt (75.6)

for the difference between u(T) computed with time step dt and ū(T) com-
putes with vanishingly small time step, since

1

4
+

1

8
+

1

16
+ ... <

1

2
. (75.7)

We have now proved the Fundamental Theorem of Calculus:

Theorem 75.1 If f : [0, T] → R is Lipschitz continuous, then the function

u(t) =
∫ t
0 f(s) defined by Forward Euler time-stepping with vanishing time

step, solves the IVP: u̇(t) = f(t) for t ∈ (0, 1), u(0) = 0.

75.1 Even Better Understanding 315

The proof shows what it means to understand the Fundamental Theorem
of Calculus, which means to realize that (letting k denote a finite time step
and dt a vanishingly small step)

u(T) =

∫ T

0
f(t) dt ≈

N∑

n=0

f(nk)k if T = (N + 1)k, (75.8)

as a consequence of

u((n + 1)k) ≈ u(nk) + f(nk)k, or
u((nk + k) − u(nk)

k
≈ f(nk),

(75.9)
where the sum is referred to as a Riemann sum, with the following bound
for the difference

|
∫ T

0
f(t) dt −

N∑

n=0

f(nk)k| ≤ LTk

2
if T = (N + 1)k, (75.10)

if f : [0, T] → R is Lipschitz continuous with Lipschitz constant L.

In other words, understanding the integral u(t) =
∫ t
0 f(s) ds of a function

f : [0, T] → R means to understand that it is determined by Riemann sums
with vanishingly small step size, as the solution to the IVP u̇(t) = f(t),
u(0) = 0, and to understand that the difference between two Riemann sums
with mesh size k and k

2 , is bounded by Lk (or more precisely by L
4 k).

75.1 Even Better Understanding

As a serious student, you now probably ask: In precisely what sense the
differential equation u̇(t) = f(t) is satisfied by an Euler Forward solution
u(t) with time step k? It certainly is so constructed, but can we get a direct
verification? One way to do this is to associate a continuous piecewise linear
function determined by the values u(nk) at the discrete time levels nk,
again denoted by u(t). We then have on each interval (nk, (n+1)k), by the
definition of u(t):

u̇(t) =
u((n + 1)k) − u(nk)

k
= f(nk), (75.11)

from which we conclude that

|u̇(t) − f(t)| ≤ |f(nk) − f(t)| ≤ Lk for t ∈ ((n + 1)k, nk). (75.12)

We can thus say that u(t) satisfies the differential equation u̇(t) = f(t)
for all t with a precision of Lk. In other words, the residual u̇(t) − f(t) is
smaller than Lk. We have now understood the Fundamental Theorem even
better, right?

316 75. Proof of the Fundamental Theorem

FIGURE 75.2. The sad result of Archimedes mathematics.

FIGURE 75.3. Babbage’s Difference Engine No. 2 1847.

We shall see below that extending a function defined on a discrete set
of points to a continuous piecewise linear function, is a central aspect of
approximation in general and of the finite element method in particular.

75.2 To Think About

• What is fundamental about the Fundamental Theorem?

• Why is d
dt

∫ t
0 f(s) ds = f(t)? (compare with last argument)

• What is the Riemann sum error using the Trapezoidal Rule (62.12)?

Hint:
∫ t+dt
0 f(s) ds −

∫ t
0 f(s) ds =

∫ t+dt
t f(s) ds = f(t)dt ± L

2 dt2.

This is page 317
Printer: Opaque this

76
Contraction Mapping for u = g(u)

Give me a fixed point, and I will move the Earth. (Archimedes)

76.1 Solving f(u) = 0 by Time Stepping

To solve an equation f(u) = (f1(u), f2(u), ..., fN(u)) = 0 of N equations
fi(u) = 0, i = 1, ..., N, in N unknowns u = (u1, u2, ..., uN), with thus
f : Rn → Rn, it is natural to connect to solution of the IVP: Find u(t)
such that

u̇(t) + f(u(t)) = 0 for t > 0, u(0) = u0, (76.1)

with some given initial value u0. If it turns out that as t increases, the
function u(t) tends to some value û, then u̇(t) could be expected to become
small, and if so, we would have

f(u(t)) ≈ 0. (76.2)

and we would be led to set û = u(t) for some large t and consider û to be
an approximate solution of f(u) = 0 with small residual f(û).

If f(u) has several different solutions, which is often the case, then we
could expect to capture different solutions by chosing different initial values
u0.

Computing u(t) by Forward Euler with time step dt = 1, we would have

un+1 = un − f(un), for n = 0, 1, 2, ..., (76.3)

318 76. Contraction Mapping for u = g(u)

If |un+1 − un| would become small for increasing n, then f(un) would
become small and thus un would be an approximate solution of f(u) = 0
with small residual f(un).

76.2 Solving u = g(u)

We are thus led to study the convergence of the iteration

un+1 = g(un), n = 0, 1, 2,, (76.4)

where
g(u) = u − f(u). (76.5)

To this end we take the difference of (76.4) for two consecutive steps to get

en+1 ≡ un+1 − un = g(un) − g(un−1). (76.6)

If g : RN → RN is Lipschitz continuous with Lipschitz constant L, then

|en+1| = |g(un) − g(un−1)| ≤ L|en| ≤ L2|en−1| ≤ Ln|u1 − u0| (76.7)

We see that if L < 1, then |en| becomes vanishingly small as n increases,
which by (76.3) means that f(un) becomes vanishingly small and thus un

may be viewed as an approximate solution of f(u) in the sense that the
residual f(un) is small. In the next chapter we also consider the error in
the approximate root un.

We see that if L << 1 then the convergence is fast, and if L ≈ 1 then the
convergence is slow. If L = 1

2 then the residual |g(un) − un| = |un+1 − un|
is reduced with a factor 2 in each iteration step, that is with a binary digit
per step.

If L < 1 then the mapping u → g(u) is said to be a contraction, because

|g(u) − g(v)| ≤ L|u − v| < |u − v| (76.8)

expressing that the distance between the images |g(u) − g(v)| is smaller
than the distance between the arguments |u − v|. We have just proved the
famous

Contraction Mapping Theorem: If g : RN → RN is a contraction with
Lipschitz constant L < 1, then the iteration un+1 = g(un) converges to a
unique fixed point satisfying u = g(u) at the rate Ln.

This is page 319
Printer: Opaque this

77
Newton’s Method for f(u) = 0

The sciences, are small power; because not eminent; and there-
fore, not acknowledged in any man; nor are at all, but in a few;
and in them, but of few things. For science is of that nature, as
none can understand it to be, but such as in a good measure
have attained it. (Thomas Hobbes in Leviathan Chapter X 14.)

Arts of public use, as fortifications, making of engines, and other
instruments of war; because they confer to defence, and victory,
are power: and though the true mother of them, be science,
namely the mathematics; yet, because they are brought into
the light, by hand of the artificer, they be esteemed (the mid-
wife passing with vulgar for the mother,) as his issue. (Thomas
Hobbes in Leviathan Chapter X 15.)

We now consider a variant of (76.3) for solving f(u) = 0 with faster
convergence by invoking the (inverse of the) derivative f ′(u), referred to as
Newton’s Method.

Let us then start with N = 1 and let f : R → R be a differentiable
function. Consider the following iteration:

un+1 = un − f(un)

f ′(un)
= g(un) (77.1)

with corresponding function

g(u) = u − f(u)

f ′(u)
(77.2)

320 77. Newton’s Method for f(u) = 0

assuming that f ′(u) != 0. Computing the derivative g′(u), we get

g′(u) = 1 − f ′(u)

f ′(u)
+

f(u)f ′′(u)

(f ′(u))2
= 0, (77.3)

if f(u) = 0. Thus we may expect that |g′(u)| is small, that is that L << 1
implying fast convcergence.

The iteration (254.1) is called Newton’s Method for computing a solution
of the equation f(u) = 0. Newton’s method directly generalizes to f :
RN → RN in the form

un+1 = un − (f ′(un))−1f(un) (77.4)

where f ′(un))−1 is the inverse of the N ×N matrix f ′(un) (thus assuming
that f ′(un) is non-singular). One can show that |en+1| ∼ |en|2, if the initial
guess is close enough to the root, which means that the number of correct
digits may double at iteration step.

77.1 Wellposed and Illposed Roots

Suppose u is an approximate solution with residual f(u) ≈ 0, or approxi-
mate root, of an equation f(u) = 0 with exact root ū. We have for small
|u − ū|

f(u) − f(ū) ≈ f ′(u)(u − ū), (77.5)

(still assuming for simplicity N = 1. This shows that

|u − ū| ≈ |f(u)|
|f ′(u)| (77.6)

indicating that the residual error |f(u)| translates to the root error |u− ū|
with the stability factor

S =
1

|f ′(u)| , (77.7)

that is

|u − ū| ≈ S|f(u)| (77.8)

In other words: If |f ′(u)| is not small so that S is not large, then the root
is well defined or wellposed, while if |f ′(u)| is small so that S is large, then
the root is illposed or not well defined.

For a wellposed root u the curve x → f(x) crosses the x-axis at x = u
with a definite slope, which makes the crossing point well determined. For
an illposed root the curve is almost tangent to the x-axis which makes the
crossing point difficult to pin down.

77.2 Newton’s Method Requires Good Initial Guess 321

77.2 Newton’s Method Requires Good Initial
Guess

Newton’s method converges very quickly towards a root, if the starting
value is close enough to the root. If not, the iterations may diverge and then
give rise complex fractal patterns as shown in the figure below showing big
basins of convergence around roots separated by fractal boundary zones.

77.3 Learn More

• Fixed point iteration.

• Newton’s method

77.4 To Think About

• How to compute
√

2? By Solving x2 = 2? How?

77.5 Watch

• Newton’s method fractal 1

• Newton’s method fractal 2

• Newton fractals algorithm

322 77. Newton’s Method for f(u) = 0

FIGURE 77.1. Fractals from iterations by Newton’s method. Big basins show
roots. Boundaries between basins show fractal complexity.

This is page 323
Printer: Opaque this

78
Generalized Fundamental Theorem

I believe in the fundamental Truth of all the great religions of
the world. I believe that they are all God given. I came to the
conclusion long ago... that all religions were true and also that
all had some error in them. (Mahatma Gandhi)

The fairest thing we can experience is the mysterious. It is the
fundamental emotion which stands at the cradle of true art and
true science. He who know it not and can no longer wonder, no
longer feel amazement, is as good as dead, a snuffed-out can
(Einstein)

Most of the fundamental ideas of science are essentially simple,
and may, as a rule, be expressed in a language comprehensible
to everyone. (Einstein)

78.1 Time Stepping u̇ = u

The Fundamental Theorem concerns time-stepping of the IVP

u̇(t) = f(t) for t > 0, u(0) = u0, (78.1)

where the Lipschitz continuous function f(t) does not depend on the un-
known u, only on the (independent) time variable t.

324 78. Generalized Fundamental Theorem

We now extend to allow f to depend also on u. Assuming for simplicity
no explicit dependence on t, we thus consider the IVP:

u̇(t) = f(u(t)) for t > 0, u(0) = u0, (78.2)

where f : R → R is a given Lipschitz continuous function with Lipschitz
constant L. The basic question is if the solution can be computed to arbi-
trary precision by time-stepping?

The basic case is f(u) = u and u0 = 1, that is the IVP:

u̇(t) = u(t) for t > 0, u(0) = 1, (78.3)

with L = 1 and the solution u(t) = exp(t) computed by Forward Euler:

exp(t) ≈ (1 +
t

n
)n (78.4)

with time step k = t
n . We estimate the effect of dividing the time-step by

a factor 2, using that (t + dt)n − tn ≈ ntn−1dt (because d
dt t

n = ntn−1):

(1 +
t

2n
)2n − (1 +

t

n
)n = ((1 +

t

2n
)(1 +

t

2n
))n − (1 +

t

n
)n

= ((1 +
t

n
+

t2

4n2
)n − (1 +

t

n
)n ≈ n(1 +

t

n
)n−1 t2

4n2
≈ t

n
exp(t)

t

4
.

We see that the difference is proportional to the time step k = t
n . As in the

proof of the Fundamental Theorem of Calculus, we conclude that (1 + t
n)n

determines exp(t) with a precision proportional to the time step with a
multiplicative factor ≈ exp(t) t

4 ∼ exp(t).

78.2 Time Stepping u̇ = f(u)

The above proof extends to an arbitrary Lipschitz continuous function f(u)
with the difference that the time-stepping error in computing u(t), now is
proportional to the time step with a multiplicative factor exp(Lt), where
L is the Lipschitz constant of f . This extends to systems with f : Rd → Rd

with d > 1.
It is natural to refer to this result as a Generalized Fundamental Theo-

rem: The Fundamental Theorem concerns u̇(t) = f(t) and the Generalized
Fundamental Theorem concerns u̇(t) = f(u(t)). Calculus in a nutshell!

A proof of the Generalized Fundamental Theorem can be performed by
combining the following two steps:

Step 1: Estimate the difference u((n + 1)k) − ũ((n + 1)k) by taking one
(Forward Euler) time step of length k and two time steps on length k

2 , from

78.2 Time Stepping u̇ = f(u) 325

FIGURE 78.1. Fundamental Step 1 in the proof of the Generalized Fundamental
Theorem.

FIGURE 78.2. Fundamental Step 2 in the proof of the Generalized Fundamental
Theorem.

326 78. Generalized Fundamental Theorem

the same initial value u(nk):

|u((n + 1)k) − ũ((n + 1)k)|

= |u(nk) + kf(u(nk)) − (u(nk) +
k

2
f(u(nk)) +

k

2
f(u(nk) +

k

2
f(u(nk)))|

=
k

2
|f(u(nk) − f(u(nk) +

k

2
f(u(nk)))| ≤ k

2
L

k

2
|f(u(nk))|.

(78.5)

Step 2: Estimate the difference after one time step from different initial
conditions u(nk) − ũ(nk) :

|u((n + 1)k) − ũ((n + 1)k) = |u(nk) + kf(u(nk)) − ũ(nk) + kf(ũ(nk))|
≤ (1 + kL)|u(nk) − ũ(nk)|.

(78.6)

Combining Steps 1 and 2, we obtain a final error proportional to the time
step k with a multiplicative factor exp(Lt), which we refer to as a stability
factor. For details see Completion of the Proof.

To see the connection with the basic case f(u) = u, think of estimating a
general function f(u), assuming f(0) = 0 for simlipicity, by f(u) ≈ f ′(0)u,
which suggests that the factor exp(t) for f(u) = u should be replaced by
exp(Lt) for a general f(u) (because |f ′(0)| ≤ L).

