
Chapter 6

Finite Difference Methods

This section introduces finite difference methods for approximation of par-
tial differential equations. We first apply the finite difference method to a
partial differential equation for a financial option problem, which is more
efficiently computed by partial differential methods than Monte Carlo tech-
niques. Then we discuss the fundamental Lax Equivalence Theorem, which
gives the basic understanding of accuracy and stability for approximation of
differential equations.

6.1 American Options

Assume that the stock value, S(t), evolves in the risk neutral formulation by
the Itô geometric Brownian motion

dS = rSdt + σSdW.

An American put option is a contract that gives the possibility to sell a stock
for a fixed price K up to time T . Therefore the derivation of option values in
Chapter 4 shows that European and American options have the formulations:

1. The price of an European put option is

f(t, s) ≡ E[ e−r(T−t) max
(
K − S(T ), 0

)| S(t) = s ].

2. The price of an American option is obtained by maximizing over all
sell time τ strategies, which depend on the stock price up to the sell
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time,

fA(t, s) ≡ max
t≤τ≤T

E[ e−r(τ−t) max
(
K − S(τ ), 0

)| S(t) = s ]. (6.1)

How to find the optimal selling strategy for an American option? Assume
that selling is only allowed at the discrete time levels 0,Δt, 2Δt, . . . , T . Con-
sider the small time step (T − Δt, T ). By assumption the option is not sold
in the step. Therefore the European value f(t, s) holds, where f(T, s) =
max(K − s, 0) and for T − Δt < t < T

ft + rSfS +
1

2
σ2S2fSS = rf. (6.2)

If, for a fixed stock price s = S(T −Δt), there holds f(T −Δt, s) < max(K−
s, 0) then keeping the option gives the expected value f(T − Δt, s) which is
clearly less than the value max(K − s, 0) obtained by selling at time T −Δt.
Therefore it is optimal to sell if f(T −Δt, s) < max(K − s, 0) ≡ fF . Modify
the initial data at t = T − Δt to max(f(T − Δt, s), fF ) and repeat the step
(6.2) for (T − 2Δt, T − Δt) and so on. The price of the American option is
obtained as the limit of this solution as Δt → 0.

Example 6.1 A corresponding Monte Carlo method based on (6.1) requires
simulation of expected values E[e−rτ max(K − S(τ ), 0)] for many different
possible selling time strategies τ until an approximation of the maximum
values is found. Since the τ need to depend on ω, with M time steps and N
realizations there are MN different strategies.

Note that the optimal selling strategy

τ = τ ∗ = inf
v
{v : t ≤ v ≤ T, fA

(
v, S(v)

)
= max

(
K − S(v), 0

)}
for the American option, which is a function of fA, seems expensive to eval-
uate by Monte Carlo technique, but is obtained directly in the partial dif-
ferential formulation above and below. This technique is a special case of
the so called dynamic programming method, which we shall study systemat-
ically for general optimization problems in a later Chapter, cf. also the last
example in Chapter 1.

Here and in Exercise 6.2 is a numerical method to determine the value of
an American option:
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(1) Discretize the computational domain [0, T ]× [s0, s1] and let

fA(nΔt, iΔS) � f̄n,i, f̄N,i = max
(
K − iΔS, 0

)
.

(2) Use the Euler and central difference methods for the equation (6.2)

∂tfA � f̄n,i−f̂n−1,i

Δt
∂SfA � f̄n,i+1−f̄n,i−1

2ΔS

∂SSfA � f̄n,i+1−2f̄n,i+f̄n,i−1

(ΔS)2
fA � f̄n,i.

(3) Make a Black-Scholes prediction for each time step

f̂n−1,i = f̄n,i(1 − rΔt− σ2i2Δt) + f̄n,i+1(
1

2
riΔt +

1

2
σ2i2Δt)

+ f̄n,i−1(−1

2
riΔt +

1

2
σ2i2Δt).

(4) Compare the prediction with selling by letting

f̄n−1,i = max
(
f̂n−1,i,max(K − iΔS, 0)

)
,

and go to the next time Step 3 by decreasing n by 1.

Exercise 6.2 The method above needs in addition boundary conditions at
S = s0 and S = s1 for t < T . How can s0, s1 and these conditions be choosen
to yield a good approximation?

Exercise 6.3 Give a trinomial tree interpretation of the finite difference
scheme

f̄n+1,i = f̄n,i(1 + rΔt + σ2i2Δt) + f̄n,i+1(−1

2
riΔt− 1

2
σ2i2Δt)

+ f̄n,i−1(
1

2
riΔt− 1

2
σ2i2Δt),

for Black-Scholes equation of an European option. Binomial and trinomial
tree approximations are frequent in the finance economy literature, cf. [J.
Hull].
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Let us now study general finite difference methods for partial differential
equations. The motivation to introduce general finite difference methods in
contrast to study only the binomial and trinomial tree methods is that higher
order methods, such as the Crank-Nicolson method below, are more efficient
to solve e.g. (6.2).

