
Chapter 7

The Finite Element Method
and Lax-Milgram’s Theorem

This section presents the finite element method, including adaptive approxi-
mation and error estimates, together with the basic theory for elliptic partial
differential equations. The motivation to introduce finite element methods is
the computational simplicity and efficiency for construction of stable higher
order discretizations for elliptic and parabolic differential equations, such as
the Black and Scholes equation, including general boundary conditions and
domains. Finite element methods require somewhat more work per degree
of freedom as compared to finite difference methods on a uniform mesh. On
the other hand, construction of higher order finite difference approximations
including general boundary conditions or general domains is troublesome.

In one space dimension such an elliptic problem can, for given functions
a, f, r : (0, 1) → R, take the form of the following equation for u : [0, 1] → R,

(−au′)′ + ru = f on (0, 1)
u(x) = 0 for x = 0, x = 1,

(7.1)

where a > 0 and r ≥ 0. The basic existence and uniqueness result for general
elliptic differential equations is based on Lax-Milgram’s Theorem, which we
will describe in section 7.3. We shall see that its stability properties, based
on so called energy estimates, is automatically satisfied for finite element
methods in contrast to finite difference methods.

Our goal, for a given tolerence TOL, is to find an approximation uh of
(7.1) satisfying

‖u − uh‖ ≤ TOL,
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using few degrees of freedoom by adaptive finite element approximation.
Adaptive methods are based on:

(1) an automatic mesh generator,

(2) a numerical method ( e.g. the finite element method),

(3) a refinement criteria (e.g. a posteriori error estimation), and

(4) a solution algorithm ( e.g. the multigrid method).

7.1 The Finite Element Method

A derivation of the finite element method can be divided into:

(1) variational formulation in an infinite dimensional space V ,

(2) variational formulation in a finite dimensional subspace, Vh ⊂ V ,

(3) choice of a basis for Vh, and

(4) solution of the discrete system of equations.

Step 1. Variational formulation in an infinite dimensional space, V .

Consider the following Hilbert space,

V =

{
v : (0, 1) → R :

∫ 1

0

(
v2(x) + (v′(x))2

)
dx < ∞, v(0) = v(1) = 0

}
.

Multiply equation (7.1) by v ∈ V and integrate by parts to get

∫ 1

0

fv dx =

∫ 1

0

((−au′)′ + ru)v dx

= [−au′v]
1
0 +

∫ 1

0

(au′v′ + ruv) dx (7.2)

=

∫ 1

0

(au′v′ + ruv) dx.
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Therefore the variational formulation of (7.1) is to find u ∈ V such that

A(u, v) = L(v) ∀v ∈ V, (7.3)

where

A(u, v) =

∫ 1

0

(au′v′ + ruv) dx,

L(v) =

∫ 1

0

fv dx.

Remark 7.1 The integration by parts in (7.2) shows that a smooth solution
of equation (7.1) satisfies the variational formulation (7.3). For a solution of
the variational formulation (7.3) to also be a solution of the equation (7.1),
we need additional conditions on the regularity of the functions a, r and f
so that u′′ is continuous. Then the following integration by parts yields, as
in (7.2),

0 =

∫ 1

0

(au′v′ + ruv − fv) dx =

∫ 1

0

(−(au′)′ + ru − f)v dx.

Since this holds for all v ∈ V , it implies that

−(au′)′ + ru − f = 0,

provided −(au′)′ + ru − f is continuous. �

Step 2. Variational formulation in the finite dimensional subspace, Vh.

First divide the interval (0, 1) into 0 = x0 < x2 < ... < xN+1 = 1, i.e.
generate the mesh. Then define the space of continuous piecewise linear
functions on the mesh with zero boundary conditions

Vh = {v ∈ V : v(x) |(xi,xi+1)= cix + di, i.e. v is linear on (xi, xi+1), i = 0, · · · , N

and v is continuous on (0, 1)}.
The variational formulation in the finite dimensional subspace is to find uh ∈
Vh such that

A(uh, v) = L(v) ∀v ∈ Vh. (7.4)
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The function uh is a finite element solution of the equation (7.1). Other finite
element solutions are obtained from alternative finite dimensional subspaces,
e.g. based on piecewise quadratic approximation.