Generalization to a vector valued function f : Rd → Rd with d > 1 is
direct, and we have thus presented the essential steps of a proof of the
following main result of Calculus:

Theorem 78.1 Generalized Fundamental Theorem of Calculus:
The solution u(t) of the IVP u̇(t) = f(u(t)) for 0 < t ≤ T with u(0)
given, where f : Rd → Rd is Lipschitz continuous with Lipschitz constant
L, is uniquely computable by Forward Euler time stepping with a precision
proportional to the time step times a stability factor of size exp(LT).

For a completion of the proof, see below and Special Case and General Case.
The proof is similar for the other methods we have so far encountered

(with un = u(nk)):

un+1 = un + kf(un+1) Backward Euler,

un+1 = un + kf(
un + un+1

2
) Midpoint Euler,

un+1 = un +
k

2
(f(un) + f(un+1)) Trapezoidal Method.

(78.7)

We see that if f(u) is linear in u, then Midpoint Euler and the Trapezoidal
Method coincide.

78.3 A Posteriori Error Control 327

78.3 A Posteriori Error Control

For a more precise error control, based on computed solutions, see

• Time Stepping Error Analysis

• Time Stepping by FEM

78.4 The Illusion of an exp(LT) Bound

If L = 10 and T = 30, which looks pretty harmeless, then exp(LT) =
exp(300) >> 10100 = googol, an incredibly large number, much larger
than the number of atoms in the Universe. A matching time step of 10−100

is beyond all rationale and thus computation of a solution of an IVP with
moderate Lipschitz constant oevr a moderatley long time interval may be
impossible. An example is the Lorenz system with

f(u) = (−10u1 + 10u2, 28u1 − u2 − u1u3,−
8

3
u3 + u1u2), (78.8)

for which computation on an interval of length T requires computation
with about T/2 digits, see:

• BS The Lorenz System and the Essence of Chaos

• Long-Time Computability of the Lorenz System

78.5 Stiff IVPs

There is a class of IVPs with large or very large Lipschitz constants, which
are computable on long time intervals, because the function f(u) has a
decay property (negative derivative) causing errors to decay rather than
grow exponentially. Such problems are called stiff problems and may re-
quire implicit time stepping to avoid severe time step restrcitions in explicit
methods. See Stiff Problems.

78.6 Wave Equations

IVPs with wavelike solutions, like the system

u̇1 = u2 u̇2 = −u1 (78.9)

with solutions being linear combinations of sin(t) and cos(t), have formally
Lipschitz constants of size 1, can be integrated with error growth ∼ t, in-
stead of ∼ exp(t) by the above (crude) estimate, if a proper time-stepping

328 78. Generalized Fundamental Theorem

FIGURE 78.3. A Lorenz system solution trajectory.

method (like cG(1)) is used. This is due to error cancellation in wave mo-
tion.

For more complex wave problems, or problems with more or less periodic
solutions, the stability factor can have a polynomial growth in time t, e.g.
quadratic for simple planetary systems.

78.7 Summary: Time Stepping of IVP

The precision in time stepping the solution u(t) of an IVP u̇ = f(u) for
0 < t ≤ T , with first order method with time step k, can be estimated by
S(T)k, where S(t) acts as stability factor measuring error propagation and
accumulation of size

• S(T) ∼ exp(LT) (general), where L is the Lipschitz constant of f .

• S(T) ∼ 1 (stiff: diffusion problems)

• S(T) ∼ T (wave problems), S(T) ∼ T 2 (planetary system).

78.8 Preparing for a More Precise Analysis

As a preparation for the more precise error analysis in Time Stepping Error Analysis
and Time Stepping by FEM, we consider two solutions u(t) and ũ(t) com-

78.9 Completion of the Proof 329

puted with the same time step k but different initial data u0 and ũ0. Sub-
tracting the update formulas we have formally for the difference e = u− ũ:

ė(t) ≈ f ′(u(t))e(t) for t > 0, e(0) = e0 ≡ u0 − ũ0 (78.10)

showng that an initial error is propagated as a solution to a linearized IVP
with coefficient f ′(u(t)) depending on a computed solution u(t). We shall
see that by solving the linearized problem (or rather a closely related dual
linearized problem), the stability factors S(t) measuring error growth can
be computed and the precision on the computation of u(t) can be assessed.

The linearized problem (or its dual) thus gives the key to unlock time
stepping precision.

Note that with f(u) = u, the linearized problem reads ė = e with solution
e(t) = exp(t)e0, showing exponential error growth, as expected.

78.9 Completion of the Proof

To complete the proof of the Generalized Fundmental Theorem we are to
sum up the error contributions from each subinterval of length k, which
according to Step 1 and Step 2 amounts to

N∑

n=1

(1 + kL)nLk2M ≈ kML
N∑

n=0

exp(Lnk)k

≈ kML

∫ T

0
exp(Ls) ds ≈ kM exp(LT),

(78.11)

where Nk = T and M ≥ maxu |f(u)|. Can you explain what is going on
here? If not, take a look at:

78.10 Hint to Completion of the Proof

We can think of comparing computations with k and k
2 with corresponding

solutions u(t) and ũ(t) in two ways depending on how we choose initial
values on each time interval (nk, (n + 1)k):

1. Compute u(t) and ũ(t) independently with timestep k and k
2 .

2. Assume that ũ(nk) = u(nk) and account for the effect at final time
of the difference ũ(nk) − u(nk).

1. is the most direct from computational point of view and a corresponding
proof is given in General Case.

Here we consider 2. because the proof is (maybe) simpler: The error from
the first time step is bounded by Lk2M assuming no error in initial data,

330 78. Generalized Fundamental Theorem

and is propagated with a factor bounded by (1 + kL) for each time step,
thus with a factor (1 + kL)N after N steps. Similarly, the error from the
second time step is bounded by Lk2M , again assuming no error in the
corresponding initial value, and is propagated with a factor (1 + kL)N−1,
et cet. Summing we obtain a bound of the total error after N steps.

It is instructive to in illustrate 1. and 2. in a figure complementing Figs.
77.1-2.

78.11 Uniqueness of Solution

To prove that the solution of the IVP (??) is unique, we assume v(t) is
a possibly different solution also satisfying v̇(t) = f(v(t)) for t > 0 and
v(0) = u0. Subtraction gives for the difference w = u − v

ẇ = f(u) − f(v) (78.12)

and thus taking the scalar product with w and using Cauchy’s inequality,
we get

d

dt

1

2
|w|2 =

d

dt

1

2
w · w = (f(u) − f(v)) · w ≤ L|w||w| (78.13)

and thus for W = |w|2
Ẇ ≤ 2LW, (78.14)

which shows that (why?)

W (t) ≤ W (0) exp(2Lt) for t > 0. (78.15)

But W (0) = |u(0) − v(0)| = 0 and thus W (t) = 0 and u(t) = v(t) for
t > 0 and uniqueness follows. But to be scientifically honest, size of the
exponential factor exp(Lt) is crucial. If L10 and t = 30, which does not
look too frightening, then exp(Lt) = exp(300) > 10100 =googol, which
means that the argument the exp(300)W (0) is small (zer0) if W (0) is small
(zero), is questionable, very questionable, right?

78.12 How to Prove exp(t + s) = exp(t) exp(s)?

To prove the basic law of the exponential exp(t + s) = exp(t) exp(s), note
that the function u(s) = exp(t + s) satisfies du

ds = u for s > 0 and u(0) =
exp(t). But the function v(s) = exp(t) exp(s) also satisfies dv

ds = v for s > 0
and v(0) = exp(t), and by uniqueness u(s) = v(s), that is exp(t + s) =
exp(t) exp(s).

78.12 How to Prove exp(t + s) = exp(t) exp(s)? 331

FIGURE 78.4. The Millennium Run: A large n-body computation with
n = 10.077.696.000.

332 78. Generalized Fundamental Theorem

FIGURE 78.5. Model of a virus as a large molecular dynamics system of differ-
ential equations u̇ = f(u).

This is page 341
Printer: Opaque this

81
Time Stepping Error Analysis

Sapiens nihil affirmat quod non probat.

After experience had taught me that all the usual surroundings
of social life are vain and futile; seeing that none of the objects of
my fears contained in themselves anything either good or bad,
except in so far as the mind is affected by them, I finally resolved
to inquire whether there might be some real good having power
to communicate itself, which would affect the mind singly, to the
exclusion of all else: whether, in fact, there might be anything of
which the discovery and attainment would enable me to enjoy
continuous, supreme, and unending happiness. (Spinoza)

81.1 Midpoint Euler

Consider a linear scalar IVP of the form: Find u(t) such that

u̇(t) + Au(t) = F (t) for t > 0, u(0) = u0, (81.1)

where A is a constant and F (t) a given functions, which has the standard
form u̇(t) = f(t, u(t)) with f(t, u) = F (t) − Au.

Compute an approximate solution U(t) by time stepping according to
the Trapezoidal Method: Find Un = U(nk) such that

Un+1 +
k

2
(AUn+1 + AUn) = Un +

∫

In

F (t) dt, for n = 0, 1, 2, ..., (81.2)

342 81. Time Stepping Error Analysis

with In = (nk, (n + 1)k) and U0 ≈ u0, assuming the integral of F (t)
can be evaluated analytically. We here think of U(t) as a piecewise linear
continuous function taking on the computed values Un at the discrete time
levels nk with time step k. If so the Trapezoidal Method and Midpoint
Euler coincide. In particular, we then have

∫

In

U̇ dt = Un+1 − Un,

∫

In

AU dt =
k

2
(AUn+1 + AUn), (81.3)

which shows that Trapezoidal/Midpoint Euler satisfies:

∫

In

(U̇ + AU − F) dt = 0 for n = 0, 1, 2, ... (81.4)

In other words, the mean-value over each subinterval In of the residual
R(U) ≡ U̇ + AU − F vanishes.

We shall consider the following basic choices of A with different stability
characteristics connecting back to Summary: Timestepping of IVP:

1. constant non-negative: A ≥ 0,

2. constant imaginary: A = i,

3. constant negative: A < 0,

4. oscillating positive-negative: A(t) = sin(t),

where we also added a basic case with A(t) depending on t. We shall below
see that (81.1) can also be interpreted as a system of differential equations
with A a square matrix with the following analogous stability characteris-
tics:

1. A positive semi-definite (symmetric): diffusion problems

2. A anti-symmetric: wave problems

3. A negative definite (symmetric) or general matrix: inverted pendu-
lum...

4. A oscillating with zero mean: turbulence...

For a general non-linear system u̇+f(u) = 0, the matrix A then corresponds
to the Jacobian f ′(u(t)) as concerns stability.

81.2 Error Analysis of Midpoint Euler

We shall now estimate the error |u(T) − U(T)| at a given time T = Nk
in terms of the time step k and relevant quantities to be defined, where

81.2 Error Analysis of Midpoint Euler 343

we assume the u(t) is an exact solution satisfying (81.1) to high precision
(computed with a (vanishingly) small time step).

We shall do this by representing the error in terms of the solution ϕ(t)
of the following dual problem:

{
−ϕ̇ + Aϕ = 0 for T > t ≥ 0,

ϕ(T) = ±1 = sign of e(T),
(81.5)

where e = u − U . We note that that (81.5) runs “backwards in time”
starting at time T , because the (initial) data is given at t = T , and that
(accordingly) the time derivative term ϕ̇ has a minus sign. We start from
the identity

0 =

∫ T

0
e (−ϕ̇ + Aϕ) dt,

and integrate by parts to get the following error representation (since
|e(T)| = e(T)ϕ(T)):

|e(T)| =

∫ T

0
(ė + Ae)ϕ dt + e(0)ϕ(0),

where we allow U(0) to be different from u(0), corresponding to an er-
ror e(0) in the initial value u(0). Since u solves the differential equation
(159.14), that is u̇ + Au = F , we have

ė + Ae = u̇ + Au − F − (U̇ + AU − F) = F − U̇ − AU = −R(U),

and thus we obtain the following representation of the error |e(T)| in terms
of the residual R(U) = U̇ + AU − F and the dual solution ϕ:

|e(T)| = −
∫ T

0
R(U)ϕ dt + e(0)ϕ(0). (81.6)

Recalling (81.4) we have

∫

In

R(U) dt = 0 for n = 0, 1, 2, ...,

which allows us to rewrite (81.6) as

|e(T)| = −
∫ T

0
R(U)(ϕ − ϕ̄) dt + e(0)ϕ(0), (81.7)

where ϕ̄ is the mean-value of ϕ over each time interval In, that is

ϕ̄(t) =
1

k

∫

In

ϕ(s) ds for t ∈ In.

344 81. Time Stepping Error Analysis

We shall now use the fact that
∫

In

|ϕ − ϕ̄| dt ≤ k

∫

In

|ϕ̇| dt,

which follows by integration from the facts that

ϕ(t) − ϕ̄(t) =
1

k

∫

In

(ϕ(t) − ϕ(s)) ds,

and

|ϕ(t) − ϕ(s)| ≤
∫ t

s
|ϕ̇(σ)| dσ ≤

∫

In

|ϕ̇(σ)| dσ for s, t ∈ In.

Thus, (159.17) implies

|e(T)| ≤
N−1∑

n=0

Rn

∫

In

|ϕ − ϕ̄|dt + |e(0)||ϕ(0)|

≤
N−1∑

n=0

k Rn

∫

In

|ϕ̇|dt + |e(0)||ϕ(0)|,

(81.8)

where
Rn(U) = max

t∈In

|R(U(t))|.

Bringing out the max of knRn over n, we get

|e(T)| ≤ max
0≤n≤N−1

kRn

∫ T

0
|ϕ̇| dt + |e(0)||ϕ(0)|.

Defining the stability factors Sc(T) and Sd(T) by

Sc(T) =

∫ T

0
|ϕ̇(s)| ds, Sd(T) = |ϕ(0)|, (81.9)

we get the following a posteriori error estimate:

Theorem 81.1 The approximate solution U(t) of the initial value prob-
lem (81.1) computed by Midpoint Euler with time step k over intervals In,
satisfies for T > 0

|u(T)− U(T)| ≤ Sc(T)max
n

kRn(U) + Sd(T)|u(0) − U(0)|, (81.10)

where u(t) is the exact solution computed with vanishingly small time step,
Rn(U) = maxIn |U̇ +AU−F | measures the residual over In, and Sc(T) and
Sc(T) are stability factors defined by (81.9) related to time-discretization
and initial data.

81.2 Error Analysis of Midpoint Euler 345

The stability factors Sc(T) and Sd(T) measure the effects of the accu-
mulation of error in the approximation. To give the analysis a quantitative
meaning, we have to give a quantitative bound of these factors. In general
the stablity factors are computed by computing the solution of the dual
problem. In special cases the stability factors can be computed analyti-
cally, as we now show:

The following lemma gives an estimate for Sc(T) and Sd(T) depending
on the nature of A, in particular the sign of A, with possibly vastly different
stability factors. We notice that the solution ϕ(t) of (159.15) if A is constant
is given by the explicit formula

ϕ(t) = ± exp(−A(T − t)).

