Tentamen i Kursen 2D1225
 Numerisk Behandling av Differentialekvationer I

Saturday 2006-12-16 kl 8-13

SOLUTIONS

1. See the compendium, chapter 2, pg 11. Eigenvalues of the first matrix are $\lambda_{1,2}= \pm 3 i$, i.e. $\operatorname{Re}\left(\lambda_{i}\right)=0$ but they are simple, hence the system is stable (but not asymptotically stable). Eigenvalues of the second matrix are $\lambda_{1,2}=0$, i.e. a double eigenvalues with $\operatorname{Re}\left(\lambda_{i}\right)=0$. We then have to investigate the particular system which is

$$
\dot{u}_{1}=9 u_{2}, \quad \dot{u}_{2}=0
$$

which gives $u_{2}=C, \quad u_{1}=9 C t+D$, hence an unstable system.
2. The ansatz $y^{\prime}(a)=A y(a+h / 2)+B y(a+h)+C y(a+2 h)$ leads after Taylor expansion to $y^{\prime}(a)=(A+B+C) y(a)+h(A / 2+B+2 C) y^{\prime}(a)+h^{2}(A / 8+B / 2+2 C) y^{\prime \prime}(a)+O\left(h^{3}\right)$, hence the linear system of equations

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 / 2 & 1 & 2 \\
1 / 8 & 1 / 2 & 2
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 / h \\
0
\end{array}\right)
$$

and the solution $A=-4 / h, B=5 / h$ and $C=-1 / h$, hence

$$
y^{\prime}(a)=\frac{-4 y(a+h / 2)+5 y(a+h)-y(a+2 h)}{h}+O\left(h^{2}\right)
$$

The error term comes from the first neglected term in the Taylor expansion:

$$
\left(-\frac{4}{h} \frac{h^{3}}{48}+\frac{5}{h} \frac{h^{3}}{6}-\frac{1}{h} \frac{4 h^{3}}{3}\right) y^{\prime \prime \prime}(a)=-\frac{7}{12} h^{2} y^{\prime \prime \prime}(a)=O\left(h^{2}\right)
$$

3. The stability region of Euler's explicit method, see the compendium chapter 3, pg 13. Inserting the right hand side of $\dot{y}=q y$ into the RK-formula gives $y_{k+1}=(1+h q+$ $\left.(h q)^{2} / 2\right) y_{k}$, hence the stability area in the $h q$-plane is defined by $\left|1+h q+(h q)^{2} / 2\right| \leq 1$.
4. Se the compendium, chapter $7, \mathrm{pg} 12$.
5. When using linear triangle elements the FEM-solution is piecewise linear, which means that the FEM-solution \tilde{u} restricted to a triangle T is linear, i.e. $\tilde{u}=a+b x+c y$. Inserting the three points gives the following three equations: $a+b-2 c=2, a+b+c=1$, $a-2 b+c=3$ which gives $\tilde{u}(0,0)=a=2$
6. The curves are called characteristics. The characteristics of the advection equation satisfy the straight lines $x=a t+C$. If c depends on t we have $d x / d t=c(t)=c_{0}+c_{1} t$, hence $x=c_{0} t+c_{1} t^{2} / 2+D$.
7. The solution should repeat itself periodically. For a 2 nd order ODE, the BCs could be $u(a)=u(b), u^{\prime}(a)=u^{\prime}(b)$.
8. Let $T=T_{\text {out }}+\left(T_{\text {init }}-T_{\text {out }}\right) u, r=R x, t=\alpha \tau$, where α is to be conveniently chosen later. Insert into the PDE:

$$
\frac{\partial\left(T_{\text {out }}+\left(T_{\text {init }}-T_{\text {out }}\right) u\right)}{\partial(\alpha \tau)}=\kappa \frac{1}{(R x)^{2}} \frac{\partial}{\partial(R x)}\left((R x)^{2} \frac{\partial\left(T_{\text {out }}+\left(T_{\text {init }}-T_{\text {out }}\right) u\right)}{\partial(R x)}\right.
$$

and we get after some algebraic manipulations:

$$
\frac{\partial u}{\partial \tau}=\frac{\alpha \kappa}{R^{2}} \frac{1}{x^{2}} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial u}{\partial x}\right)
$$

