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Finite Volume Discretization of the Heat Equation

We consider finite volume discretizations of the one-dimensional variable coefficient heat
equation, with Neumann boundary conditions

up — Oz (k(x)0pu) = S(t, x), O<z<l1l, t>0, (1)
U(O,l'):f($), 0<a<l,
uz(t,0) = ug(t,1) =0, t>0.

The coefficient k(x) is strictly positive.

1 Semi-discrete approximation

By semi-discretization we mean discretization only in space, not in time. This approach is also
called method of lines.

Discretization

We discretize space into N equal size grid cells (bins) of size h = 1/N, and define z; = h/2+ jh,
so that z; is the center of cell j, see figure. The edges of cell j are then x;_; /5 and x; /5.

Unknowns

In a finite volume method the unknowns approximate the
average of the solution over a grid cell. More precisely, we

let ¢;(t) be the approximation “w H”X)
1 [Ti+1/2 wi (4 2 T [4)
q;(t) = uj(t) == h/ u(t, x)dzx. ) ) %
Tj—1/2
\‘ \ B

Note the contrast with finite difference methods, where %

pointwise values are approximated, and finite element h

methods, where basis function coefficients are approxi-

mated.
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Ezact update formula

We derive an exact update formula for u;(t), the exact local averages. Integrating over cell
j and dividing by h we get

1 [Ti+1/2 1 [%i+1/2 1 [%i+1/2
h/ u(t, x)de = h/ 8x(k(x)8$u)dx+h/ S(t,z)dx

j—1/2 Tj—1/2 Tj—1/2

S(t,x)dzx.

 k(zy)us(t i ge) — k(mja2)ua(t 25-1/2) L1 /%‘H/z
h Tj—1/2

Upon defining the flux

Fj(t) = F(t,x;) = —k(z;)ua(t, z5),

and the local average of the source
1 [Fi+1/2
Si(t) = 2 / S(t, a)de,
h ).
j—1/2

we get the exact update formula

du;(t) Fi12(t) — Fjq2(t)

i = - p LS50 Ty, e—l kJ Fo

The fluxes Fjj 1/ and —F;_1/5 then represents | { 1
how much heat flows out through the left and Xy

right boundary of the cell.

Note, this is an instance the conservation law in integral form,

d udv+/ﬁ-ﬁdsz/5dv,
dt Jy s v

where we have picked V' as the interval [x;_; /o, %j11/], and scaled by [V] = h.

Approzimation of the flux

To use the exact update formula as the basis for a numerical scheme we must approximate the
fluxes Fj1; /5. Since the value in the midpoint of the cell is a second order approximation of the
average, we have for smooth wu,

u(t,z;) —ul(t,xi—
Fi_1)2(t) = —k(zj_1/2)ua(t, xj_1/2) = —k(xj_1/2) (¢, z;) A (t,2-1) +0(h?)

- _k(le/Q)W +O(h?).

We therefore use

Fjo1p2(t) = Fioya(t) = —k(wj_l/g)w.

as approximation. This leads to the numerical scheme for inner points 1 < j7 < N — 2,

dqéit) _ _Fj+1/2(t) hFj—1/2(t) - S,(t) @)

_ F(@41/2) (g1 () — 45(1) h_2 F(@j-1/2)( () = g;1(*)) + S;(t).
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Hence, with k; := k(z;),

% _ Kirr2gien — (ki J;ijl/z)qj Rl g (3)

for j=1,..., N — 2. This is a second order approximation.

Boundary conditions

To complete the scheme we need update formulae also
for the boundary points j = 0 and j = N — 1. These
must be derived by taking the boundary conditions into 3‘_ iv
account. We introduce the ghost cells j = —1 and j = N I
which are located just outside the domain. The boundary | , I I
conditions are used to fill these cells with values ¢_; and ot %' l ’
gn, based on the values g; in the interior cells. The same -l
update formula as before can then be used also for
j=0and j=N —1.

Let us consider our boundary condition u, = 0 at x = 0. (We can also think of this as a
"no flux" condition, F' = 0.) We formally extend the definition of the solution u for z < 0, i.e.
outside the domain, and, as before, approximate

0 = uy(t,0) = 0T =0l T1) 62y

h
_ UO<t>—hU1(t> YO = uy(t) = uo(t) + O(R%).