We see that if A > 0, then the solution ϕ(t) decays as t decreases from T ,
and the case A > 0 is thus the “stable case”. If A < 0 then the exponen-
tial factor exp(−AT) enters, and depending on the size of A this case is
“unstable”. More precisely, we conclude directly from the explicit solution
formula that

Theorem 81.2 The stability factors Sc(T) and Sd(T) satisfy if A < 0:

Sd(T) ≤ exp(|A|T), Sc(T) ≤ exp(|A|T), (81.11)

if A ≥ 0:
Sd(T) ≤ 1, Sc(T) ≤ 1 (81.12)

if A = i:
Sd(T) ≤ 1, Sc(T) ≤ T, (81.13)

if A = sin(t):
Sd(T) ≤ exp(1), Sc(T) ≤ exp(1)T. (81.14)

Proof: Changing variables T − t → t, we can write the dual equation as
the forward-in-time problem ϕ̇ = −Aϕ for t > 0, ϕ(0) = 1 with solution
exp(−At), if A is constant. We note that if A > 0, then

∫ T

0
|ϕ̇(t)| dt =

∫ T

0
A exp(−At) dt = −

∫ T

0

d

dt
exp(−At) dt = 1−exp(−AT) < 1.

(81.15)
Further, if A < 0, then

∫ T

0
|ϕ̇(t)| dt =

∫ T

0

d

dt
exp(−At) dt = exp(−AT) − 1 ≈ exp(|A|T) (81.16)

If A = i, then

∫ T

0
|ϕ̇(t)| dt =

∫ T

0
| d

dt
exp(−it)| dt =

∫ T

0
1 dt = T. (81.17)

346 81. Time Stepping Error Analysis

Finally, if A = sin(t) then ϕ(t) = exp(cos(t)), and so

|ϕ(T)| ≤ exp(1),

∫ T

0
|ϕ̇(t)| dt ≤ exp(1)T. (81.18)

!.
The size of the stability factors indicate the degree of stability of the

solution u(t) being computed. If the stability factors are large, the residuals
R(U(t)) and e(0) have to be made correspondingly smaller by choosing
smaller time steps and the computational problem is more demanding.

81.3 A Priori Error Estimate

The a posteriori error estimate (81.19) estimates the error in terms of the
computed solution U(t). There is a corresponding a priori error estimate
with R(U) replaced by R(uk) where uk is the piecewise linear interpolant of
the exact solution u(t) taking on the same values at the discrete time levels
nk. In this case the stability factors measure the stability of a corresponding
discrete dual problem.

How big is then R(uk)? Well, with piecewise linear interpolation, we have
|u̇ − u̇k| ≈ k|ü|, and thus the a priori estimate takes the form

|u(T)− U(T)| ≤ Sc(T)C(u)k2 + Sd(T)|e(0)|, (81.19)

where C(u) = maxt|ü(t)|. In short, Midpoint Euler is second-order accurate
with error proportional to k2. Backward Euler and Forward Euler are first
order accurate with error proportional to k.

81.4 Generalization

The above error analysis extends to a general IVP u̇(t) = f(u(t)) for t > 0,
u(0) = u0, as shown in Chapter (159).

81.5 To Think About

• Show that the a posteriori estimate (81.19) directly extends to vari-
able time steps kn with knRn replacing kRn.

• For a basic aspect of duality in error estimation, see Error Control by Duality.

This is page 511
Printer: Opaque this

93
Solving Linear Algebraic Systems

All thought is a kind of computation. (Hobbes)

93.1 Introduction

We are interested in solving a system of linear equations

Ax = b,

where A is a given n × n matrix and b ∈ Rn is a given n-vector and we
seek the solution vector x ∈ Rn. We recall that if A is non-singular with
non-zero determinant, then the solution x ∈ Rn is theoretically given by
Cramer’s formula. However if n is large, the computational work in using
Cramer’s formula is prohibitively large, so we need to find a more efficient
means of computing the solution.

We shall consider two types of methods for solving the system Ax = b: (i)
direct methods based on Gaussian elimination that theoretically produce
a solution after a finite number of arithmetic operations, and (ii) iterative
methods that produce a generally infinite sequence of increasingly accurate
approximations.

93.2 Direct Methods

We begin by noting that some linear systems are easier to solve than others.
For example if A = (aij) is diagonal, which means that aij = 0 if i #= j,

512 93. Solving Linear Algebraic Systems

then the system is solved in n operations: xi = bi/aii, i = 1, ..., n. Further,
if the matrix is upper triangular, which means that aij = 0 if i > j, or
lower triangular, which means that aij = 0 if i < j, then the system can
be solved by backward substitution or forward substitution respectively; see
Fig. 93.1 for an illustration of these different types. For example if A is

0

0 0

0

FIGURE 93.1. The pattern of entries in diagonal, upper, and lower triangular
matrices. A “∗” denotes a possibly nonzero entry.

upper triangular, the “pseudo-code” shown in Fig. 93.2 solves the system
Ax = b for the vector x = (xi) given the vector b = (bi) (assuming that
akk != 0): In all three cases, the systems have a unique solution as long as

for k = n-1, n-2, ..., 1, do

sum = 0

for j = k+1, ..., n, do

sum = sum + akj . xj

xk = (bk - sum)/akk

xn = bn/ann

FIGURE 93.2. An algorithm for solving an upper triangular system by back
substitution.

the diagonal entries of A are nonzero.
Direct methods are based on Gaussian elimination, which in turn is based

on the observation that the solution of a linear system is not changed under
the following elementary row operations:

• interchanging two equations

• adding a multiple of one equation to another

• multiplying an equation by a nonzero constant.

The idea behind Gaussian elimination is to transform using these opera-
tions a given system into an upper triangular system, which is solved by

93.2 Direct Methods 513

back substitution. For example, to solve the system

x1 + x2 + x3 = 1

x2 + 2x3 = 1

2x1 + x2 + 3x3 = 1,

we first subtract 2 times the first equation from the third to get the equiv-
alent system,

x1 + x2 + x3 = 1

x2 + 2x3 = 1

−x2 + x3 = −1.

We define the multiplier to be the factor 2. Next, we subtract −1 times the
second row from the third to get

x1 + x2 + x3 = 1

x2 + 2x3 = 1

3x3 = 0.

In this case, the multiplier is −1. The system is now upper triangular and
using back substitution, we obtain x3 = 0, x2 = 1, and x1 = 0. Gaussian
elimination can be coded in a straightforward way using matrix notation.

Matrix Factorization

There is another way to view Gaussian elimination that is useful for the
purposes of programming and handling special cases. Namely, Gaussian
elimination is equivalent to computing a factorization of the coefficient
matrix, A = LU , where L is a lower triangular and U an upper triangular
n × n matrix. Given such a factorization of A, solving the system Ax = b
is straightforward. We first set y = Ux, then solve Ly = b by forward
substitution and finally solve Ux = y by backward substitution.

To see that Gaussian elimination gives an LU factorization of A, consider
the example above. We performed row operations that brought the system
into upper triangular form. If we view these operations as row operations
on the matrix A, we get the sequence




1 1 1
0 1 2
2 1 3



 →




1 1 1
0 1 2
0 −1 1



 →




1 1 2
0 1 2
0 0 3



 ,

which is an upper triangular matrix. This is the “U” in the LU decompo-
sition.

The matrix L is determined by the observation that the row operations
can be performed by multiplying A on the left by a sequence of special

514 93. Solving Linear Algebraic Systems

matrices called Gauss transformations. These are lower triangular ma-
trices that have at most one nonzero entry in the off-diagonal positions
and 1s down the diagonal. We show a Gauss transformation in Fig. 93.3.
Multiplying A on the left by the matrix in Fig. 93.3 has the effect of adding





1 0 · · · 0
0 1 0 0

. . . 1
. . . 0

...
...

0 0 0
. . . 0

0 αij 0
. . . 1

. . .

0 0 0
. . .
0 1 0

0 · · · 0 1





FIGURE 93.3. A Gauss transformation.

αij times row j of A to row i of A. Note that the inverse of this matrix is
obtained changing αij to −αij ; we will use this below.

To perform the first row operation on A above, we multiply A on the left
by

L1 =




1 0 0
0 1 0
−2 0 1



 ,

to get

L1A =




1 1 1
0 1 2
0 −1 −1



 .

The effect of pre-multiplication by L1 is to add −2× row 1 of A to row 3.
Note that L1 is lower triangular and has ones on the diagonal.

Next we multiply L1A on the left by

L2 =




1 0 0
0 1 0
0 1 1



 ,

and get

L2L1A =




1 1 1
0 1 2
0 0 3



 = U.

93.2 Direct Methods 515

L2 is also lower triangular with ones on the diagonal. It follows that A =
L−1

1 L−1
2 U or A = LU , where

L = L−1
1 L−1

2 =




1 0 0
0 1 0
2 −1 1



 .

It is easy to see that L is also lower triangular with 1’s on the diagonal with
the multipliers (with sign change) occurring at the corresponding positions.
We thus get the factorization

A = LU =




1 0 0
0 1 0
2 −1 1








1 1 1
0 1 2
0 0 3



 .

Note that the entries in L below the diagonal are exactly the multipliers
used to perform Gaussian elimination on A.

A general linear system can be solved in exactly the same fashion by
Gaussian elimination using a sequence of Gauss transformations to obtain
a factorization A = LU .

An LU factorization can be performed in situ using the storage space
allotted to the matrix A. The fragment of code shown in Fig. 93.4 computes
the LU factorization of A, storing U in the upper triangular part of A and
storing the entries in L below the diagonal in the part of A below the
diagonal. We illustrate the storage of L and U in Fig. 93.5.

for k = 1, ..., n-1, do

for j = k+1, ..., n, do

ajk = ajk/akk
for m = k+1, ..., n, do

ajm = ajm - ajk akm

(step through rows)

(store the entry of L)

(eliminate entries
below diagonal entry)

(correct entries
down the row)

(store the entry of U)

FIGURE 93.4. An algorithm to compute the LU factorization of A that stores
the entries of L and U in the storage space of A.

Measuring the Cost

The cost of solving a linear system using a direct method is measured
in terms of computer time. In practice, the amount of computer time is

516 93. Solving Linear Algebraic Systems

u11
u22

unn

u12 u1n
l21

ln1 lnn-1

FIGURE 93.5. The matrix output from the algorithm in Fig. 93.4. L and U are
stored in the space allotted to A.

proportional to the number of arithmetic and storage operations the com-
puter uses to compute the solution. It is traditional (on a sequential com-
puter) to simplify the cost calculation by equating storing a value, addition,
and subtraction and equating multiplication and division when counting
operations. Moreover, since multiplication (i.e. multiplications and divi-
sions) generally cost much more than addition on older computers, it is
also common to simply count the number of multiplications (=multiplica-
tions+divisions).

By this measure, the cost of computing the LU decomposition of an n×n
matrix is n3 − n/3 = O(n3/3). We introduce some new notation here, the
big “O”. The actual count is n3/3−n/3, however when n is large, the lower
order term −n/3 becomes less significant. In fact,

lim
n→∞

n3/3 − n/3

n3/3
= 1, (93.1)

and this is the definition of the big “O”. (Sometimes the big “O” notation
means that the limit of the ratio of the two relevant quantities is any con-
stant). With this notation, the operations count of the LU decomposition
is just O(n3).

The cost of the forward and backward substitutions is much smaller:

Pivoting

During Gaussian elimination, it sometimes happens that the coefficient of
a variable in the “diagonal position” becomes zero as a result of previous
eliminations. When this happens of course, it is not possible to use that
equation to eliminate the corresponding entries in the same column lying
below the diagonal position. If the matrix is invertible, it is possible to find
a non-zero coefficient in the same column and below the diagonal position,
and by switching the two rows, the Gaussian elimination can proceed. This
is called zero pivoting, or just pivoting.

Adding pivoting to the LU decomposition algorithm is straightforward.
Before beginning the elimination using the current diagonal entry, we check

93.2 Direct Methods 517

to see if that entry is non-zero. If it is zero, we search the entries below
in the same column for the first non-zero value, then interchange the row
corresponding to that non-zero entry with the row corresponding to the
current diagonal entry which is zero. Because the row interchanges involve
rows in the “un-factored” part of A, the form of L and U are not affected.
We illustrate this in Fig. 93.6.

for k = 1, ..., n-1, do

for j = k+1, ..., n, do

ajk = ajk/akk
for m = k+1, ..., n, do

ajm = ajm - ajk akm

(step through rows)

(store the entry of L)

(eliminate entries
below diagonal entry)

(correct entries
down the row)

(store the entry of U)

j=k
while ajk = 0, j=j+1

for m = 1, ..., n do
temp = akm
akm = ajm
ajm = temp

(search for the first
non-zero entry in
the current column)

(switch the kth and jth

rows of A)

FIGURE 93.6. An algorithm to compute the LU factorization of A that used
pivoting to avoid zero-valued diagonal entries.

To obtain the correct solution of the linear system Ax = b, we have to
mirror all pivots performed on A in the data b. This is easy to do with
the following trick. We define the vector of integers p = (1 2 . . . n)!.
This vector is passed to the LU factorization routine and whenever two
rows of A are interchanged, we interchange the corresponding entries in p.
After getting the altered p vector back, we pass it to the forward/backward
routine. Here, we address the vector b indirectly using the vector p, i.e., we
use the vector with entries (bpi)

n
i=1, which has the effect of interchanging

the rows in b in the correct fashion.
There are additional reasons to pivot in practice. As we have noted, the

computation of the LU decomposition can be sensitive to errors originating
from the finite precision of the computer if the matrix A is close to being
non-invertible. We discuss this further below. We mention here however
that a special kind of pivoting, called partial pivoting can be used to reduce
this sensitivity. The strategy behind partial pivoting is to search the entries
in the same column and below the current diagonal entry for the largest in
absolute value. The row corresponding to the largest entry in magnitude is
interchanged with the row corresponding to the current entry at the diago-

518 93. Solving Linear Algebraic Systems

nal. The use of partial pivoting generally gives more accurate results than
factorization without partial pivoting. One reason is that partial pivoting
insures that the multipliers in the elimination process are kept as small as
possible and consequently the errors in each entry are magnified by as little
as possible during the course of the Gaussian elimination. We illustrate this
with an example. Suppose that we solve

.000100x1 + 1.00x2 = 1.00

1.00x1 + 1.00x2 = 2.00

on a computer that holds three digits. Without pivoting, we get

.000100x1 + 1.00x2 = 1.00

−10000x2 = −10000

which implies that x2 = 1 and x1 = 0. Note the large multiplier that is
required for the elimination. Since the true answer is x1 = 1.0001 and
x2 = .9999, the computed result has an error of 100% in x1. If we switch
the two rows before eliminating, which corresponds exactly to the partial
pivoting strategy, we get

1.00x1 + 1.00x2 = 2.00

1.00x2 = 1.00

which gives x1 = x2 = 1.00 as a result.