Step 3. Choose a basis for Vh.

Let us introduce the basis functions φi ∈ Vh, for i = 1, ..., N , defined by

φi(xj) =

{
1 if i = j
0 if i 
= j.

(7.5)

A function v ∈ Vh has the representation

v(x) =
N∑

i=1

viφi(x),

where vi = v(xi), i.e. each v ∈ Vh can be written in a unique way as a linear
combination of the basis functions φi.

Step 4. Solve the discrete problem (7.4).

Using the basis functions φi, for i = 1, ..., N from Step 3, we have

uh(x) =
N∑

i=1

ξiφi(x),

where ξ = (ξ1, ..., ξN)T ∈ RN , and choosing v = φj in (7.4), we obtain

L(φj) = A(uh, φj)

= A(
∑

i

φiξi, φj) =
∑

i

ξiA(φi, φj),

so that ξ ∈ RN solves the linear system

Ãξ = L̃, (7.6)

where

Ãji = A(φi, φj),

L̃j = L(φj).

The N ×N matrix Ã is called the stiffness matrix and the vector L̃ ∈ RN is
called the load vector.
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Example 5.1 Consider the following two dimensional problem,

−div(k∇u) + ru = f in Ω ⊂ R
2 (7.7)

u = g1 on Γ1

∂u

∂n
= g2 on Γ2,

where ∂Ω = Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. The variational formulation has
the following form.

1. Variational formulation in the infinite dimensional space.

Let

Vg =

{
v(x) :

∫
Ω

(v2(x) + |∇v(x)|2) dx < ∞, v|Γ1 = g

}
.

Take a function v ∈ V0, i.e. v = 0 on Γ1, then by (7.7)∫
Ω

fv dx = −
∫

Ω

div(k∇u)v dx +

∫
Ω

ruv dx

=

∫
Ω

k∇u · ∇v dx −
∫

Γ1

k
∂u

∂n
v ds −

∫
Γ2

k
∂u

∂n
v ds +

∫
Ω

ruv dx

=

∫
Ω

k∇u · ∇v dx −
∫

Γ2

kg2v ds +

∫
Ω

ruv dx.

The variational formulation for the model problem (7.7) is to find u ∈ Vg1

such that

A(u, v) = L(v) ∀v ∈ V0, (7.8)

where

A(u, v) =

∫
Ω

(k∇u · ∇v + ruv) dx,

L(v) =

∫
Ω

fv dx +

∫
Γ2

kg2vds.

2. Variational formulation in the finite dimensional space.

Assume for simplicity that Ω is a polygonial domain which can be divided
into a triangular mesh Th = {K1, ...KN} of non overlapping triangles Ki and
let h = maxi(length of longest side of Ki). Assume also that the boundary
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function g1 is continuous and that its restriction to each edge Ki ∩ Γ1 is a
linear function. Define

V h
0 = {v ∈ V0 : v|Ki is linear ∀Ki ∈ Th, v is continuous on Ω},

V h
g1

= {v ∈ Vg1 : v|Ki is linear ∀Ki ∈ Th, v is continuous on Ω},

and the finite element method is to find uh ∈ V h
g1

such that

A(uh, v) = L(v), ∀v ∈ V h
0 . (7.9)

3. Choose a basis for V h
0 .

As in the one dimensional problem, choose the basis φj ∈ V h
0 such that

φj(xi) =

{
1 i = j
0 i 
= j j = 1, 2, ..., N,

where xi, i = 1, . . . , N , are the vertices of the triangulation.

4. Solve the discrete system.

Let

uh(x) =
N∑

i=1

ξiφi(x), and ξi = uh(xi).

Then (7.9) can be written in matrix form,

Ãξ = L̃, where Ãji = A(φi, φj) and L̃j = L(φj).