The error for the binomial and the trinomial tree method applied to
the partial differential equation (6.2) for a European option is ε = O(Δt +
(Δs)2), which is clearly the same for the related forward and backward Euler
methods. The work is then A = O((ΔtΔs)−1), so that A = O(ε−3/2). For the
Crank-Nicolsen method the accuracy is ε = O((Δt)2 + (Δs)2) and the work
is still A = O((ΔtΔs)−1), which implies the improved bound A = O(ε−1).
For a general implicit method with a smooth exact solution in [0, T ] × R

d

the accuracy is ε = O((Δt)q +(Δs)p) with the miminal work ( using e.g. the

multigrid method ) A = O( q2

Δt
( p2

Δs
)d), which gives A = O( q2

ε1/q ( p2

ε1/p )d). In the
next section we derive these error estimates for some model problems.

6.2 Lax Equivalence Theorem

Lax equivalence theorem defines the basic concepts for approximation of
linear well posed differential equations. Here, well posed means that the
equation is solvable for data in a suitable function space and that the solution
operator is bounded. We will first formally state the result without being
mathematically precise with function spaces and norms. Then we present
two examples with proofs based on norms and functions spaces.

The ingredients of Lax Equivalence Theorem 6.4 are:

(0) an exact solution u, satisfying the linear well posed equation Lu = f ,
and an approximation uh, obtained from Lhuh = fh;

(1) stability, the approximate solution operators ‖L−1
h ‖ are uniformly bounded

in h and the exact solution operator ‖L−1‖ is bounded;

(2) consistency, fh → f and Lhu → Lu as the mesh size h → 0; and

(3) convergence, uh → u as the mesh size h → 0.

Theorem 6.4 The combination of stability and consistency is equivalent to
convergence.
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The idea of the proof. To verify convergence, consider the identity

u − uh = L−1
h [ Lhu − Lhuh ]

Step(0)
= L−1

h [ (Lhu − Lu) + (f − fh) ].

Stability implies that L−1
h is bounded and consistency implies that

Lhu − Lu → 0 and f − fh → 0,

and consequently the convergence holds

lim
h→0

(u − uh) = lim
h→0

L−1
h [ (Lhu − Lu) + (f − fh) ]

= 0.

Clearly, consistency is necessary for convergence. Example 6.7, below, indi-
cates that also stability is necessary. �

Let us now more precisely consider the requirements and norms to verify
stability and consistency for two concrete examples of ordinary and partial
differential equations.

Example 6.5 Consider the forward Euler method for the ordinary differen-
tial equation

u′(t) = Au(t) 0 < t < 1,
u(0) = u0.

(6.3)

Verify the conditions of stability and consistency in Lax Equivalence Theo-
rem.

Solution. For a given partition, 0 = t0 < t1 < ... < tN = 1, with Δt =
tn+1 − tn, let

un+1 ≡ (I + ΔtA)un

= Gnu0 where G = (I + ΔtA).

Then:

(1) Stability means |Gn| + |Hn| ≤ eKnΔt for some K, where | · | denotes
the matrix norm |F | ≡ sup{v∈Rn:|v|≤1} |Fv| with the Euclidean norm

|w| ≡ √∑
i w

2
i in R

n.
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(2) Consistency means |(G − H)v| ≤ C(Δt)p+1, where H = eΔtA and p is
the order of accuracy. In other words, the consistency error (G−H)v is
the local approximation error after one time step with the same initial
data v.

This stability and consistency imply the convergence

| un − u(nΔt) | = | (Gn − Hn)u0 |
= | (Gn−1 + Gn−2H + ... + GHn−2 + Hn−1)(G −H)u0 |
≤ | Gn−1 + Gn−2H + ... + GHn−2 + Hn−1||(G − H)u0 |
≤ C(Δt)p+1n| u0 |eKnΔt

≤ C ′(Δt)p,

with the convergence rate O(Δtp). For example, p = 1 in case of the Euler
method and p = 2 in case of the trapezoidal method. �

Example 6.6 Consider the heat equation

ut = uxx t > 0, (6.4)

u(0) = u0.

Verify the stability and consistency conditions in Lax Equivalence Theorem.

Solution. Apply the Fourier transform to equation (6.4),

ût = −ω2û

so that
û(t, ω) = e−tω2

û0(ω).

Therefore Ĥ = e−Δtω2
is the exact solution operator for one time step, i.e.

û(t + Δt) = Ĥû(t). Consider the difference approximation of (6.4)

un+1,i − un,i

Δt
=

un,i+1 − 2un,i + un,i−1

Δx2
,

which shows

un+1,i = un,i

(
1 − 2Δt

Δx2

)
+

Δt

Δx2
(un,i+1 + un,i−1) ,

59



where un,i � u(nΔt, iΔx). Apply the Fourier transform to obtain

ûn+1 =

[(
1 − 2Δt

Δx2

)
+

Δt

Δx2

(
ejΔxω + e−jΔxω

)]
ûn

=

[
1 − 2

Δt

Δx2
+ 2

Δt

Δx2
cos(Δxω)

]
ûn

= Ĝûn ( Let Ĝ ≡ 1 − 2
Δt

Δx2
+ 2

Δt

Δx2
cos(Δxω))

= Ĝn+1û0.