Now, choose $\alpha=R^{2} / \kappa$ having dimension $\left[m^{2} /\left(m^{2} / s\right)\right]=[s]$ and the required PDE is derived. The initial condition:

$$
T(r, 0)=T_{\text {init }}=T_{o u t}+\left(T_{\text {init }}-T_{\text {out }}\right) u(x, 0) \rightarrow u(x, 0)=1
$$

The boundary conditions:

$$
\begin{gathered}
\frac{\partial T}{\partial r}(0, t)=0 \rightarrow \frac{\partial u}{\partial x}(0, \tau)=0 \\
k \frac{\partial\left(T_{\text {out }}+\left(T_{\text {init }}-T_{\text {out }}\right) u\right)}{\partial(R x)}=-\beta\left(T_{\text {init }}-T_{\text {out }}\right) u \rightarrow \frac{\partial u}{\partial x}(1, \tau)=a u(1, \tau)
\end{gathered}
$$

where $a=R \beta / \kappa$ and the dimension of a is $\left[(m \cdot J \cdot m \cdot K) /\left(m^{2} \cdot K \cdot J\right)\right]=1$.
10a) $x_{i}=i h, i=-1,0, \ldots, N, N+1$, where $h=1 / N$, i.e. $x_{0}=0, x_{N}=1$
10b) Rewrite first the PDE:

$$
\frac{\partial u}{\partial \tau}=\frac{2}{x} \frac{\partial u}{\partial x}+\frac{\partial^{2} u}{\partial x^{2}}
$$

The MoL gives the ODE-system where the space derivatives are approximated with 2nd order accuracy:

$$
\frac{d u_{i}}{d \tau}=\frac{2}{x_{i}} \frac{u_{i+1}-u_{i-1}}{2 h}+\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}, i=0,1,2, \ldots, N
$$

This MoL-approximation does not work for $i=0$, where $x_{i}=0$. At that point we have to investigate what happens to the right hand side of the ODE using l'Hopital's rule:

$$
\lim _{x \rightarrow 0}\left(\frac{2 u^{\prime}(x)}{x}+u^{\prime \prime}(x)\right)=3 u^{\prime \prime}(0)
$$

Hence at $x=0$, the MoL-discretized PDE is

$$
\frac{d u_{0}}{d \tau}=3 \frac{u_{1}-2 u_{0}+u_{-1}}{h^{2}}
$$

10c) With centraldifference approximations we obtain:

$$
\frac{u_{1}-u_{-1}}{2 h}=0, \quad \frac{u_{N+1}-u_{N-1}}{2 h}=a u_{N}
$$

10d) Eliminating u_{-1} and u_{N+1} we obtain

$$
\begin{gathered}
\frac{d u_{0}}{d \tau}=3 \frac{2 u_{1}-2 u_{0}}{h^{2}}, \quad u_{0}(0)=1 \\
\frac{d u_{i}}{d \tau}=\frac{2}{x_{i}} \frac{u_{i+1}-u_{i-1}}{2 h}+\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}, \quad u_{i}(0)=1, \quad i=1,2, \ldots, N-1 \\
\frac{d u_{N}}{d \tau}=2 a u_{N}+\frac{\left((-2+2 h a) u_{N}+2 u_{N-1}\right)}{h^{2}}, \quad u_{N}(0)=1
\end{gathered}
$$

10e) Since $\partial u / \partial \tau=0$, we obtain

$$
\frac{1}{x^{2}} \frac{d}{d x}\left(x^{2} \frac{d u}{d x}\right)=0 \rightarrow x^{2} \frac{d u}{d x}=C \rightarrow u=-\frac{C}{x}+D
$$

The constant $C=0$, since the solution should exist at $x=0$, hence $u=D$. From the boundary condition at $x=1$ we obtain $u=0$, which is not unexpected, since this corresponds to $T=T_{\text {out }}$, which means that the sphere takes the same temperature as the environment, when it has cooled off.