93.3 Direct Methods for Special Systems

It is often the case that the matrices arising from the Galerkin finite element
method applied to a differential equation have special properties that can
be useful during the solution of the associated algebraic equations. For
example, the stiffness matrix for the Galerkin finite element approximation
of the two-point boundary value problem with no convection is symmetric,
positive-definite, and tridiagonal. In this section, we examine a couple of
different classes of problems that occur frequently.

Symmetric, Positive-Definite Systems

As we mentioned, symmetric, positive-definite matrices are often encoun-
tered when discretizing differential equations (especially if the spatial part
of the differential equation is of the type called elliptic). If A is symmetric
and positive-definite, then it can be factored as A = BB! where B is a
lower triangular matrix with positive diagonal entries. This factorization
can be computed from the LU decomposition of A, but there is a compact

93.3 Direct Methods for Special Systems 519

method of factoring A that requires only O(n3/6) multiplications called
Cholesky’s method.:

b11 =
√

a11

bi1 =
ai1

b11
, 2 ≤ i ≤ n,





bjj =

(
ajj −

∑j−1
k=1 b2

jk

)1/2
,

bij =
(
aij −

∑j−1
k=1 bikbjk

)
/bjj ,

2 ≤ j ≤ n, j + 1 ≤ i ≤ n

This is called a compact method because it is derived by assuming that
the factorization exists and then computing the coefficients of B directly
from the equations obtained by matching coefficients in BB" = A. For
example, if we compute the coefficient in the first row and column of BB"

we get b2
11, which therefore must equal a11. It is possible to do this because

A is positive-definite and symmetric, which implies among other things
that the diagonal entries of A remain positive throughout the factorization
process and pivoting is not required when computing an LU decomposition.

Alternatively, the square roots in this formula can be avoided by com-
puting a factorization A = CDC" where C is a lower triangular matrix
with ones on the diagonal and D is a diagonal matrix with positive diagonal
coefficients.

Banded Systems

Banded systems are matrices with non-zero coefficients only in some num-
ber of diagonals centered around the main diagonal. In other words, aij = 0
for j ≤ i− dl and j ≥ i + du, 1 ≤ i, j ≤ n, where dl is the lower bandwidth,
du is the upper bandwidth, and d = du + dl − 1 is called the bandwidth. We
illustrate this in Fig. 93.7. The stiffness matrix computed for the two-point
boundary value problem with no convection is an example of a tridiagonal
matrix, which is a matrix with lower bandwidth 2, upper bandwidth 2, and
bandwidth 3.

When performing the Gaussian elimination used to compute the LU
decomposition, we see that the entries of A that are already zero do not
have to be reduced further. If there are only relatively few diagonals with
non-zero entries, then the potential saving is great. Moreover, there is no
need to store the zero-valued entries of A. It is straightforward to adapt the
LU factorization and forward/backward substitution routines to a banded
pattern, once a storage scheme has been devised. For example, we can store

520 93. Solving Linear Algebraic Systems

a11
a22

ann

a12 0
a21

0

a13 a1du 0

adl1
0

ann-dl+10

ann-du+1

0

du

d
l

FIGURE 93.7. The notation for a banded matrix.

a tridiagonal matrix as a 3 × n matrix:




a21 a31 0 · · · 0
a12 a22 a32 0 · · · 0

0 a13 a23 a33 0 · · ·
...

. . .
. . .

. . .
. . .

. . . 0
... 0 a1n−1 a2n−1 a3n−1

0 · · · 0 a1n a2n





.

The routine displayed in Fig. 93.8 computes the LU factorization, while
the routine in Fig. 93.9 performs the forward/backward substitution.

for k = 2, ..., n, do

a1k = a1k/a2k-1
a2k = a2k - a1k a3k-1

FIGURE 93.8. A routine for computing the LU factorization of a tridiagonal
system.

The cost of this routine grows linearly with the dimension, rather than
at a cubic rate as in the full case. Moreover, we use only the equivalent of
six vectors of dimension n for storage. A more efficient version, derived as
a compact method, uses even less.

This algorithm assumes that no pivoting is required to factor A. Pivoting
during the factorization of a banded matrix raises the difficulty that the

93.4 Iterative Methods 521

for k = n-1, ..., 1, do

xn = yn/a2n

xk = yk - a3k xk+1 /a2k

for k = 2, ..., n, do

y1 = b1

yk = bk - a1k yk-1

FIGURE 93.9. Using forward and backward substitution to solve a tridiagonal
system given the LU factorization.

bandwidth becomes larger. This is easy to see in a tridiagonal matrix, in
which case we have to store an extra vector to hold the extra elements
above the diagonal that result if two adjacent rows are switched.

As for a tridiagonal matrix, it is straightforward to program special LU
factorization and forward/backward substitution routines for a matrix with
bandwidth d. The operations count is O(nd2/2) and the storage require-
ment is a matrix of dimension d× n if no pivoting is required. If d is much
less than n, the savings in a special approach are considerable.

While it is true that if A is banded, then L and U are also banded,
it is also true that in general L and U have non-zero entries in positions
where A is zero. This is called fill-in. In particular, the stiffness matrix for a
boundary value problem in several variables is banded and moreover most
of the sub-diagonals in the band have zero coefficients. However, L and U
do not have this property and we may as well treat A as if all the diagonals
in the band have non-zero entries.

Banded matrices are one example of the class of sparse matrices. Recall
that a sparse matrix is a matrix with mostly zero entries. As for banded
matrices, it is possible to take advantage of sparsity to reduce the cost of
factoring A in terms of time and storage. However, it is more difficult to do
this than for banded matrices if the sparsity pattern puts non-zero entries
at any location in the matrix. One approach to this problem is based on
rearranging the equations and variables, or equivalently rearranging the
rows and columns to form a banded system.

93.4 Iterative Methods

Instead of solving Ax = b directly, we now consider iterative solution meth-
ods based on computing a sequence of approximations x(k), k = 1, 2, ...,
such that

lim
k→∞

x(k) = x or lim
k→∞

‖x(k) − x‖ = 0,

522 93. Solving Linear Algebraic Systems

for some norm ‖ · ‖.
Note that the finite precision of a computer has a different effect on an

iterative method than it has on a direct method. A theoretically convergent
sequence can not reach its limit in general on a computer using a finite
number of digits. In fact, at the point at which the change from one iterate
to the next occurs outside the range of digits held by the computer, the
sequence simply stops changing. Practically speaking, there is no point
computing iterations past this point, even if the limit has not been reached.
On the other hand, it is often sufficient to have less accuracy than the limit
of machine precision, and thus it is important to be able to estimate the
accuracy of the current iterate.

Minimization Algorithms

We first construct iterative methods for a linear system Ax = b where
A is symmetric and positive-definite. In this case, the solution x can be
characterized equivalently as the solution of the quadratic minimization
problem: find x ∈ Rn such that

F (x) ≤ F (y) for all y ∈ Rn, (93.2)

where

F (y) =
1

2
(Ay, y) − (b, y),

with (·, ·) denoting the usual Euclidean scalar product.
We construct an iterative method for the solution of the minimization

problem (93.2) based on the following simple idea: given an approximation
x(k), compute a new approximation x(k+1) such that F (x(k+1)) < F (x(k)).
On one hand, since F is a quadratic function, there must be a “downhill”
direction from the current position, unless we are at the minimum. On
the other hand, we hope that computing the iterates so that their func-
tion values are strictly decreasing, will force the sequence to converge to
the minimum point x. Such an iterative method is called a minimization
method.

Writing x(k+1) = x(k) + αkd(k), where d(k) is a search direction and αk

is a step length, by direct computation we get

F (x(k+1)) = F (x(k)) + αk

(
Ax(k) − b, d(k)

)
+

α2
k

2

(
Ad(k), d(k)

)
,

where we used the symmetry of A to write (Ax(k), d(k))=(x(k), Ad(k)). If the
step length is so small that the second order term in αk can be neglected,
then the direction d(k) in which F decreases most rapidly, or the direction
of steepest descent, is

d(k) = −(Ax(k) − b) = −r(k),

93.4 Iterative Methods 523

which is the opposite direction to the residual error r(k) = Ax(k) − b. This
suggests using an iterative method of the form

x(k+1) = x(k) − αkr(k). (93.3)

A minimization method with this choice of search direction is called a
steepest descent method. The direction of steepest descent is perpendicular
to the level curve of F through x(k), which is the curve in the graph of F
generated by the points where F has the same value as at x(k). We illustrate
this in Fig. 93.10.

x(k)

x(k)
x

x

d(k)

F

level curves

FIGURE 93.10. The direction of steepest descent of F at a point is perpendicular
to the level curve of F through the point.

It remains to choose the step lengths αk. Staying with the underlying
principle, we choose αk to give the minimum value of F in the direction of
d(k) starting from x(k). Differentiating F (x(k) + αkr(k)) with respect to αk

and setting the derivative zero gives

αk = −
(
r(k), d(k)

)

(d(k), Ad(k))
. (93.4)

As a simple illustration, we consider the case

A =

(
λ1 0
0 λ2

)
, 0 < λ1 < λ2, (93.5)

and b = 0, corresponding to the minimization problem

min
y∈Rn

1

2

(
λ1y

2
1 + λ2y

2
2

)
,

524 93. Solving Linear Algebraic Systems

with solution x = 0.
Applying (93.3) to this problem, we iterate according to

x(k+1) = x(k) − αkAx(k),

using for simplicity a constant step length with αk = α instead of (93.4).
In Fig. 93.11, we plot the iterations computed with λ1 = 1, λ2 = 9, and
x(0) = (9, 1)!. The convergence in this case is quite slow. The reason is that

if λ2 " λ1, then the search direction −(λ1x
(k)
1 , λ2x

(k)
2)! and the direction

−(x(k)
1 , x(k)

2)! to the solution at the origin, are very different. As a result
the iterates swing back and forth across the long, narrow “valley”.

0 2 4 6 8

!1

!0.5

0.5

1

x1

x2

x(0)

x(1)

x(2)

FIGURE 93.11. A sequence generated by the steepest descent method for (93.5)
plotted together with some level curves of F .

It turns out that the rate at which the steepest descent method converges
in general depends on the condition number κ(A) = λn/λ1 of A, where
λ1 ≤ λ2 ≤ ... ≤ λn are the eigenvalues of A (counted with multiplicity). In
other words, the condition number of a symmetric positive definite matrix
is the ratio of the largest eigenvalue to the smallest eigenvalue.

The general definition of the condition number of a matrix A in terms of
a norm ‖ ·‖ is κ(A) = ‖A‖‖A−1‖. In the ‖ ·‖2 norm, the two definitions are
equivalent for symmetric matrices. Using any definition, a matrix is said
to be ill-conditioned if the log(κ(A)) is of the order of the number of digits
used in the computer. As we said, we can expect to have difficulty solving
an ill-conditioned system; which in terms of direct methods means large
errors due to rounding errors and in terms of iterative methods means slow
convergence.

93.4 Iterative Methods 525

We now analyze the steepest descent method for Ax = b in the case of a
constant step length α, where we iterate according to

x(k+1) = x(k+1) − α(Ax(k) − b).

Since the exact solution x satisfies x = x−α(Ax− b), we get the following
equation for the error e(k) = x − x(k):

e(k+1) = (I − αA)e(k).

The iterative method converges if the error tend to zero. Taking norms, we
get

‖e(k+1)‖ ≤ µ ‖e(k)‖ (93.6)

where we use the spectral estimate (92.16) to write

µ = ‖I − αA‖ = max
j

|1 − αλj |,

since the eigenvalues of the matrix I−αA are 1−αλj , j = 1, ..., n. Iterating
this estimate we get

‖e(k+1)‖ ≤ µk ‖e(0)‖, (93.7)

where e(0) is the initial error.
To understand when (93.6), or (93.7), guarantees convergence, consider

the scalar sequence {λk} for k ≥ 0. If |λ| < 1, then λk → 0; if λ = 1,
then the sequence is always 1; if λ = −1, the sequence alternates between 1
and −1 and does not converge; and if |λ| > 1, then the sequence diverges.
Therefore if we want the iteration to converge for any initial value, then
we must choose α so that µ < 1. Since the λj are positive by assumption,
1 − αλj < 1 automatically, and we can guarantee that 1 − αλj > −1 if α
satisfies α < 2/λn. Choosing α = 1/λn, which is not so far from optimal,
we get

µ = 1 − 1/κ(A).

If κ(A) is large, then the convergence can be slow because then the
reduction factor 1 − 1/κ(A) is close to one. More precisely, the number of
steps required to lower the error by a given amount is proportional to the
condition number.

When an iteration converges in this fashion, i.e. the error decreases (more
or less) by a given factor in each iteration, then we say that the iteration
converges linearly. We define the rate of convergence to be − log(µ). The
motivation is that the number of iterations are required to reduce the error
by a factor of 10−m is approximately −m log(µ). Note that a faster rate of
convergence means a smaller value of µ.

This is an a priori estimate of the error reduction per iteration, since we
estimate the error before the computation. Such an analysis must account
for the slowest possible rate of convergence because it holds for all initial
vectors.

526 93. Solving Linear Algebraic Systems

Consider the system Ax = 0 with

A =




λ1 0 0
0 λ2 0
0 0 λ3



 , (93.8)

where 0 < λ1 < λ2 < λ3. For an initial guess x(0)=(x0
1, x

0
2, x

0
3)

!, the
steepest descent method with α = 1/λ3 gives the sequence

x(k) =

((
1 − λ1

λ3

)k
x0

1,
(
1 − λ2

λ3

)k
x0

2, 0

)
, k = 1, 2, ...,

and,

‖e(k)‖ =

√(
1 − λ1

λ3

)2k (
x0

1

)2
+

(
1 − λ2

λ3

)2k (
x0

2

)2
, k = 1, 2, ...

Thus for a general initial guess, the size of the error is given by the root
mean square average of the corresponding iterate and the rate that the
errors decrease is the root mean square average of the rates of decrease of
the components. Therefore, depending on the initial vector, initially the
iterates will generally converge more quickly than the rate of decrease of
the first, i.e. slowest, component. In other words, more quickly than the
rate predicted by (93.6), which bounds the rate of decrease of the errors
by the rate of decrease in the slowest component. However, as the iteration
proceeds, the second component eventually becomes much smaller than the
first component (as long as x0

1 #= 0) and we can neglect that term in the
expression for the error, i.e.

‖e(k)‖ ≈
(
1 − λ1

λ3

)k|x0
1| for k sufficiently large. (93.9)

In other words, the rate of convergence of the error for almost all initial
vectors eventually becomes dominated by the rate of convergence of the
slowest component. It is straightforward to show that the number of itera-
tions that we have to wait for this approximation to be valid is determined
by the relative sizes of the first and second components of x(0).