�

7.2 Error Estimates and Adaptivity

We shall now study a priori and a posteriori error estimates for finite element
methods, where

‖u− uh‖ ≤ E1(h, u, f) is an a priori error estimate,

‖u− uh‖ ≤ E2(h, uh, f) is an a posteriori error estimate.

Before we start, let us study the following theorem, which we will prove later,
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Theorem 7.2 (Lax-Milgram) Let V be a Hilbert space with norm ‖ · ‖V

and scalar product (·, ·)V and assume that A is a bilinear functional and L is
a linear functional that satisfy:

(1) A is symmetric, i.e. A(v,w) = A(w, v) ∀v,w ∈ V ;

(2) A is V-elliptic, i.e. ∃ α > 0 such that A(v, v) ≥ α‖v‖2
V ∀v ∈ V ;

(3) A is continuous, i.e. ∃ C ∈ R such that |A(v,w)| ≤ C‖v‖V ‖w‖V ; and

(4) L is continuous, i.e. ∃ Λ ∈ R such that |L(v)| ≤ Λ‖v‖V ∀v ∈ V.

Then there is a unique function u ∈ V such that A(u, v) = L(v) ∀v ∈ V,
and the stability estimate ‖u‖V ≤ Λ/α holds.

7.2.1 An A Priori Error Estimate

The approximation property of the space Vh can be characterized by

Lemma 7.3 Suppose Vh is the piecewise linear finite element space (7.4),
which discretizes the functions in V , defined on (0, 1), with the interpolant
π : V → Vh defined by

πv(x) =

N∑
i=1

v(xi)φi(x), (7.10)

where {φi} is the basis (7.5) of Vh. Then

‖(v − πv)′‖L2(0,1) ≤
√∫ 1

0

h2v′′(x)2 dx ≤ Ch, (7.11)

‖v − πv‖L2(0,1) ≤
√∫ 1

0

h4v′′(x)2 dx ≤ Ch2,

where h = maxi (xi+1 − xi).
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Proof. Take v ∈ V and consider first (7.11) on an interval (xi, xi+1). By the
mean value theorem, there is for each x ∈ (xi, xi+1) a ξ ∈ (xi, xi+1) such that
v′(ξ) = (πv)′(x). Therefore

v′(x) − (πv)′(x) = v′(x) − v′(ξ) =

∫ x

ξ

v′′(s)ds,

so that∫ xi+1

xi

|v′(x) − (πv)′(x)|2dx =

∫ xi+1

xi

(

∫ x

ξ

v′′(s)ds)2dx

≤
∫ xi+1

xi

|x− ξ|
∫ x

ξ

(v′′(s))2dsdx

≤ h2

∫ xi+1

xi

(v′′(s))2ds, (7.12)

which after summation of the intervals proves (7.11).
Next, we have

v(x)− πv(x) =

∫ x

xi

(v − πv)′(s)ds,

so by (7.12)∫ xi+1

xi

|v(x)− πv(x)|2dx =

∫ xi+1

xi

(

∫ x

xi

(v − πv)′(s)ds)2dx

≤
∫ xi+1

xi

|x − xi|
∫ x

xi

((v − πv)′)2(s)dsdx

≤ h4

∫ xi+1

xi

(v′′(s))2ds,

which after summation of the intervals proves the lemma. �

Our derivation of the a priori error estimate

‖u− uh‖V ≤ Ch,

where u and uh satisfy (7.3) and (7.4), respectivly, uses Lemma 7.3 and a
combination of the following four steps:
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(1) error representation based on the ellipticity

α

∫
Ω

(v2(x) + (v′(x))2) dx ≤ A(v, v) =

∫
Ω

(a(v′)2 + rv2) dx,

where α = infx∈(0,1)(a(x), r(x)) > 0,

(2) the orthogonality
A(u− uh, v) = 0 ∀v ∈ Vh,

obtained by Vh ⊂ V and subtraction of the two equations

A(u, v) = L(v) ∀v ∈ V by (7.3),

A(uh, v) = L(v) ∀v ∈ Vh by (7.4),

(3) the continuity

|A(v,w)| ≤ C‖v‖V ‖w‖V ∀v,w ∈ V,

where C ≤ supx∈(0,1)(a(x), r(x)), and

(4) the interpolation estimates

‖(v − πv)′‖L2 ≤ Ch, (7.13)

‖v − πv‖L2 ≤ Ch2,

where h = max (xi+1 − xi).

