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SOLUTIONS

1. See the compendium, chapter 2, pg 11. Eigenvalues of the first matrix are λ1,2 = ±3i,
i.e. Re(λi) = 0 but they are simple, hence the system is stable (but not asymptotically
stable). Eigenvalues of the second matrix are λ1,2 = 0, i.e. a double eigenvalues with
Re(λi) = 0. We then have to investigate the particular system which is

u̇1 = 9u2, u̇2 = 0

which gives u2 = C, u1 = 9Ct+ D, hence an unstable system.

2. The ansatz y′(a) = Ay(a+ h/2) +By(a+ h) +Cy(a+ 2h) leads after Taylor expansion to
y′(a) = (A+B +C)y(a) + h(A/2 +B + 2C)y′(a) + h2(A/8 +B/2 + 2C)y′′(a) +O(h3),
hence the linear system of equations
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and the solution A = −4/h, B = 5/h and C = −1/h, hence

y′(a) =
−4y(a+ h/2) + 5y(a + h) − y(a+ 2h)

h
+ O(h2)

The error term comes from the first neglected term in the Taylor expansion:
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h2y′′′(a) = O(h2)

3. The stability region of Euler’s explicit method, see the compendium chapter 3, pg 13. -
Inserting the right hand side of ẏ = qy into the RK-formula gives yk+1 = (1 + hq +
(hq)2/2)yk, hence the stability area in the hq-plane is defined by |1 +hq+ (hq)2/2| ≤ 1.

4. Se the compendium, chapter 7, pg 12.

5. When using linear triangle elements the FEM-solution is piecewise linear, which means that
the FEM-solution ũ restricted to a triangle T is linear, i.e. ũ = a + bx + cy. Inserting
the three points gives the following three equations: a + b − 2c = 2, a + b + c = 1,
a− 2b + c = 3 which gives ũ(0, 0) = a = 2

6. The curves are called characteristics. The characteristics of the advection equation satisfy
the straight lines x = at + C. If c depends on t we have dx/dt = c(t) = c0 + c1t, hence
x = c0t+ c1t

2/2 + D.

7. The solution should repeat itself periodically. For a 2nd order ODE, the BCs could be
u(a) = u(b), u′(a) = u′(b).
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8. Let T = Tout + (Tinit − Tout)u, r = Rx, t = ατ , where α is to be conveniently chosen later.
Insert into the PDE:

∂(Tout + (Tinit − Tout)u)
∂(ατ)

= κ
1

(Rx)2
∂

∂(Rx)
((Rx)2

∂(Tout + (Tinit − Tout)u)
∂(Rx)

and we get after some algebraic manipulations:

∂u

∂τ
=

ακ

R2

1
x2

∂

∂x
(x2 ∂u

∂x
)

Now, choose α = R2/κ having dimension [m2/(m2/s)] = [s] and the required PDE is
derived. The initial condition:

T (r, 0) = Tinit = Tout + (Tinit − Tout)u(x, 0) → u(x, 0) = 1

The boundary conditions:

∂T

∂r
(0, t) = 0 → ∂u

∂x
(0, τ) = 0

k
∂(Tout + (Tinit − Tout)u)

∂(Rx)
= −β(Tinit − Tout)u → ∂u

∂x
(1, τ) = au(1, τ)

where a = Rβ/κ and the dimension of a is [(m · J ·m ·K)/(m2 ·K · J)] = 1.

10a) xi = ih, i = −1, 0, . . . , N,N + 1, where h = 1/N , i.e. x0 = 0, xN = 1

10b) Rewrite first the PDE:
∂u

∂τ
=

2
x

∂u

∂x
+

∂2u

∂x2

The MoL gives the ODE-system where the space derivatives are approximated with 2nd
order accuracy:

dui

dτ
=

2
xi

ui+1 − ui−1

2h
+

ui+1 − 2ui + ui−1

h2
, i = 0, 1, 2, . . . , N

This MoL-approximation does not work for i = 0, where xi = 0. At that point we have
to investigate what happens to the right hand side of the ODE using l’Hopital’s rule:

limx−>0(
2u′(x)
x

+ u′′(x)) = 3u′′(0)

Hence at x = 0, the MoL-discretized PDE is

du0

dτ
= 3

u1 − 2u0 + u−1

h2

10c) With centraldifference approximations we obtain:

u1 − u−1

2h
= 0,

uN+1 − uN−1

2h
= auN
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10d) Eliminating u−1 and uN+1 we obtain

du0

dτ
= 3

2u1 − 2u0

h2
, u0(0) = 1

dui

dτ
=

2
xi

ui+1 − ui−1

2h
+

ui+1 − 2ui + ui−1

h2
, ui(0) = 1, i = 1, 2, . . . , N − 1

duN

dτ
= 2auN +

((−2 + 2ha)uN + 2uN−1)
h2

, uN (0) = 1

10e) Since ∂u/∂τ = 0, we obtain

1
x2

d

dx
(x2 du

dx
) = 0 → x2du

dx
= C → u = −C

x
+ D

The constant C = 0, since the solution should exist at x = 0, hence u = D. From
the boundary condition at x = 1 we obtain u = 0, which is not unexpected, since this
corresponds to T = Tout, which means that the sphere takes the same temperature as
the environment, when it has cooled off.
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