This simple error analysis does not apply to the unmodified steepest
descent method with varying αk. However, it is generally true that the
rate of convergence depends on the condition number of A, with a larger
condition number meaning slower convergence. If we again consider the
2 × 2 example (93.5) with λ1 = 1 and λ2 = 9, then the estimate (93.6)
for the simplified method suggests that the error should decrease by a
factor of 1 − λ1/λ2 ≈ .89 in each iteration. The sequence generated by
x(0) = (9, 1)! decreases by exactly .8 in each iteration. The simplified
analysis over-predicts the rate of convergence for this particular sequence,

93.4 Iterative Methods 527

though not by a lot. By way of comparison, if we choose x(0) = (1, 1)!, we
find that the ratio of successive iterations alternates between ≈ .126 and
≈ .628, because αk oscillates in value, and the sequence converges much
more quickly than predicted. On the other hand, there are initial guesses
leading to sequences that converge at the predicted rate.

The stiffness matrix A of a linear second order two-point boundary value
problem with no convection is symmetric and positive-definite, and its con-
dition number κ(A) ∝ h−2. Therefore the convergence of the steepest de-
scent method is very slow if the number of mesh points is large.

A General Framework for Iterative Methods

We now briefly discuss iterative methods for a general, linear system Ax =
b, following the classical presentation of iterative methods in Isaacson and
Keller ([?]). Recall that some matrices, like diagonal and triangular matri-
ces, are relatively easy and cheap to invert, and Gaussian elimination can
be viewed as a method of factoring A into such matrices. One way to view
an iterative method is an attempt to approximate A−1 by the inverse of
a part of A that is easier to invert. This is called an approximate inverse
of A, and we use this to produce an approximate solution to the linear
system. Since we don’t invert the matrix A, we try to improve the approx-
imate solution by repeating the partial inversion over and over. With this
viewpoint, we start by splitting A into two parts:

A = N − P,

where the part N is chosen so that the system Ny = c for some given c
is relatively inexpensive to solve. Noting that the true solution x satisfies
Nx = Px + b, we compute x(k+1) from x(k) by solving

Nx(k+1) = Px(k) + b for k = 1, 2, ..., (93.10)

where x(0) is an initial guess. For example, we may choose N to be the
diagonal of A:

Nij =

{
aij , i = j,

0, i $= j,

or triangular:

Nij =

{
aij , i ≥ j,

0, i < j.

In both cases, solving the system Nx(k+1) = Px(k) + b is cheap compared
to doing a complete Gaussian elimination on A. so we could afford to do it
many times.

528 93. Solving Linear Algebraic Systems

As an example, suppose that

A =




4 1 0
2 5 1
−1 2 4



 and b =




1
0
3



 , (93.11)

and we choose

N =




4 0 0
0 5 0
0 0 4



 and P =




0 −1 0
−2 0 −1
1 −2 0



 ,

in which case the equation Nx(k+1) = Px(k) + b reads

4xk+1
1 = −xk

2 + 1

5xk+1
2 = −2xk

1 − xk
3

4xk+1
3 = xk

1 − 2xk
2 + 3.

Being a diagonal system it is easily solved, and choosing an initial guess
and computing, we get

x(0) =




1
1
1



 , x(1) =




0

−.6
.5



 , x(2) =




.4
−.1
1.05



 , x(3) =




.275
−.37
.9



 ,

x(4) =




.3425
−.29

1.00375



 , · · · x(15) =




.333330098
−.333330695
.999992952



 , · · ·

The iteration appears to converge to the true solution (1/3, −1/3,1)!.
In general, we could choose N = Nk and P = Pk to vary with each

iteration.
To analyze the convergence of (93.10), we subtract (93.10) from the equa-

tion Nx = Px + b satisfied by the true solution to get an equation for the
error e(k) = x − x(k):

e(k+1) = Me(k),

where M = N−1P is the iteration matrix. Iterating on k gives

e(k+1) = Mk+1e(0). (93.12)

Rephrasing the question of convergence, we are interested in whether e(k) →
0 as k → ∞. By analogy to the scalar case discussed above, if M is “small”,
then the errors e(k) should tend to zero. Note that the issue of convergence
is independent of the data b.

If e(0) happens to be an eigenvector of M , then it follows from (93.12)

‖e(k+1)‖ = |λ|k+1‖e(0)‖,

93.4 Iterative Methods 529

and we conclude that if the method converges then we must have |λ| < 1
(or λ = 1). Conversely, one can show that if |λ| < 1 for all eigenvalues of
M , then the method (93.10) indeed does converge:

Theorem 93.1 An iterative method converges for all initial vectors if and
only if every eigenvalue of the associated iteration matrix is less than one
in magnitude.

This theorem is often expressed using the spectral radius ρ(M) of M , which
is the maximum of the magnitudes of the eigenvalues of A. An iterative
method converges for all initial vectors if and only if ρ(M) < 1. In general,
the asymptotic limit of the ratio of successive errors computed in ‖ ‖∞ is
close to ρ(M) as the number of iterations goes to infinity. We define the
rate of convergence to be RM = − log(ρ(M)). The number of iterations
required to reduce the error by a factor of 10m is approximately m/RM .

Practically speaking, “asymptotic” means that the ratio can vary as the
iteration proceeds, especially in the beginning. In previous examples, we
saw that this kind of a priori error result can underestimate the rate of
convergence even in the special case when the matrix is symmetric and
positive-definite (and therefore has an orthonormal basis of eigenvectors)
and the iterative method uses the steepest descent direction. The general
case now considered is more complicated, because interactions may oc-
cur in direction as well as magnitude, and a spectral radius estimate may
overestimate the rate of convergence initially. As an example, consider the
non-symmetric (even non-normal) matrix

A =

(
2 −100
0 4

)
(93.13)

choosing

N =

(
10 0
0 10

)
and P =

(
8 100
0 6

)
gives M =

(
.9 10
0 .8

)
.

In this case, ρ(M) = .9 and we expect the iteration to converge. In-
deed it does converge, but the errors become quite large before they start
to approach zero. We plot the iterations starting from x(0) = (1, 1)" in
Fig. 93.12.

The goal is obviously to choose an iterative method so that the spectral
radius of the iteration matrix is small. Unfortunately, computing ρ(M) in
the general case is much more expensive than solving the original linear
system and is impractical in general. We recall that |λ| ≤ ‖A‖ holds for
any norm and any eigenvalue λ of A. The following theorem indicates a
practical way to check for convergence.

Theorem 93.2 Assume that ‖N−1P‖ ≤ µ for some constant µ < 1 and
matrix norm ‖ · ‖. Then the iteration converges and ‖e(k)‖ ≤ µk‖e(0)‖ for
k ≥ 0.

530 93. Solving Linear Algebraic Systems

i

0
0

5

10

10

15

20

20 30 40 50

‖e
(i

)
‖ 2

FIGURE 93.12. The results of an iterative method computed using a non-normal
matrix.

This theorem is also an a priori convergence result and suffers from the
same deficiency as the analysis of the simplified steepest descent method
presented above. In fact, choosing an easily computable matrix norm, like
‖ ‖∞, generally leads to an even more inaccurate estimate of the conver-
gence rate than would be obtained by using the spectral radius. In the worst
case, it is entirely possible that ρ(M) < 1 < ‖M‖ for the chosen norm, and
hence the iterative method converges even though the theorem does not
apply. The amount of “slack” in the bound in Theorem 93.2 depends on
how much larger ‖A‖∞ is than ρ(A).

For the 3 × 3 example (93.11), we compute ‖N−1P‖∞ = 3/4 = λ and
therefore we know the sequence converges. The theorem predicts that the
error will get reduced by a factor of 3/4 every iteration. If we examine the
error of each iterate along with the ratios of successive errors after the first
iteration:

i ‖e(i)‖∞ ‖e(i)‖∞/‖e(i−1)‖∞
0 1.333
1 .5 .375
2 .233 .467
3 .1 .429
4 .0433 .433
5 .0194 .447
6 .00821 .424
7 .00383 .466
8 .00159 .414
9 .000772 .487

we find that after the first few iterations, the errors get reduced by a factor
in the range of .4–.5 each iteration and not the factor 3/4 predicted above.
The ratio of e(40)/e(39) is approximately .469. If we compute the eigenvalues
of M , we find that ρ(M) ≈ .476 which is close to the ratio of successive

93.4 Iterative Methods 531

errors. To decrease the initial error by a factor of 10−4 using the predicted
decrease of .75 per iteration, we would compute 33 iterations, while only
13 iterations are actually needed.

We get different methods, and different rates of convergence, by choosing
different N and P . The method used in the example above is called the
Jacobi method. In general, this consists of choosing N to be the “diagonal
part” of A and P to be the negative of the “off-diagonal” part of A. This
gives the set of equations

xk+1
i = − 1

aii

(∑

j "=i

aijx
k
j − bi

)
, i = 1, ..., n.

To derive a more sophisticated method, we write out these equations in
Fig. 93.13. The idea behind the Gauss-Seidel method is to use the new

x1
k+1 =- 1a11 (0 +a12x2k + . . . +a1nxn

k - b1)

x2
k+1 =- 1a22 (a21x1k +0 +a23x3k + . . . +a2nxn

k - b2)

x3
k+1 =- 1a33 (a31x1k +a32x2k +0 +a34x4k + . . . - b3)

xn
k+1 =- 1ann (an1x1k +an2x2k + . . . +ann-1x

k
n-1 +0 - bn)

FIGURE 93.13. The Gauss-Seidel method substitutes new values of the iteration
as they become available.

values of the approximation in these equations as they become known. The
substitutions are drawn in Fig. 93.13. Presumably, the new values are more
accurate than the old values, hence we might guess that this iteration will
converge more quickly. The equations can be written

xk+1
i =

1

aii

(
−

i−1∑

j=1

aijx
k+1
j −

n∑

j=i+1

aijx
k
j + bi

)
.

If we decompose A into the sum of its lower triangular L, diagonal D, and
upper triangular U parts, A = L+D+U , then the equations can be written
Dx(k+1) = −Lx(k+1) − Ux(k) + b or

(D + L)x(k+1) = −Ux(k) + b.

Therefore, N = D + L and P = −U . The iteration matrix is MGS =
N−1P = −(D + L)−1U .

532 93. Solving Linear Algebraic Systems

A diagonally dominant matrix often occurs when a parabolic problem
is discretized. We have already seen the other case, if A is symmetric and
positive-definite then the Gauss-Seidel method converges. This is quite hard
to prove, see Isaacson and Keller ([?]) for details.

93.5 Estimating the Error of the Solution

The issue of estimating the error of the numerical solution of a linear system
Ax = b arises both in Gaussian elimination, because of the cumulative
effects of round-off errors, and when using iterative methods, where we
need a stopping criterion. Therefore it is important to be able to estimate
the error in some norm with a fair degree of accuracy.

We discussed this problem in the context of iterative methods in the
last section when we analyzed the convergence of iterative methods and
Theorem 93.2 gives an a priori estimate for the convergence rate. It is
an a priori estimate because the error is bounded before the computation
begins. Unfortunately, as we saw, the estimate may not be very accurate on
a particular computation, and it also requires the size of the initial error.
In this section, we describe a technique of a posteriori error estimation that
uses the approximation after it is computed to give an estimate of the error
of that particular approximation.

We assume that xc is a numerical solution of the system Ax = b with
exact solution x, and we want to estimate the error ‖x−xc‖ in some norm
‖ · ‖. We should point out that we are actually comparing the approximate
solution x̃c of Ãx̃ = b̃ to the true solution x̃, where Ã and b̃ are the finite
precision computer representations of the true A and b respectively. The
best we can hope to do is compute x̃ accurately. To construct a complete
picture, it would be necessary to examine the effects of small errors in A
and b on the solution x. To simplify things, we ignore this part of the
analysis and drop the ˜ . In a typical use of an iterative method, this turns
out to be reasonable. It is apparently less reasonable in the analysis of a
direct method, since the errors arising in direct methods are due to the
finite precision. However, the initial error caused by storing A and b on a
computer with a finite number of digits occurs only once, while the errors
in the arithmetic operations involved in Gaussian elimination occur many
times, so even in that case it is not an unreasonable simplification.

We start by considering the residual error

r = Axc − b,

which measures how well xc solves the exact equation. Of course, the resid-
ual error of the exact solution x is zero but the residual error of xc is not
zero unless xc = x by some miracle. We now seek to estimate the unknown
error e = x − xc in terms of the computable residual error r.

93.5 Estimating the Error of the Solution 533

By subtracting Ax− b = 0 from Axc − b = r, we get an equation relating
the error to the residual error:

Ae = −r. (93.14)

This is an equation of the same from as the original equation and by solv-
ing it numerically by the same method used to compute xc, we get an
approximation of the error e. This simple idea will be used in a more so-
phisticated form below in the context of a posteriori error estimates for
Galerkin methods.

We now illustrate this technique on the linear system arising in the Galer-
kin finite element discretization of a two-point boundary value problem
with no convection. We generate a problem with a known solution so that
we can compute the error and test the accuracy of the error estimate. We
choose the true solution vector x with components xi = sin(πih), where
h = 1/(M+1), corresponding to the function sin(πx) and then compute the
data by b = Ax, where A is the stiffness matrix. We use the Jacobi method,
suitably modified to take advantage of the fact that A is tridiagonal, to solve
the linear system. We use ‖ ‖ = ‖ ‖2 to measure the error.

We compute the Jacobi iteration until the residual error becomes smaller
than a given residual tolerance RESTOL. In other words, we compute the
residual r(k) = Ax(k) − b after each iteration and stop the process when
‖r(k)‖ ≤ RESTOL. We present computations using the stiffness matrix
generated by a uniform discretization with M = 50 elements yielding a
finite element approximation with an error of .0056 in the l2 norm. We
choose the value of RESTOL so that the error in the computation of the
coefficients of the finite element approximation is about 1% of the error of
the approximation itself. This is reasonable since computing the coefficients
of the approximation more accurately would not significantly increase the
overall accuracy of the approximation. After the computation of x(k) is
complete, we use the Jacobi method to approximate the solution of (93.14)
and compute the estimate of the error.

Using the initial vector x(0) with all entries equal to one, we compute 6063
Jacobi iterations to achieve ‖r‖ < RESTOL = .0005. The actual error of
x(6063), computed using the exact solution, is approximately .0000506233.
We solve (93.14) using the Jacobi method for 6063 iterations, reporting the
value of the error estimate every 400 iterations:

Iter. Error Est. Iter. Error Est. Iter. Error Est.
1 0.00049862 2001 0.000060676 4001 0.000050849

401 0.00026027 2401 0.000055328 4401 0.000050729
801 0.00014873 2801 0.000052825 4801 0.000050673
1201 0.000096531 3201 0.000051653 5201 0.000050646
1601 0.000072106 3601 0.000051105 5601 0.000050634

We see that the error estimate is quite accurate after 6001 iterations and
sufficiently accurate for most purposes after 2000 iterations. In general,

534 93. Solving Linear Algebraic Systems

we do not require as much accuracy in the error estimate as we do in the
solution of the system, so the estimation of the accuracy of the approximate
solution is cheaper than the computation of the solution.

