NADA, KTH, Lennart Edsberg

Tentamen i Kursen 2D1225
 Numerisk Behandling av Differentialekvationer I

Saturday 2006-12-16 kl 8-13
Result will be ready before January 10th 2007. Next exam Jan 16th 8-13.
No means of help allowed
P0. State the number of bonus credit (max 3 cr) you have achieved from the labs.
(3) 1. How does the stability properties of an ODE-system $\dot{u}=A u$ depend on the eigenvalues of the $n \times n$-matrix A ? Investigate if the following two matrices give stable solutions:

$$
A=\left(\begin{array}{cc}
0 & 9 \\
-1 & 0
\end{array}\right), \quad A=\left(\begin{array}{cc}
0 & 9 \\
0 & 0
\end{array}\right)
$$

(4) 2. Derive a second order difference approximation to $y^{\prime}(a)$ using the values $y(a+h / 2)$, $y(a+h)$ and $y(a+2 h)$. Verify the order of your approximation.
(3) 3. The stability region of a method solving an IVP is based on the test equation $\dot{y}=q y$, where q is a complex number. It is known that for Euler's explicit method the stability region is $|1+h q| \leq 1 \quad(1)$. - Sketch the stability region for explicit Euler.
Another method for IVPs based on the formulation $\dot{y}=f(x, y)$ is $y_{k+1}=y_{k}+h k_{2}$, where $k_{1}=f\left(x_{k}, y_{k}\right), k_{2}=f\left(x_{k}+h / 2, y_{k}+h k_{1} / 2\right)$ Derive the inequality of type (1) defining the stability region for this method.
(2) 5. What is meant by 'fill-in' when solving a large sparse linear system of equations $A x=b$ with a method based on Gaussian elimination?
(2) 6. When using the FEM in 2 D with linear triangle elements the FEM-solution $\tilde{u}(x, y)$ is obtained. The values of \tilde{u} at the three corner points of a triangle is shown below. What is the FEM-solution at the origin, i.e. what is $\tilde{u}(0,0)$?
(4) 7. The solution of the hyperbolic PDE $u_{t}+c u_{x}=0, c>0$, the advection equation, is constant along certain curves in the (x, t)-plane. What are these curves called? Give the analytic expression of these curves for the advection equation. How are these curves changed if c is modified to be t-dependent: $c(t)=c_{0}+c_{1} t, c_{0}>0, c_{1}>0, t>0$?
(2) 8. What is meant by periodic boundary conditions?
(4) 9. The following PDE models the cooling of a hot sphere made of metal

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\kappa \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right), \quad 0 \leq r \leq R, \quad t \geq 0 \tag{1}
\end{equation*}
$$

The initial condition states that the sphere has the same temperature $T_{\text {init }}$ at time $t=0$ i.e.

$$
T(r, 0)=T_{i n i t}
$$

The boundary conditions of the problem are

$$
\frac{\partial T}{\partial r}(0, t)=0 \quad k \frac{\partial T}{\partial r}(R, t)=-\beta\left(T(R, t)-T_{o u t}\right)
$$

The units of the variables and parameters of this problem are:

$$
\begin{aligned}
& T, T_{\text {out }}, T_{\text {init }}[K] \\
& r, R[m] \\
& t[s] \\
& \kappa\left[\mathrm{m}^{2} / \mathrm{s}\right], \text { thermal diffusivity } \\
& k[J /(m K)], \text { conductivity } \\
& \beta\left[J /\left(m^{2} K\right)\right], \text { heat transfer coefficient }
\end{aligned}
$$

By a proper scaling of the variables the number of parameters can be reduced to only one parameter a :

$$
\begin{equation*}
\frac{\partial u}{\partial \tau}=\frac{1}{x^{2}} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial u}{\partial x}\right), \quad u(x, 0)=1, \quad \frac{\partial u}{\partial x}(0, \tau)=0, \frac{\partial u}{\partial x}(1, \tau)=a u(1, \tau) \tag{2}
\end{equation*}
$$

Find this scaling and show that it gives as result the dimensionless PDE problem given above. What is the algebraic relation between a and the original parameters? Show also that a is dimensionless.

Hint: A proper scaling for T is $T=T_{\text {out }}+\left(T_{\text {init }}-T_{\text {out }}\right) u$
10. The scaled version of the problem given above, i.e. eqn (2) is to be solved numerically with the Method of Lines.
(2) a) Introduce a discretization of the x-axis. Put suitable indices to the grid-points and give the relation between the stepsize h and the number N of grid-points.
(2) b) With the grid given in a) use the Method of Lines to discretize the x-variable in the PDE to a system of ODE's. Be careful and state for which gridpoints an ODE can be formulated, in particular consider the discretized version at $x=0$.
(2) c) Discretize the boundary conditions of the problem.
(4) d) Set up the resulting ODE-system and the initial values.
(1) e) What is the analytical solution of the stationary problem?