To start the proof of an a priori estimate let e ≡ u − uh. Then by Cauchy’s
inequality

A(e, e) = A(e, u− πu + πu − uh)

= A(e, u− πu) + A(e, πu− uh)
Step2
= A(e, u− πu)

≤
√

A(e, e)
√

A(u− πu, u− πu),

so that by division of
√

A(e, e),√
A(e, e) ≤

√
A(u − πu, u− πu)

Step3
= C‖u− πu‖V

≡ C
√
‖u − πu‖2

L2 + ‖(u − πu)′‖2
L2

Step4

≤ Ch.
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Therefore, by Step 1
α‖e‖2

V ≤ A(e, e) ≤ Ch2,

which implies the a priori estimate

‖e‖V ≤ Ch,

where C = K(u). �

7.2.2 An A Posteriori Error Estimate

Example 7.4 Consider the model problem (7.1), namely,{ −(au′)′ + ru = f in (0, 1),
u(0) = u(1) = 0.

Then √
A(u− uh, u − uh) ≤ C ‖a− 1

2 (f − ruh + a′u′
h)h‖L2

≡ E(h, uh, f). (7.14)

Proof. Let e = u − uh and let πe ∈ Vh be the nodal interpolant of e. We
have

A(e, e) = A(e, e− πe) (by orthogonality)

= A(u, e− πe)− A(uh, e − πe).

Using the notation (f, v) ≡ ∫ 1

0
fv dx, we obtain by integration by parts

A(e, e) = (f, e− πe)−
N∑

i=1

∫ xi+1

xi

(au′
h(e− πe)′ + ruh(e − πe)) dx

= (f − ruh, e− πe)−
N∑

i=1

{
[au′

h(e − πe)]xi+1
xi

−
∫ xi+1

xi

(au′
h)

′(e − πe) dx

}

= (f − ruh + a′u′
h, e − πe) ( since u′′

h|(xi,xi+1) = 0, (e− πe)(xi) = 0)

≤ ‖a− 1
2 h(f − ruh + a′u′

h)‖L2‖a 1
2 h−1(e − πe)‖L2.
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Lemma 7.5 implies√
A(e, e) ≤ C‖a− 1

2 h(f − ruh + a′u′
h)‖L2,

which also shows that
‖e‖V ≤ Ch,

where C = K ′(uh). �

Lemma 7.5 There is a constant C, independent of u and uh, such that,

‖a 1
2 h−1(e − πe)‖L2 ≤ C

√∫ 1

0

ae′e′ dx ≤ C
√

A(e, e)

�

Exercise 7.6 Use the interpolation estimates in Lemma 7.3 to prove Lemma
7.5.

7.2.3 An Adaptive Algorithm

We formulate an adaptive algorithm based on the a posteriori error estimate
(7.14) as follows:

(1) Choose an initial coarse mesh Th0 with mesh size h0.

(2) Compute the corresponding FEM solution uhi in Vhi .

(3) Given a computed solution uhi in Vhi , with the mesh size hi,

stop if E(hi, uhi, f) ≤ TOL
go to step 4 if E(hi, uhi, f) > TOL.

(4) Determine a new mesh Thi+1 with mesh size hi+1 such that

E(hi+1, uhi, f) ∼= TOL,

by letting the error contribution for all elements be approximately con-
stant, i.e.

