
Questions to prepare for the written exam, DN2230 (Complete
list)

1. Given any matrix A ∈ R
3×3, is it possible to find all its eigenvalues

exactly (e.g. as λ1 =
√

3 +
√
17)? Given any matrix B ∈ R

5×5, is it
possible to find all its eigenvalues exactly? Motivate your answers.

2. What is Householder reflections? How could Householder reflections
be used to perform a QR-factorization of a given matrix A?

3. What does it mean for two matrices A,B ∈ R
d×d to be similar? Show

that if A and B are similar, then they have the same eigenvalues.

4. What is a Schur factorization of a matrix A ∈ R
n×n?

5. Prove that every square matrix A has a Schur factorization.

6. Write down the power method algorithm.

7. Show how the power method can be used to find an eigenvector of a
given matrix.

8. Write down the inverse iteration algorithm.

9. What is the relation between the the inverse iteration and power
method algorithms?

10. Use Gram-Schmidt orthogonalization to find two vectors, q1 and q2,
that are orthonormal, and span the same subspace of R4 as the vectors
a1 = (1, 2, 3, 4) and a2 = (0, 2, 0, 3). (The actual numbers will differ at
the exam.)

11. Write down the QR Algorithm.

12. Show that two consecutive iterates A(k) and A(k+1) of the QR Algo-
rithm are similar. (And hence have the same set of eigenvalues.)

13. Describe in what respect the Simultaneous Iteration and QR Algo-
rithms are equivalent.

14. Write down the QR Algorithm with shifts. (It is not necessary to
specify here what shifts are chosen.)

15. Let A be a symmetric matrix. Consider running shifted QR itera-
tion with Rayleigh quotient shifts (µ(k) = Ak

mm in every iteration),
yielding a sequence µ(1), µ(2), . . . of shifts. Also run Rayleigh quo-
tient iteration, starting with v(0) = [0, . . . , 0, 1]T , yielding a sequence
of Rayleigh quotients ρ(1), ρ(2), . . . Show that these sequences are iden-
tical: µ(k) = ρ(k), for all k.
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16. Define the Krylov space Kn(A, b) generated by the matrix A ∈ R
m×m

and the vector b ∈ R
m.

17. What is the dimension of the Krylov space K3 generated by the matrix

A =





1 2 3
0 2 0
0 0 3



 and vector b =





3
0
2



?

Why?

18. What does the Arnoldi method compute?

19. Mention one major difference between Lanczos and Arnoldi iteration.

20. Let rn be the residual at step n of the GMRES iteration. Show that
rn+1 ≤ rn.

21. Show that
‖rn‖ = min

pn∈Pn

‖pn(A)b‖,

where rn is the residual in step n of the GMRES method, and

Pn = {polynomials p of degree ≤ n with p(0) = 1}.

22. Assume that the matrix A is diagonalizable , satisfying A = V ΛV −1

for some nonsingular matrix V and diagonal matrix Λ. Show that

‖rn‖
‖b‖ ≤ κ(V ) min

pn∈Pn

‖pn‖Λ(A),

where Λ(A) is the set of eigenvalues of A, κ(V ) is the condition number
of V , and ‖pn‖Λ(A) = maxz∈Λ(A) |p(z)|.

23. Assume that the matrix A is diagonalizable, A = V ΛV −1, with the
condition number of V , κ(V ) ≤ 10. Assume also that its spectrum (its
eigenvalues) are contained in the disk of radius 1/2 around z = 2 in
the complex plane. Show that at step n of the GMRES iteration for
solving Ax = b, where ‖b‖ ≤ 10, the residual satisfies

‖rn‖ ≤ 100

4n
.

24. Assume that the matrix A is diagonalizable, A = V ΛV −1, with the
condition number of V , κ(V ) ≤ 10. Assume also that its spectrum
(its eigenvalues) are contained in the disks of radii 1/2 around z = 2
and z = −2 in the complex plane. Show that at every even step 2n of
the GMRES iteration for solving Ax = b, where ‖b‖ ≤ 10, the residual
satisfies:

‖r2n‖ ≤ 100

(

9

16

)n

= 100

(

3

4

)2n

.
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25. What is being minimized in the Conjugate Gradient method?

26. From the definition of the Conjugate Gradient method it can be shown
that xn ∈ Kn, and that the residuals satisfy rn⊥Kn. Use this to show
that xn is the unique point in Kn that minimizes ‖en‖A. (Recall also
that we need A to be symmetric positive definite in order to be able
to use the CG method.)

27. Show the following error bound for the Conjugate Gradient method:

‖en‖A
‖e0‖A

≤ inf
p∈Pn

max
λ∈Λ(A)

|p(λ)|.

Here en = x∗ − xn is the error in step n of the CG algorithm,

Pn = {polynomials p of degree ≤ n with p(0) = 1},

and Λ(A) is the spectrum of A.