Since we estimate the error of the computed solution of the linear system,
we can stop the Jacobi iteration once the error in the coefficients of the
finite element approximation is sufficiently small so that we are sure the
accuracy of the approximation will not be affected. This is a reasonable
strategy given an estimate of the error. If we do not estimate the error,
then the best strategy to guarantee that the approximation accuracy is not
affected by the solution error is to compute the Jacobi iteration until the
residual error is on the order of roughly 10−p, where p is the number of digits
that the computer uses. Certainly, there is not much point to computing
further Jacobi iterations after this. If we assume that the computations
are made in single precision, then p ≈ 8. It takes a total of 11672 Jacobi
iterations to achieve this level of residual error using the same initial guess
as above. In fact, estimating the error and computing the coefficients of
the approximation to a reasonable level of accuracy costs significantly less
than this crude approach.

This approach can also be used to estimate the error of a solution com-
puted by a direct method, provided the effects of finite precision are in-
cluded. The added difficulty is that in general the residual error of a solu-
tion of a linear system computed with a direct method is small, even if the
solution is inaccurate. Therefore, care has to be taken when computing the
residual error because the possibility that subtractive cancellation makes
the calculation of the residual error itself inaccurate. Subtractive cancella-
tion is the name for the fact that the difference of two numbers that agree
to the first i places has i leading zeroes. If only the first p digits of the
numbers are accurate then their difference can have at most p− i accurate
significant digits. This can have severe consequences on the accuracy of the
residual error if Axc and b agree to most of the digits used by the com-
puter. One way to avoid this trouble is to compute the approximation in
single precision and the residual in double precision (which means compute
the product Axc in double precision, then subtract b). The actual solution
of (93.14) is relatively cheap since the factorization of A has already been
performed and only forward/backward substitution needs to be done.

93.6 The Conjugate Gradient Method

We learned above that solving an n× n linear system of equations Ax = b
with A symmetric positive definite using the gradient method, requires a
number of iterations, which is proportional to the condition number κ(A) =
λn/λ1, where λ1 ≤ ... ≤ λn are the eigenvalues of A. Thus the number of

93.6 The Conjugate Gradient Method 535

iteration will be large, maybe prohibitively so, if the condition number κ(A)
is large.

We shall now present a variant of the gradient method, referred as the
conjugate gradient method, where the number of iterations scales instead
like

√
κ(A), which may be much smaller than κ(A) if κ(A) is large.

In the conjugate gradient method each new search direction is chosen to
be orthogonal, with respect to the scalar product induced by the positive
definite symmetric matrix A, which prevents choosing inefficient search
directions as in the usual gradient method.

The conjugate gradient method may be formulated as follows: for k =
1, 2, ... compute an approximate solution xk ∈ Rn as the solution of the
minimization problem

min
y∈Kk(A)

F (y) = min
y∈Kk(A)

1

2
(Ay, y) − (b, y)

where Kk(A) is the Krylov space spanned by the vectors {b, Ab, ..., Ak−1b}.
This is the same as defining xk to be the projection of x onto Kk(A)

with respect to the scalar product < y, z > on Rn × Rn defined by
< y, z >= (Ay, z), because we have using the symmetry of A and that
Ax = b:

1

2
(Ay, y) − (b, y) =

1

2
< y − x, y − x > −1

2
< x, x > .

In particular, the conjugate gradient method has the following minimiza-
tion property

‖x − xk‖A = min
y∈Kk(A)

‖x − y‖A ≤ ‖pk(A)x‖A

where pk(x) is a polynomial of degree k with p(0) = 1, and ‖ · ‖A is the
norm associated with the scalar product < ·, · >, that is, ‖y‖2

A =< y, y >.
This follows by using that since b = Ax, we have that Kk(A) is spanned
by the vectors {Ax, A2x, ..., Akx}. In particular, we conclude that for all
polynomials pk(x) of degree k such that pk(0) = 1, we have

‖x − xk‖A ≤ max
λ∈Λ

|pk(λ)|‖x‖A (93.15)

where Λ is the set of eigenvalues of A. By choosing the polynomial pk(x)
properly, e.g as a so-called Chebyshev polynomial qk(x) with the property
that qk(x) is small on the interval [λ1, λn] containing the eigenvalues of A,
one can prove that the number of iterations scales like

√
κ(A) if n is large.

If n is not large, we have in particular from (93.15) that we get the exact
solution after at most n iterations, since we may choose the polynomial
pk(x) to be zero at the n eigenvalues of A.

We have now defined the conjugate gradient method through it struc-
tural properties: projection onto a Krylov space with respect to a certain

536 93. Solving Linear Algebraic Systems

scalar product, and we now address the problem of actually computing the
sequence xk step by step. This is done as follows: For k = 0, 1, 2, ...,

xk+1 = xk + αkdk, αk = − (rk, dk)

< dk, dk >
, (93.16)

dk+1 = −rk+1 + βkdk, βk =
< rk+1, dk >

< dk, dk >
, (93.17)

where rk = Axk − b is the residual of the approximation xk, and we choose
x0 = 0 and d0 = b. Here, (93.17) signifies that the new search direction
dk+1 gets new directional information from the new residual rk+1 and is
chosen to be orthogonal (with respect to the scalar product < ·, · >) to
the old search direction dk. Further, (93.16), expresses that xk+1 is chosen
so as to to minimize F (x(k) + αdk) in α, corresponding to projection onto
Kk+1(A). We prove these properties in a sequence of problems below.

Note that if we choose the initial approximation x0 different from zero,
then we may reduce to the above case by considering instead the problem
Ay = b − Ax0 in y, where y = x − x0.

93.7 GMRES

The conjugate gradient method for solving an n×n system Ax = b builds on
the matrix A being symmetric and positive definite. If A is non-symmetric
or non-positive definite, but yet non-singular, then we may apply the con-
jugate gradient method to the least squares problem A!Ax = A!b, but
the since the condition number of A!A typically is the square of the con-
dition number of A, the required number of iterations may be too large for
efficiency.

Instead we may try the Generalized Minimum Residual method referred
to as GMRES, which generates a sequence of approximations xk of the
solution x of Ax = b, satisfying for any polynomial pk(x) of degree at most
k with pk(0) = 1

‖Axk − b‖ = min
y∈Kk(A)

‖Ay − b‖ ≤ ‖pk(A)b‖, (93.18)

that is xk is the element in the Krylov space Kk(A) which minimizes the
Euclidean norm of the residual Ay − b with y ∈ Kk(A). Assuming that
the matrix A is diagonalizable, there exist a nonsingular matrix V so that
A = V DV −1, where D is a diagonal matrix with the eigenvalues of A on
the diagonal. We then have that

‖Axk − b‖ ≤ κ(V)max
λ∈Λ

|pk(λ)|‖b‖, (93.19)

where Λ is the set of eigenvalues of A.

93.7 GMRES 537

In the actual implementation of GMRES we use the Arnoldi iteration, a
variant of the Gram-Schmidt orthogonalization, that constructs a sequence
of matrices Qk whose orthogonal column vectors span the successive Krylov
spaces Kk(A), and we write xk = Qkc to get the following least squares
problem:

min
c∈Rk

‖AQnc − b‖. (93.20)

The Arnoldi iteration is based on the identity AQk = Qk+1Hk, where Hk

is an upper Hessenberg matrix so that hij = 0 for all i > j + 1. Using this
identity and multiplying from the left by QT

k+1 gives us another equivalent
least squares problem:

min
c∈Rk

‖Hkc − QT
k+1b‖. (93.21)

Recalling the construction of the Krylov spaces Kk(A), in particular that
K1(A) is spanned by b, we find that QT

k+1b = ‖b‖e1, where e1 = (1, 0, 0, ...),
and we obtain the final form of the least squares problem to be solved in
the GMRES iteration:

min
c∈Rk

‖Hkc − ‖b‖e1‖. (93.22)

This problem is now easy to solve due to the simpel structure of the Hes-
senberg matrix Hk.

In Figure 93.14 we compare the performance of the conjugate gradi-
ent method and GMRES for system with a tridiagonal 200 × 200 matrix
with 1 on the diagonal, and random off-diagonal entries that take values in
(−0.5, 0.5) and the right hand side a random vector with values in [−1, 1].
The system matrix in this case is not symmetric, but it is strictly diago-
nally dominant and thus may be viewed asa perturbation of the identity
matrix and should be easy to solve iteratively. We see that both the con-
jugate gradient method and GMRES converge quite rapidly, with GMRES
winning in number of iterations.

In GMRES we need to store the basis vectors for the increasing Krylov
space, which may be prohibitive for large systems requiring many iterations.
To avoid this problem, we may restart GMRES when we have reached a
maximal number of stored basis vector, by using as initial approximation
x0 the last approximation before restart. The trade-off is of course that a
retarted GMRES may require more iterations for the same accuracy than
GMRES without restart.

We now consider the more challenging problem of solving a 200 × 200
stiffness matrix system, that is a system with a tridiagonal matrix with
2 on the diagonal, and -1 on the off-diagonal (which is not strictly diago-
nally dominant). We will meet this type of system matrix in Chapter FEM
for Two-Point Boundary Value Problems below, and we will see that it
has a condition number proportional to the square of the number of un-
knowns. We thus expect the conjugate gradient method to require about

538 93. Solving Linear Algebraic Systems

FIGURE 93.14. Log-plot of the residual versus the number of iterations for di-
agonal dominant random matrix, using the conjugate gradient method (′·′) and
GMRES (’triangles’).

the same number of iterations as the number of unknowns. In Figure 93.15
we compare again the performance of the conjugate gradient method with
the GMRES method, now restarted after 100 iterations. We find that the
conjugate gradient method as expected converges quite slowly (and non
monotonically), until immediate convergence at iteration 200 as predicted
by theory. The GMRES iteration on the other hand has a monotone but
still quite slow convergence in particular after each restart when the Krylov
subspace is small.

In Figure 93.16 we compare different restart conditions for GMRES, and
we find that there is a trade-off between the convergence rate and the
memory consumption: few restarts give a faster convergence, but require
more memory to store more basis vectors for the Krylov space. On the other
hand we save memory by using more restarts, but then the convergence rate
deteriorates.

FIGURE 93.15. Log-plot of the residual versus the number of iterations for stiff-
ness matrix, using the conjugate gradient method and GMRES, restarted after
100 iterations.

93.7 GMRES 539

FIGURE 93.16. Log-plot of the residual versus the number of iterations for stiff-
ness matrix using GMRES and restarted GMRES, restarted after 20,50,100,150
iterations (left), and a close-up on the cases of no restart and restart after 100
and 150 iterations (right).

Chapter 93 Problems

93.1. Using a similar format, write down algorithms to solve a diagonal system
and then a lower triangular system using forward substitution. Determine the
number of arithmetic operations needed to compute the solution.

93.2. Prove that multiplying a square matrix A on the left by the matrix in
Fig. 93.3 has the effect of adding αij times row j of A to row i of A. Prove that
the inverse of the matrix in Fig. 93.3 is obtained changing αij to −αij

93.3. Show that the product of two Gauss transformations is a lower triangular
matrix with ones on the diagonal and the inverse of a Gauss transformation is a
Gauss transformation.

93.4. Solve the system

x1 − x2 − 3x3 = 3

−x1 + 2x2 + 4x3 = −5

x1 + x2 = −2

by computing an LU factorization of the coefficient matrix and using forward/
backward substitution.

93.5. On some computers, dividing two numbers is up to ten times more ex-
pensive than computing the reciprocal of the denominator and multiplying the
result with the numerator. Alter this code to avoid divisions. Note: the reciprocal
of the diagonal element akk has to be computed just once.

540 93. Solving Linear Algebraic Systems

93.6. Write some pseudo-code that uses the matrix generated by the code in
Fig. 93.4 to solve the linear system Ax = b using forward/backward substitution.
Hint: the only missing entries of L are the 1s on the diagonal.

93.7. Show that the cost of a backward substitution using an upper triangular
matrix of dimension n × n is O(n2/2).

93.8. Determine the cost of multiplying a n × n matrix with another.

93.9. One way to compute the inverse of a matrix is based on viewing the
equation AA−1 = I as a set of linear equations for the columns of A−1. If a(j)

denotes the jth column of A−1, then it satisfies the linear system

Aa(j) = ej

where ej is the standard basis vector of Rn with a one in the jth position. Use
this idea to write a pseudo-code for computing the inverse of a matrix using LU
factorization and forward/backward substitution. Note that it suffices to compute
the LU factorization only once. Show that the cost of computing the inverse in
this fashion is O(4n3/3).

93.10. Solve the system

x1 + x2 + x3 = 2

x1 + x2 + 3x3 = 5

−x1 − 2x3 = −1.

This requires pivoting.

93.11. Alter the LU decomposition and forward/backward routines to solve a
linear system with pivoting.

93.12. Modify the code in Problem 93.11 to use partial pivoting.

93.13. Count the cost of Cholesky’s method.

93.14. Compute the Cholesky factorization of

0

@
4 2 1
2 3 0
1 0 2

1

A

93.15. Show that the operations count for solving a tridiagonal system using
the solver described in Fig. 93.9 is O(5n).

93.16. Find an algorithm to solve a tridiagonal system that stores only four
vectors of dimension n.

93.7 GMRES 541

93.17. A factorization of a tridiagonal solver can be derived as a compact
method. Assume that A can be factored as

A =

0

BBBBBB@

α1 0 · · · 0

β2 α2 0
...

0 β3 α3

...
. . . 0

0 · · · 0 βn αn

1

CCCCCCA

0

BBBBB@

1 γ1 0 · · · 0
0 1 γ2 0
...

. . .
. . .
1 γn−1

0 · · · 0 1

1

CCCCCA

Multiply out the factors and equate the coefficients to get equations for α, β, and
γ. Derive some code based on these formulas.

93.18. Write some code to solve the tridiagonal system resulting from the
Galerkin finite element discretization of a two-point boundary value problem.
Using 50 elements, compare the time it takes to solve the system with this tridi-
agonal solver to the time using a full LU decomposition routine.

93.19. Show that the operations count of a banded solver for a n × n matrix
with bandwidth d is O(nd2/2).

93.20. Write code to solve a linear system with bandwidth five centered around
the main diagonal. What is the operations count for your code?

93.21. Prove that the solution of (93.2) is also the solution of Ax = b.

93.22. Prove that the direction of steepest descent for a function F at a point
is perpendicular to the level curve of F through the same point.

93.23. Prove (93.4).

93.24. Prove that the level curves of F in the case of (93.5) are ellipses with
major and minor axes proportional to 1/

√
λ1 and 1/

√
λ2, respectively.