‖a− 1
2 h(f − ruh − a′u′

h)‖L2(xi,xi+1)
∼= C, i = 1, . . . , N,

then go to Step 2.
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7.3 Lax-Milgram’s Theorem

Theorem 7.7 Suppose A is symmetric, i.e. A(u, v) = A(v, u) ∀u, v ∈ V,
then (Variational problem) ⇐⇒ (Minimization problem) with

(Var) Find u ∈ V such that A(u, v) = L(v) ∀v ∈ V,
(Min) Find u ∈ V such that F (u) ≤ F (v) ∀v ∈ V,

where

F (w) ≡ 1

2
A(w,w) − L(w) ∀w ∈ V.

Proof. Take ε ∈ R. Then

(⇒) F (u + εw) =
1

2
A(u + εw, u + εw) − L(u + εw)

=

(
1

2
A(u, u)− L(u)

)
+ εA(u,w)− εL(w) +

1

2
ε2A(w,w)

≥
(

1

2
A(u, u)− L(u)

) (
since

1

2
ε2A(w,w) ≥ 0 and A(u,w) = L(w)

)
= F (u).

(⇐) Let g(ε) = F (u + εw), where g : R → R. Then

0 = g′(0) = 0 · A(w,w) + A(u,w) − L(w) = A(u,w) − L(w).

Therefore
A(u,w) = L(w) ∀w ∈ V.

�

Theorem 7.8 (Lax-Milgram) Let V be a Hilbert space with norm ‖ · ‖V

and scalar product (·, ·)V and assume that A is a bilinear functional and L is
a linear functional that satisfy:

(1) A is symmetric, i.e. A(v,w) = A(w, v) ∀v,w ∈ V ;

(2) A is V-elliptic, i.e. ∃ α > 0 such that A(v, v) ≥ α‖v‖2
V ∀v ∈ V ;
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(3) A is continuous, i.e. ∃ C ∈ R such that |A(v,w)| ≤ C‖v‖V ‖w‖V ; and

(4) L is continuous, i.e. ∃ Λ ∈ R such that |L(v)| ≤ Λ‖v‖V ∀v ∈ V.

Then there is a unique function u ∈ V such that A(u, v) = L(v) ∀v ∈ V,
and the stability estimate ‖u‖V ≤ Λ/α holds.

Proof. The goal is to construct u ∈ V solving the minimization problem

F (u) ≤ F (v) for all v ∈ V , which by the previous theorem is equivalent to
the variational problem. The energy norm, ‖v‖2 ≡ A(v, v), is equivalent to
the norm of V, since by Condition 2 and 3,

α‖v‖2
V ≤ A(v, v) = ‖v‖2 ≤ C‖v‖2

V .

Let

β = infv∈V F (v). (7.15)

Then β ∈ R, since

F (v) =
1

2
‖v‖2 − L(v) ≥ 1

2
‖v‖2 − Λ‖v‖ ≥ −Λ2

2
.

We want to find a solution to the minimization problem minv∈V F (v). It is
therefore natural to study a minimizing sequence vi, such that

F (vi) → β = inf
v∈V

F (v). (7.16)

The next step is to conclude that the vi infact converge to a limit:∥∥∥∥vi − vj

2

∥∥∥∥
2

=
1

2
‖vi‖2 +

1

2
‖vj‖2 −

∥∥∥∥vi + vj

2

∥∥∥∥
2

( by the parallelogram law )

=
1

2
‖vi‖2 − L(vi) +

1

2
‖vj‖2 − L(vj)

−
(∥∥∥∥vi + vj

2

∥∥∥∥
2

− 2L(
vi + vj

2
)

)

= F (vi) + F (vj) − 2F

(
vi + vj

2

)
≤ F (vi) + F (vj) − 2β ( by (7.15) )

→ 0, ( by (7.16) ).
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Hence {vi} is a Cauchy sequence in V and since V is a Hilbert space ( in
particular V is a complete space) we have vi → u ∈ V.

Finally F (u) = β, since

|F (vi) − F (u)| = |1
2
(‖vi‖2 − ‖u‖2) − L(vi − u)|

= |1
2
A(vi − u, vi + u) − L(vi − u)|

≤ (
C

2
‖vi + u‖V + Λ)‖vi − u‖V

→ 0.