1. We have

2π‖un‖2
L2 = ‖ûn‖2

L2 (by Parseval’s formula)

= ‖Ĝnû0‖2
L2

≤ sup
ω

|Ĝn|2 ‖û0‖2
L2.

Therefore the condition

‖Ĝn‖L∞ ≤ eKnΔt (6.5)

implies L2-stability.

2. We have
2π‖u1 − u(Δt)‖2

L2 = ‖Ĝû0 − Ĥû0‖2
L2,

where u1 is the approximate solution after one time step. Let λ ≡ Δt
Δx2 ,

then we obtain

|(Ĝ − Ĥ)û0| = |
(
1 − 2λ + 2λ cos Δxω − e−Δtω2

)
û0|

= O(Δt2)ω4|û0|,
since for 0 ≤ Δtω2 ≡ x ≤ 1

|1 − 2λ + 2λ cos
√

x/λ − e−x|
=

(
1 − 2λ + 2λ

(
1 − x

2λ
+ O(x2)

)
− (

1 − x + O(x2)
))

≤ Cx2 = C(Δt)2ω4,

and for 1 < Δtω2 = x

|1 − 2λ + 2λ cos
√

x/λ − e−x| ≤ C = C
(Δt)2ω4

x2
≤ C(Δt)2ω4.
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Therefore the consistency condition reduces to

‖ (Ĝ − Ĥ)û0 ‖ ≤ ‖KΔt2ω4û0‖ (6.6)

≤ KΔt2‖∂xxxxu0‖L2 .

3. The stability (6.5) holds if

‖Ĝ‖L∞ ≡ sup
ω

|Ĝ(ω)| = max
ω

|1 − 2λ + 2λ cos Δxω| ≤ 1, (6.7)

which requires

λ =
Δt

Δx2
≤ 1

2
. (6.8)

The L2-stability condition (6.7) is called the von Neuman stability con-
dition.

4. Convergence follows by the estimates (6.6), (6.7) and ‖Ĥ‖L∞ ≤ 1

2π‖ un − u(nΔt) ‖2
L2 = ‖ (Ĝn − Ĥn)û0 ‖2

L2

= ‖ (Ĝn−1 + Ĝn−2Ĥ + ... + Ĥn−1)(Ĝ − Ĥ)û0 ‖2
L2

≤ ‖ Ĝn−1 + Ĝn−2Ĥ + ... + Ĥn−1‖2
L∞‖(Ĝ − Ĥ)û0 ‖2

L2

≤ (Kn(Δt)2)2 ≤ (KTΔt)2,

and consequently the convergence rate is O(Δt). �

Let us study the relations between the operators G and H for the simple
model problem

u′ + λu = 0

u(0) = 1

with an approximate solution un+1 = r(x)un (where x = λΔt):

(1) the exact solution satisfies

r(x) = e−λΔt = e−x,
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(2) the forward Euler method

un+1 − un

Δt
+ λun = 0 ⇒ r(x) = 1 − x,

(3) the backward Euler method

un+1 − un

Δt
+ λun+1 = 0 ⇒ r(x) = (1 + x)−1,

(4) the trapezoidal method

un+1 − un

Δt
+

λ

2
(un + un+1) = 0 ⇒ r(x) =

(
1 +

x

2

)−1 (
1 − x

2

)
,

and

(5) the Lax-Wendroff method

un+1 = un − Δtλun +
1

2
Δt2λ2un ⇒ r(x) = 1 − x +

1

2
x2.

The consistence |e−λΔt − r(λΔt)| = O(Δtp+1) holds with p = 1 in case 2 and
3, and p = 2 in case 4 and 5. The following stability relations hold:

(1) |r(x)| ≤ 1 for x ≥ 0 in case 1, 3 and 4.

(2) r(x) → 0 as x → ∞ in case 1 and 3.

(3) r(x) → 1 as x → ∞ in case 4.

Property (1) shows that for λ > 0 case 3 and 4 are unconditionally stable.
However Property (2) and (3) refine this statement and imply that only
case 3 has the same damping behavior for large λ as the exact solution.
Although the damping Property (2) is not necessary to prove convergence it
is advantegous to have for proplems with many time scales, e.g. for a system
of equations (6.3) where A has eigenvalues λi ≤ 1, i = 1, . . . , N and some
λj 
 −1, ( why?).

The unconditionally stable methods, e.g. case 3 and 4, are in general more
efficient to solve parabolic problems, such as the Black-Scholes equation (6.2),
since they require for the same accuracy fewer time steps than the explicit
methods, e.g. case 2 and 5. Although the work in each time step for the
unconditionally stable methods may be larger than for the explicit methods.
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Exercise 6.7 Show by an example that ‖un‖2
L2 → ∞ if for some ω there

holds |Ĝ(ω)| > 1, in Example 6.6, i.e. the von Neumann stability condition
does not hold.
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