93.25. Compute the iteration corresponding to λ1 = 1, λ2 = 2, λ3 = 3, and
x(0) = (1, 1, 1)" for the system Ax = 0 with A defined in (93.8). Make a plot of
the ratios of successive errors versus the iteration number. Do the ratios converge
to the ratio predicted by the error analysis?

93.26. Prove that the estimate (93.9) generalizes to any symmetric positive-
definite matrix A, diagonal or not. Hint: use the fact that there is a set of eigen-
vectors of A that form an orthonormal basis for Rn and write the initial vector
in terms of this basis. Compute a formula for the iterates and then the error.

93.27. (a) Compute the steepest descent iterations for (93.5) corresponding to
x(0) = (9, 1)" and x(0) = (1, 1)", and compare the rates of convergence. Try
to make a plot like Fig. 93.11 for each. Try to explain the different rates of
convergence.

(b) Find an initial guess which produces a sequence that decreases at the rate
predicted by the simplified error analysis.

542 93. Solving Linear Algebraic Systems

93.28. Prove that the method of steepest descent corresponds to choosing

N = Nk =
1

αk
I, and P = Pk =

1
αk

I − A,

with suitable αk in the general iterative solution algorithm.

93.29. Compute the eigenvalues and eigenvectors of the matrix A in (93.13) and
show that A is not normal.

93.30. Prove that the matrix

„
1 −1
1 1

«
is normal.

93.31. Prove Theorem 93.2.

93.32. Compute 10 Jacobi iterations using the A and b in (93.11) and the initial
guess x(0) = (−1, 1, −1)!. Compute the errors and the ratios of successive errors
and compare to the results above.

93.33. Repeat Problem 93.32 using

A =

0

@
4 1 100
2 5 1
−1 2 4

1

A and b =

0

@
1
0
3

1

A .

Does Theorem 93.2 apply to this matrix?

93.34. Show that for the Jacobi iteration, N = D and P = −(L + U) and the
iteration matrix is MJ = −D−1(L + U)

93.35. (a) Solve (93.11) using the Gauss-Seidel method and compare the conver-
gence with that of the Jacobi method. Also compare ρ(M) for the two methods.
(b) Do the same for the system in Problem 93.33.

93.36. (Isaacson and Keller ([?])) Analyze the convergence of the Jacobi and
Gauss-Seidel methods for the matrix

A =

„
1 ρ
ρ 1

«

in terms of the parameter ρ.

In general it is difficult to compare the convergence of the Jacobi method
with that of the Gauss-Seidel method. There are matrices for which the Ja-
cobi method converges and the Gauss-Seidel method fails and vice versa.
There are two special classes of matrices for which convergence can be es-
tablished without further computation. A matrix A is diagonally dominant
if

|aii| >
n∑

j=1
j !=i

|aij |, i = 1, ..., n.

If A is diagonally dominant then the Jacobi method converges.

93.7 GMRES 543

93.37. Prove this claim.

93.38. Derive an algorithm that uses the Jacobi method to solve a tridiagonal
system. Use as few operations and as little storage as possible.

93.39. Devise an algorithm to estimate the error of the solution of a linear
system using single and double precision as suggested. Repeat the example using
a tridiagonal solver and your algorithm to estimate the error.

93.40. Show that the sequences {xk} and {dk} generated by the conjugate
gradient method (93.16)-(93.17), with x1 = 0 and d1 = b, satisfies for k = 1, 2, ...,
(a) xk ∈ Kk(A) = {b, ..., Ak−1b}, (b) dk+1 is orthogonal to Kk(A), (c) xk is the
projection of x onto Kk(A) with respect to the scalar product < y, z >= (Ay, z).

93.41. The Cbebyshev polynomial qk(x) if degree k is defined for −1 ≤ x ≤ 1
by the formula qk(x) = cos(k arccos(x)). Show that q′k(0) ≈ k2. Deduce from this
result that the number of iterations in the conjugate gradient method scales likep

κA).

93.42. Compare the GMRES-algorithm for Ax = b with the conjugate gradient
method fro the normal equations A#A = A#b.

93.43. The formula AQk = Qk+1Hk, with Hk an upper Hessenberg matrix
(hij = 0 for all i > j + 1), defines a recurrence relation for the column vector
qk+1 of Qk+1 in terms of itself and the previous Krylov vectors. (a) Derive this
recurrence relation. (b) Implement an algorithm that computes Qk+1 and Hk,
given a matrix A (this is the Arnoldi iteration).

93.44. Prove that QT
k+1b = ‖b‖e1.

93.45. Implement the GMRES-method.

This is page 615
Printer: Opaque this

118
Piecewise Linear Interpolation

118.1 Defining the Interpolant

To estimate finite element discretization errors (in time and space), we
are led to estimate the interpolation error between a given function u(x)
defined on a domain Ω and its piecewise linear interpolant uh taking on the
same values as u(x) at the nodes of a triangulation. Here x represents time
or a space coordinate. To estimate the interpolation error over the domain
Ω it is sufficient to consider the error over each finite element separately,
because the interpolant is uniquely defined by the nodal values for each
element (interval, triangle or tetrahedron).

Recall that Midpoint Euler (or The Trapezoidal Method) constructs a
solution to u̇(t) = f(u(t)) for t > 0 as a continuous piecewise linear function
u(t) of time t.

118.2 To Do 1d

Consider a differentiable function u(x) defined on the interval [0, h] and
let uh be a linear function interpolating u(x) at the end points, that is
uh(0) = u(0) and uh(h) = u(h). We seek to estimate the interpolation
error

eh = u(x) − uh(x) for x ∈ [0, h]. (118.1)

Step 1: Reduce to the case u(0) = u(h) = 0, by changing u(x) and uh(x)
by the same linear function. Notice that in this case uh(x) ≡ 0 for x ∈ [0, h].

616 118. Piecewise Linear Interpolation

Step 2: Assume that uh(x) != u(x) for some x ∈ (0, h). Motivate that u(x)
takes on a maximum or minimimum value at some point ξ ∈ (0, h) and
show that u′(ξ) = 0.

Step 3: Use the differentiability of u(x) to show that for x ∈ [0, h]

|u(x) − u(ξ)| = |u(x) − u(ξ) − u′(ξ)(x − ξ)| ≤ C|x − ξ|2 ≤ Ch2,

|u′(x) − u′(ξ)| ≤ C|x − ξ| ≤ Ch.
(118.2)

Alternatively, use Taylor’s formula or Taylor series with expansion around
x = ξ.

Step 4: Conclude that

|u(x) − uh(x)| ≤ C0Ch2, (C0 ≈ 1

8
)

|u′(x) − u′
h(x) ≤ C1Ch, (C1 ≈ 1

2
)

(118.3)

where C bounds |u′′(x)| for x ∈ [0, h].

Alternative proof: Let x ∈ (0, h) and consider the function g(y) defined
for y ∈ [0, h] by

g(y) = u(y) − u(0)
h − y

h
− u(h)

y

h
− γ(x)y(h − y), (118.4)

where γ(x) is so chosen that g(x) = 0. Notice that g(0) = g(x) = g(h) = 0
and use the mean-value theorem (first for g(y) twice and then for g′(y) once)
to show that g′′(ξ) = 0 for some ξ ∈ (0, h) and thus that γ(x) = − 1

2u′′(ξ).
Then show that C0 = 1

8

118.3 Direct Computation of Interpolation errors

Let ūh be a piecewise quadratic interpolant of u(x) interpolating at the
endpoints and midpoint of each element. Use

max
x∈[0,h]

|ūh(x) − uh(x)|, max
x∈[0,h]

|ū′
h(x) − u′

h(x)| (118.5)

as direct quantitative estimates of the interpolation errors

max
x∈[0,h]

|u(x) − uh(x)|, max
x∈[0,h]

|u′(x) − u′
h(x)|. (118.6)

Use this technique for estimation of errors in piecewise linear interpolation
of different functions.

118.4 To Do in 2d and 3d 617

118.4 To Do in 2d and 3d

Extend to 2d and 3d.

118.5 Compare

• Piecewise Polynomials 1d

• Piecewise Polynomials 2d and 3d

118.6 Piecewise Constant Approximation

In piecewise constant approximation the interpolant uh is defined as a con-
stant on each finite element, e.g, as the mean-value over the element. Recall
from Time Stepping Error Analysis

max
x∈[0,h]

|u(x) − uh(x)| ≤ h max
x∈[0,h]

|u′(x)|. (118.7)

118.7 L2-projection onto Piecewise Constants

Define uh(x) on [0, h] as the mean-value of u(x), that is,

uh(x) =
1

h

∫ h

0
u(y) dy x ∈ [0, h]. (118.8)

Show that uh(x) can be defined as the constant Pu defined by the orthog-
onality relation ∫ h

0
(u(y) − Pu)v(y) dy = 0 (118.9)

for all constant functions v(y) on [0, h]. Show that the constant Pu is a
best approximation of u(y) in the sense that

∫ h

0
(u(y) − Pu)2 dy ≤

∫ h

0
(u(y) − v(y))2 dy (118.10)

for all constant functions v(y). Hint: Write

∫ h

0
(u − Pu)2 dy =

∫ h

0
(u − Pu)(u − Pu) dy +

∫ h

0
(u − Pu)(Pu − v) dy

=

∫ h

0
(u − Pu)(u − v) dy

(118.11)

618 118. Piecewise Linear Interpolation

and use Cauchy’s inequality for integrals.
Extend to piecewise constant approximation on a partition of an interval.

Extend to 2d and 3d.
Note: This is the basic step in the basic error analysis of the finite element

method.

This is page 619
Printer: Opaque this

119
Quadrature

119.1 Quadrature by Piecewise Polynomial
Interpolation

An integral
∫

I u(x) dx of a function u(x) over an interval I, van be computed
by replacing (interpolating) u(x) by a piecewise polynomial interpolant
(constant, linear, quadratic,...) uh on some partition of I into subintervals,
and computing the integral

∫
I uh(x) dx analytically (as a sum of analyt-

ically computable integrals over subintervals). This is called (numerical)
quadrature. The quadrature is then exact if u(x) is a piecewise polynomial
in question.

119.2 Trapezoidal Rule by Linear Approximation

Let [0, h] be an interval and consider the quadrature formula (Trapezoidal
Rule): ∫ h

0
u(x) dx ≈ h

2
(u(0) + u(h)) (119.1)

obtained by replacing the given function u(x) by its linear interpolant

uh = (1 − x

h
)u(0) +

x

h
u(h) (119.2)

and computing the integral of uh analytically.

620 119. Quadrature

The quadrature error can be estimated by reducing to the case u(0) =
u(h) = 0 and then assuming that u(x) is quadratic (linear plus one) so that
u(x) = x(h − x). We compute

∫ h

0
x(h − x) dx =

h3

6
, (119.3)

suggesting the quadrature error estimate (since the second derivative of
x(h − x) equals −2):

|
∫ h

0
u(x) dx − h

2
(u(0) + u(h))| ≤ h3

12
max
[0,h]

|u′′| (119.4)

The accurcay of the Trapezoidal rule is thus of order h2, when normalizing
for the length h of the interval, so that over an interval I of unit length
partitioned into subintervals of length h, the quadrature error is bounded
by h2

12 maxI |u′′|.

119.3 To Do

• Estimate the quadrature error in the rectangle and trapezoidal quadra-
ture rules corresponding to piecewise constant and linear linear ap-
proximation.

• Compare with Forward/Backward/Midpoint Euler time stepping.

• Contemplate adaptive quadrature with variable subinterval length.

119.4 To Read

• Adaptive Quadrature

This is page 745
Printer: Opaque this

158
Linearization and Stability of Initial
Value Problems

The logos of somewome to that base anything, when most character-
istically mantissa minus, comes to nullum in the endth: orso, here is
nowet badder than the sin of Aha with his cosin Lil, verswaysed on
coversvised, and all that’s consecants and cotangincies... (Finnegans
Wake, James Joyce)

158.1 Introduction

We continue the study of the general initial value problem (210.1), now
focussing on the stability of solutions, which is a measure of the sensitivity of
solutions to perturbations in given data. This is a fundamentally important
aspect of the behavior of solutions, which we touched upon in Chapter The
general initial value problem, and which we now consider more closely.

We consider an autonomous problem of the form

u̇(t) = f(u(t)) for 0 < t ≤ T, u(0) = u0, (158.1)

where f : Rd → Rd is a given bounded Lipschitz continuous function,
u0 ∈ Rd is a given initial value, and we seek a solution u : [0, T] → Rd,
where we think of [0, T] as a given time interval. To study the stability of
a given solution u(t) to small perturbations in given data, e.g. in the given
initial data u0, we will consider an associated linearized problem that arises
upon linearizing the function v → f(v) around the solution u(t).

746 158. Linearization and Stability of Initial Value Problems

158.2 Stationary Solutions

We consider first the simplest case of a stationary solution u(t) = ū for 0 ≤
t ≤ T , that is a solution u(t) of (158.1) that is independent of time t. Since
u̇(t) = 0 if u(t) is independent of time, u(t) = ū is a stationary solution if
f(ū) = 0 and u0 = ū, where ū = (ū1, ..., ūd) ∈ Rd. The equation f(ū) = 0
corresponds to a system of d equations fi(ū1, ..., ūd) = 0, i = 1, ..., d, in
d unknowns ū1, ..., ūd, where the fi are the components of f . We studied
such systems of equations in Chapter Vector-valued functions of several real
variables. Here, we assume the existence of a stationary solution u(t) = ū
so that ū ∈ Rd satisfies the equation f(ū) = 0. In general, there may be
several roots ū of the equation f(v) = 0 and thus there may be several
stationary solutions. We also refer to a stationary solution u(t) = ū as an
equilibrium solution.

Example 158.1. The stationary solutions ū of the Crash model
{

u̇1 + νu1 − κu1u2 = ν t > 0,

u̇2 + 2νu2 − νu2u1 = 0 t > 0,
(158.2)

of the form u̇ = f(u) with f(u) = (−νu1 + κu1u2 + ν,−2νu2 + νu2u1),
are ū = (1, 0) and ū = (2, ν

κ).

158.3 Linearization at a Stationary Solution

We shall now study perturbations of a given stationary solution under
small perturbations of initial data. We thus assume f(ū) = 0 and denote
the corresponding equilibrium solution by ū(t) for t > 0, that is ū(t) = ū for
t > 0. We consider the initial value problem (158.1) with u0 = ū+ϕ0, where
ϕ0 ∈ Rd is a given small perturbation of the initial data ū. We denote the
corresponding solution by u(t) and focus attention on the corresponding
perturbation in the solution, that is ψ(t) = u(t)− ū(t) = u(t)− ū. We want
to derive a differential equation for the perturbation ψ(t), and to this end
we linearize f at ū and write

f(u(t)) = f(ū + ψ(t)) = f(ū) + f ′(ū)ψ(t) + e(t),

where f ′(ū) is the Jacobian of f : Rd → Rd at ū and the error term e(t) is
quadratic in ψ(t) (and thus is very small if ψ(t) is small). Since f(ū) = 0
and u(t) satisfies (158.1), we have

ψ̇(t) =
d

dt
(ū + ψ(t))) = f(u(t)) = f ′(ū)ψ(t) + e(t).