Therefore there exists a unique (why?) function u ∈ V such that F (u) ≤
F (v) ∀v ∈ V. To verify the stability estimate, take v = u in (Var) and use
the ellipcity (1) and continuity (3) to obtain

α‖u‖2
V ≤ A(u, u) = L(u) ≤ Λ‖u‖V

so that

‖u‖V ≤ Λ

α
.

The uniqueness of u can also be verified from the stability estimate. If u1, u2

are two solutions of the variational problem we have A(u1−u2, v) = 0 for all
v ∈ V . Therefore the stability estimate implies ‖u1 − u2‖V = 0, i.e. u1 = u2

and consequently the solution is unique. �

Example 7.9 Determine conditions for the functions k, r and f : Ω → R

such that the assumptions in the Lax-Milgram theorem are satisfied for the
following elliptic partial differential equation in Ω ⊂ R2

−div(k∇u) + ru = f in Ω

u = 0 on ∂Ω.

Solution. This problem satisfies (Var) with

V = {v :

∫
Ω

(v2(x) + |∇v(x)|2) dx < ∞, and v|∂Ω = 0},
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A(u, v) =

∫
Ω

(k∇u∇v + ruv) dx,

L(v) =

∫
Ω

fv dx,

‖v‖2
V =

∫
Ω

(v2(x) + |∇v|2) dx.

Consequently V is a Hilbert space and A is symmetric and continuous pro-
vided k and r are uniformly bounded.

The ellipticity follows by

A(v, v) =

∫
Ω

(k|∇v|2 + rv2) dx

≥ α

∫
Ω

(v2(x) + |∇v|2) dx

= α‖v‖2
H1,

provided α = infx∈Ω(k(x), r(x)) > 0.
The continuity of A is a consequence of

A(v,w) ≤ max(‖k‖L∞ , ‖r‖L∞)

∫
Ω

(|∇v||∇w|+ |v||w|)dx

≤ max(‖k‖L∞ , ‖r‖L∞)‖v‖H1‖w‖H1,

provided max(‖k‖L∞ , ‖r‖L∞) = C < ∞.
Finally, the functional L is continuous, since

|L(v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖V ,

which means that we may take Λ = ‖f‖L2 provided we assume that f ∈
L2(Ω). Therefore the problem satisfies the Lax-Milgram theorem. �

Example 7.10 Verify that the assumption of the Lax-Milgram theorem are
satisfied for the following problem,

−Δu = f in Ω,

u = 0 on ∂Ω.
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Solution. This problem satisfies (Var) with

V = H1
0 = {v ∈ H1 : v|∂Ω = 0},

H1 = {v :

∫
Ω

(v2(x) + |∇v(x)|2) dx < ∞},

A(u, v) =

∫
Ω

∇u∇v dx,

L(v) =

∫
Ω

fv dx.

To verify the V-ellipticity, we use the Poincaré inequality, i.e. there is a
constant C such that

v ∈ H1
0 ⇒

∫
Ω

v2 dx ≤ C

∫
Ω

|∇u|2 dx. (7.17)

In one dimension and Ω = (0, 1), the inequality (7.17) takes the form∫ 1

0

v2(x) dx ≤
∫ 1

0

(v′(x))2 dx, (7.18)

provided v(0) = 0. Since

v(x) = v(0) +

∫ x

0

v′(s) ds =

∫ x

0

v′(s) ds,

and by Cauchy’s inequality

v2(x) =

(∫ x

0

v′(s) ds

)2

≤ x

∫ x

0

v′(s)2 ds

≤
∫ 1

0

v′(s)2 ds since x ∈ (0, 1).

The V-ellipticity of A follows by (7.18) and

A(v, v) =

∫ 1

0

v′(x)2 dx =
1

2

∫ 1

0

(
(v′(x))2 dx +

1

2
(v′(x))2

)
dx

≥ 1

2

∫ 1

0

(v′(x)2 + v(x)2) dx

=
1

2
‖v‖2

H1
0

∀v ∈ H1
0 .
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The other conditions can be proved similarly as in the previous example.
Therefore this problem satisfies the Lax-Milgram theorem. �
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