When showing this result you may use the fact that the CG method
minimizes the norm ‖en‖A over Kn in each step.

28. Prove the following error bound for the Conjugate Gradient method:

‖en‖A
‖e0‖A

≤ 2

(√
κ− 1√
κ+ 1

)n

.

Here en = x∗ − xn is the error in step n of the CG algorithm and κ is
the 2-norm condition number of the matrix A in the system Ax = b
being solved.

In your proof you may use that there exists a degree n polynomial Tn

(the Chebyshev polynomial) which satisfies

• |Tn(x)| ≤ 1, for −1 ≤ x ≤ 1,

• Tn(x) =
1
2 [(x+

√
x2 − 1)n + (x+

√
x2 − 1)−n], for |x| > 1.

29. Name a significant difference between the GMRES and QMR methods.
Name a significant difference between the QMR and the CGS methods.
Given a linear system Ax = b, where A is nonsingular, name a method
which is certain to converge, at least in exact arithmetic. Under what
conditions can we apply the Conjugate Gradient method to solve the
linear system Ax = b?

30. What is the Jacobi method for solving Ax = b? What is the damped
Jacobi?
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31. Consider the system Ax = b, where

A =



















2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · −1 2 −1
0 0 · · · 0 −1 2



















,

i.e. a finite difference discretization of the Poisson equation

−u′′(x) = f(x), 0 < x < 1,

u(0) = u(1) = 0.

Show that the damping coefficient in the damped Jacobi iteration can
be chosen such that the high frequency modes of the error en = xn−x∗

are decreased substantially each step, while the low frequency modes
are decreased just a little, for every choice of the damping 0 ≤ ω ≤ 1.
(Hint: you may use that A has the eigenvectors {wk}m−1

k=1 , where w
k
j =

sin jkπ
m

, with corresponding eigenvalues λk = 4 sin2 kπ
2m .)

32. Give an example of a prolongation operator.

33. Give an example of a restriction operator.

34. Write down the two-grid method.

35. Write down the Multi-grid V-cycle.

36. Write down the Multi-grid W-cycle.

37. Derive an estimate of the computational complexity of one iteration
step of the multi-grid method. I.e. if seen as a function, what is the
computational complexity of a call to MG on the finest level L? The
work of the call to MG on the level L also contains the work of all the
recursive calls to MG on the coarser levels. Explain your assumptions.
Under what conditions does it hold that this work can be bounded by
a constant times the size of the system on the finest scale, nL?

38. Denote the error after m two-grid iterations em. It then holds that
em+1 = M2h

h em, for some matrixM2h
h . Prove this. Also state howM2h

h

can look, in terms of smoothing operators, prolongation etc. Prove
your claim.

39. Denote the error after m γ-Multi-grid iterations em. It then holds
that em+1 = Mhe

m, for some matrix Mh. Prove this. Also state and
prove a recursion relation showing how Ml can be computed using
Ml−1 (here Ml ≡ Mhl

). The recursion relation may include smoothing
operators, prolongation etc.
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40. Describe in what sense it could be said that FMG is more computa-
tionally efficient than MGI.

41. State and prove a theorem saying that a Multi-grid iteration reduces
the error by a factor that is independent of the step size.

42. Explain why, in order to show error reduction of multi-grid iterations,
one needs to show error reduction of the two-grid method.

43. Nested iteration does what?

44. Write down the full multi-grid algorithm.

45. State and prove a theorem on the computational complexity of the full
multi-grid method.

46. State and prove a theorem about the full multi-grid method achieving
accuracy comparable to the discretization error.

47. Describe how the multi-grid method could be of use when solving the
heat equation numerically.

48. Describe two different ways, both using multi-grid, to solve the equa-
tion

− u′′ + eu = f, in (0, 1),

u(0) = u(1) = 0.

49. Let A be a full n× n-matrix with rank(A) = k ≪ n. Propose and de-
scribe an efficient algorithm for computing the matrix-vector product
Ax and estimate its computational complexity.

50. Let A be the N × N matrix with entries aij = 1/|i − j| when i 6= j,
and aij = 0 for i = j. Present an algorithm for efficient computation
of the matrix-vector product Ax (with some given vector x).

You may use that if a submatrix Almk of A is separated from the
diagonal, then there exists a k × k-matrix Blmk with rank J + 1 such
that

|(Almk)ij − (Blmk)ij | ≤ 4−J .

Here Almk denotes a submatrix of A containing all elements aij of A
such that l ≤ i < l + k and m ≤ j < m + k. Moreover, Blmk can be
computed explicitly as

Blmk = B̄T ĀΓ̄,

where B̄ and Γ̄ are (J +1)× k-matrices, and Ā is an (J +1)× (J +1)-
matrix.

What will be the computational complexity of your proposed algo-
rithm? How is this complexity shown?
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