Neglecting the quadratic term e(t), we are led to a linear initial value
problem,

ϕ̇(t) = f ′(ū)ϕ(t) for t > 0, ϕ(0) = ϕ0, (158.3)

158.4 Stability Analysis when f ′(ū) Is Symmetric 747

where ϕ(t) is an approximation of the perturbation ψ(t) = u(t)− ū up to a
second order term. We refer to (158.3) as the linearized problem associated
to the stationary solution ū of (158.1). Since f ′(ū) is a constant d×d matrix,
we can express the solution to (158.3) using the matrix exponential as

ϕ(t) = exp(tA)ϕ0 for 0 < t ≤ T, (158.4)

where A = f ′(ū). We thus have a formula that describes the evolution of
perturbation ϕ(t) starting from an initial perturbation ϕ(0) = ϕ0. Depend-
ing on the nature of the matrix exp(tA), the perturbation may increase or
decrease with time, reflecting a stronger or lesser sensitivity of the solution
u(t) to perturbations in initial data and therefore different stability features
of the given problem.

We know that if A is diagonalizable, so that A = BΛB−1 where B is a
non-singular d × d matrix and Λ is a diagonal matrix with the eigenvalues
λ1, ..., λd of A on the diagonal, then

ϕ(t) = B exp(tΛ)B−1ϕ0 for t ≥ 0. (158.5)

We see that each component of ϕ(t) is a linear combination of exp(tλ1),...,
exp(tλd) and the sign of the real part Re λi of λi determines if the corre-
sponding term grows or decays exponentially. If some Re λi > 0, then we
have exponential growth of certain perturbations, which indicates that the
corresponding stationary solution ū is unstable. On the other hand, if all
Re λi ≤ 0, then we would expect ū to be stable.

These considerations are qualitative in nature, and to be more precise we
should base judgements of stability or instability on quantitative estimates
of perturbation growth. In the diagonalizable case, (158.5) implies in the
Euclidean vector and matrix norms that

‖ϕ(t)‖ ≤ ‖B‖‖B−1‖ max
i=1,...,d

exp(tλi)‖ϕ0‖. (158.6)

We see that the maximal perturbation growth is governed by the maximal
exponential factors exp(tλi) as well as the factors ‖B‖ and ‖B−1‖ related to
the transformation matrix B. If the transformation matrix B is orthogonal,
then ‖B‖ = ‖B−1‖ = 1, and the perturbation growth is governed solely by
the exponential factors exp(tλi). We give this case special attention:

158.4 Stability Analysis when f ′(ū) Is Symmetric

If A = f ′(ū) is symmetric so that A = QΛQ−1 with Q orthogonal and Λ a
diagonal matrix with real diagonal elements λi, then

‖ϕ(t)‖ ≤ max
i=1,...,d

exp(tλi)‖ϕ0‖. (158.7)

748 158. Linearization and Stability of Initial Value Problems

In particular, if all eigenvalues λi ≤ 0 then perturbations ϕ(t) cannot grow
with time, and we say that the solution ū is stable. On the other hand,
if some eigenvalue λi > 0 and the corresponding eigenvector is gi then
ϕ(t) = exp(tλi)gi solves the linearized initial value problem (158.3) with
ϕ0 = gi, and evidently the particular perturbation ϕ(t) grows exponentially.
We then say that the solution ū is unstable. Of course, the size of the positive
eigenvalues influence the perturbation growth, so that if λi > 0 is small,
then then growth is slow and the instability is mild. Likewise, if λi is small
negative, then the exponential decay is slow.

158.5 Stability Factors

We may express the stability features of a particular perturbation ϕ0

through a stability factor S(T, ϕ0) defined as follows:

S(T, ϕ0) = max
0≤t≤T

‖ϕ(t)‖
‖ϕ0‖ .

where ϕ(t) solves the linearized problem (158.3) with initial data ϕ0. The
stability factor S(T, ϕ0) measures the maximal growth of the norm of ϕ(t)
over the time interval [0, T] versus the norm of the initial value ϕ0.

We can now seek to capture the overall stability features of a stationary
solution ū by maximization over all different perturbations:

S(T) = max
ϕ0 $=0

S(T, ϕ0).

If the stability factor S(T) is large, then some perturbations grow very
much over the time interval [0, T], which indicates a strong sensitivity to
perturbations or instability. On the other hand, if S(T) is of moderate size
then the perturbation growth is moderate, which signifies stability. Using
the Euclidean matrix norm, we can also express S(T) as

S(T) = max
0≤t≤T

‖ exp(tA)‖.

Example 158.2. If A = f ′(ū) is symmetric with eigenvalues λ1, ..., λd,
then

S(T) = max
i=1,...,d

max
0≤t≤T

exp(tλi).

In particular, if all λi ≤ 0, then S(T) = 1.

Example 158.3.

The initial value problem for a pendulum takes the form

u̇1 = u2, u̇2 = − sin(u1) for t > 0,

u1(0) = u01, u2(0) = u02,

158.5 Stability Factors 749

corresponding to f(u) = (u2,− sin(u1) and the equilibrium solutions
are ū = (0, 0) and ū = (π, 0). We have

f ′(ū) =

(
0 1

− cos(ū1) 0

)
,

and the linearized problem at ū = (0, 0) thus takes the form

ϕ̇(t) =

(
0 1
−1 0

)
ϕ(t) ≡ A0ϕ(t) for t > 0, ϕ(0) = ϕ0,

with solution

ϕ1(t) = ϕ0
1 cos(t) + ϕ0

2 sin(t), ϕ2(t) = −ϕ0
1 sin(t) + ϕ0

2 cos(t).

It follows by a direct computation (or using that

(
cos(t) sin(t)
− sin(t) cos(t)

)
is

an orthogonal matrix), that for t > 0

‖ϕ(t)‖2 = ‖ϕ0‖2,

and thus the norm ‖ϕ(t)‖ of a solution ϕ(t) of the linearized equations
is constant in time, which means that the stability factor S(T) = 1
for all T > 0. We conclude that if the norm of a perturbation is small
initially, it will stay small for all time. This means that the equilibrium
solution ū = (0, 0) is stable. More precisely, if the pendulum is perturbed
initially a little from its bottom position, the pendulum will oscillate
back and forth around the bottom position with constant amplitude.
This fits our direct experimental experience of course.

Note that the linearized operator A0 is non-symmetric; the eigenvalues
of A0 are purely imaginary ±i, which says that ‖ϕ(t)‖ = ‖ϕ0‖, that
is a perturbation neither grows nor decays. Another way to derive this
fact is to use the fact that A0 is antisymmetric, that is A%

0 = −A0,
which shows that (A0ϕ, ϕ) = (ϕ, A%

0 ϕ) = −(ϕ, A0ϕ) = −(A0ϕ, ϕ), and
thus (A0ϕ, ϕ) = 0, where (·, ·) is the R2 scalar product. It follows from
the equation ϕ̇ = A0ϕ upon multiplication by ϕ that 0 = (ϕ̇, ϕ) =
1
2

d
dt (ϕ, ϕ) = 1

2
d
dt‖ϕ‖

2, which proves that ‖ϕ(t)‖2 = ‖ϕ0‖2.

The linearized problem at ū = (π, 0) reads

ϕ̇(t) =

(
0 1
1 0

)
ϕ(t) ≡ Aπϕ(t) for t > 0, ϕ(0) = ϕ0,

with symmetric matrix Aπ with eigenvalues ±1. Since one eigenvalue is
positive, the stationary solution ū = (π, 0) is unstable. More precisely,
the solution is given by

ϕ1 =
ϕ0

1

2
(et + e−t) +

ϕ0
2

2
(et − e−t), ϕ2 =

ϕ0
1

2
(et − e−t)+

ϕ0
2

2
(et + e−t),

750 158. Linearization and Stability of Initial Value Problems

and due to the exponential factor et, perturbations will grow exponen-
tially in time, and thus an initially small perturbation will become large
as soon as t ≥ 10 say. Physically, this means that if the pendulum is
perturbed initially a little from its top position, the pendulum will even-
tually move away from the top position, even if the initial perturbation
is very small. This fact of course has direct experimental evidence: to
balance a pendulum with the weight in the top position is tricky busi-
ness. Small perturbations quickly grow to large perturbations and the
equilibrium solution (π, 0) of the pendulum is unstable.

Example 158.4. The linearization of the Crash model (158.2) at the
equilibrium solution ū = (1, 0), takes the form

ϕ̇(t) =

(
−ν κ
0 −ν

)
ϕ(t) ≡ Aν,κϕ(t) for t > 0, ϕ(0) = ϕ0, (158.8)

The solution is given by ϕ2(t) = ϕ0
2 exp(−νt), and ϕ1(t) =

tκ exp(−νt)ϕ0
2 + exp(−νt)ϕ0

1. Clearly, ϕ2(t) decays monotonically to
zero and so does ϕ1(t) if κ = 0. But, if κ *= 0 then ϕ1(t) reaches the
following value, assuming for simplicity that ϕ01 = 0,

ϕ1(ν
−1) = ν−1κ exp(−1)ϕ0

2,

which contains the factor ν−1 that is large if ν is small. In other words,
the stability factor S(ν−1) ∼ ν−1, which is large if ν is small. Eventu-
ally, however, ϕ1(t) decays to zero. As a result, the equilibrium solution
(1, 0) is stable only to small perturbations, since we saw in the Chapter
The Crash model that (1, 0) is unstable to perturbations above a certain
threshold depending on λ. Note that here the Jacobian f ′(ū) = Aν,κ

has a double eigenvalue −ν, but Aν,κ is non-symmetric and the space
of eigenvectors is one-dimensional and is spanned by (1, 0). As a result,
the term tκ exp(−νt)ϕ0

2 with linear growth in t appears; thus in this
highly non-symmetric problem (if ν is small), large perturbation growth
∼ ν−1 is possible although all eigenvalues are non-positive.

The matrix Aν,κ is an example of a non-normal matrix. A non-normal
matrix A is a matrix such that A%A *= AA%. A non-normal matrix may
or may not be diagonalizable, and if diagonalizable so that A = BΛB−1,
we may have ‖B‖ or ‖B−1 large, resulting in large stability factors in the
corresponding linearized problem, as we just saw (cf. Problem 158.5).

The linearization at the equilibrium solution ū = (2, ν
κ) takes the form

ϕ̇(t) =

(
0 2κ
ν2

κ 0

)
ϕ(t) for t > 0, ϕ(0) = ϕ0. (158.9)

The eigenvalues of the Jacobian are ±
√

2ν and the solution is a linear
combination of exp(

√
2νt) and exp(−

√
2νt) and thus has one expo-

nentially growing part with growth factor exp(
√

2νt). The equilibrium
solution u = (2, ν

κ) is thus unstable.

158.6 Stability of Time-Dependent Solutions 751

158.6 Stability of Time-Dependent Solutions

We now seek to extend the scope to linearization and linearized stability
for a time-dependent solution ū(t) of (158.1). We want to study solutions of
the form u(t) = ū(t)+ψ(t), where ψ(t) is a perturbation. Using d

dt ū = f(ū)
and linearizing f at ū(t), we obtain

d

dt
(ū + ψ)(t) = f(ū(t)) + f ′(ū(t))ψ(t) + e(t),

with e(t) quadratic in ψ(t). This leads to the linearized equation

ϕ̇(t) = A(t)ϕ(t) for t > 0, ϕ(0) = ϕ0, (158.10)

where A(t) = f ′(ū(t)) is an d × d matrix that now depends on t if ū(t)
depends on t. We have no analytical solution formula to this general prob-
lem and thus although the stability properties of the given solution ū(t)
are expressed through the solutions ϕ(t) of the linearized problem (158.10),
it may be difficult to analytically assess these properties. We may define
stability factors S(T, ϕ0) and S(T) just as above, and we may say that a
solution ū(t) is stable if S(T) is moderately large, and unstable if S(T) is
large. To determine S(T) in general, we have to use numerical methods and
solve (158.10) with different initial data ϕ0. We return to the computation
of stability factors in the next chapter on adaptive solvers for initial value
problems.

158.7 Sum Up

The question of stability of solutions to initial value problems is of fun-
damental importance. We can give an affirmative answer in the case of a
stationary solution with corresponding symmetric Jacobian. In this case a
positive eigenvalue signifies instability, with the instability increasing with
increasing eigenvalue, and all eigenvalues non-positive means stability. The
case of an anti-symmetric Jacobian also signifies stability with the norm of
perturbations being constant in time. If the Jacobian is non-normal we have
to watch out and remember that just looking at the sign of the real part
of eigenvalues may be misleading: in the non-normal case algebraic growth
may in fact dominate slow exponential decay for finite time. In these cases
and also for time-dependent solutions, an analytical stability analysis may
be out of reach and the desired information about stability may be obtained
by numerical solution of the associated linearized problem.

752 158. Linearization and Stability of Initial Value Problems

Chapter 158 Problems

158.1. Determine the stationary solutions to the system

u̇1 = u2(1 − u2
1),

u̇2 = 2 − u1u2,

and study the stability of these solutions.

158.2. Determine the stationary solutions to the following system (Minea’s
equation) for different values of δ > 0 and γ,

u̇1 = −u1 − δ(u2
2 + u2

3) + γ,

u̇2 = −u2 − δu1u2,

u̇3 = −u3 − δu1u3,

and study the stability of these solutions.

158.3. Determine the stationary solutions of the system (158.1) with (a) f(u) =
(u1(1−u2), u2(1−u1)), (b) f(u) = (−2(u1−10)+u2 exp(u1),−2u2−u2 exp(u1)),
(c) f(u) = (u1 +u1u

2
2 +u1u

2
3,−u1 +u2 −u2u3 +u1u2u3, u2 +u3 −u2

1), and study
the stability of these solutions.

158.4. Determine the stationary solutions of the system (158.1) with (158.1)
with (a) f(u) = (−1001u1 + 999u2, 999u1 − 1001u2), (b) f(u) = (−u1 + 3u2 +
5u3,−4u2 + 6u3, u3), (c) f(u) = (u2,−u1 − 4u2), and study the stability of these
solutions.

158.5. Analyze the stability of the following variant of the linearized problem
(158.8) with ε > 0 small,

ϕ̇(t) =

„
−ν κ
ε −ν

«
ϕ(t) ≡ Aν,κ,εϕ(t) for t > 0, ϕ(0) = ϕ0, (158.11)

by diagonalizing the matrix ≡ Aν,κ,ε. Note that the diagonalization degenerates
as ε tends to zero (that is, the two eigenvectors become parallel). Check if Aν,κ,ε

is a normal or non-normal matrix.