Replacing u; by our approximation ¢; and dropping the O(h?) term we get an expression for g_1
in terms of ¢y as the boundary rule
q-1(t) = qo(?).
We now insert this into the update formula for j =0,
dgo  kijpqr — (kijp + ko1y2)qo0 + k_1/2q-1

at h2 50 = o

q1 — qo
h2

+ So- (4)
In exactly the same way we obtain for j = N — 1 that gy (t) = gn—1(t) and therefore

dqn—1 qN—-2 — gN-1
a kn_3/2 52 + SN-1. (5)

Remark 1 Dirichlet boundary conditions u(t,0) = u(t,1) = 0 can be approximated to second
order in two ways.

First, one can use a shifted grid, x; = jh so that xo and xn, the centers of cells 0 and N,
are precisely on the boundary. Then one does not need ghost cells; one just sets qg = gy = 0.
Note that the number of unknows are now only N —1, so A € RN-DX(N=1) ¢z¢.

Second, one can take the average of two cells to approximate the value in between,

u(t,zo) +u(t,x_1)
2

ug (t) + (V) (t)

0=wu(t,0) =
u(?) 2

+ O(h?) = + O(h?),

leading to the approrimations
d-1 = —qo, qN = —gN-1-
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Matrix form

We put all the formulae , , together and write them in matrix form. Introduce

q0 So
q= S S = : ; q,SeR

gN—1 Sn—1
and

—k1/2 k12
kijg —(kiyo+ksp) ks

1
kn_s/2 —(kn_s2+kn_3/2) kn_3/2
—kn_3/2 kn_3/2
Then we get the linear ODE system
dq(t
10 Aq(r) + 50, @

Hence, in this semi-discretization the time-dependent PDE has been approximated by a system
of ODEs, where the matrix A is a discrete approximation of the second order differential operator
0:k(x)0;, including its boundary conditions.

1.1 Brief outline of extensions to 2D

The same strategy can be used in 2D. We give a cursory description of the main steps here. To
simplify things we consider the constant coefficient problem,

up — Au = S(t,z,y), O<zx<l, O<y<l, t>0,
u(0,z,y) = f(x,y), 0<z<l, O0<y<l,
uz(t,0,y) = uz(t,2m,y) = uy(t,2,0) = uy(t,z,27) =0, O0<z<1l, O0<y<l, t>0.

Discretization

We discretize the domain [0,1]? into N x N equal size grid cells of size h x h, where h = 1/N.
We define x; = h/2 + jh and y, = h/2 + kh and denote the cell with center (x;,yx) by Ljk.
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Unknowns

The unknowns are now ¢;i(t), which are approximations of the average of the solution over the
grid cell I,

1
G0(8) % wn(t) = 75 [ ultiz,p)dady,
ik

Ezact update formula

The update formula is again an instance of the conservation law in integral form where we pick
the volume V' as [ and scale by |I;| = h2,

d 1 / 1 / _— 1 /
—— udxdy + — F-7dS = — Sdxdy,
dt h? Lk h? J I h? Lk

where F' = —Vu. Upon defining
1
Sik(t) = / S(t,x,y)dxdy,
h? i

this can be written as
dek(t) o 1

S F-7dS + Sp.(1).
dt h? Jor,,. AdS + Siw(t)

Let F' = (f1, f2) and define the average flux through each side of the cell,

1 Tjtr1/2 1 Yk+1/2
Fjpr12(t) == h/ fa(t, 2, Ypt1/2)d, Fip104(t) == h/ it 24172, y)dy,

j—1/2 Yrk—1/2
we get the exact formula

du g, 1
= 7 ek = Fioajan + Fieyye = Fie-1/2) + Sin (8)
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/1\ E Kty

Again, the fluxes F}jj41/2 and Fji, /5 represent the
heat flux (upto sign) out through the four sides of the
cell.

Approzimation of the flux

We use the same type of approximation as in 1D for
F = —Vu. We get for instance

1 Liti/2 1 Tit1/2 U t7 T,Yk) — U tv Ty Yk—1
Fij-1/2 = —/ uy(t, o, Yp_12)de = —h/ ( ) ; ( i + O(h?)
ZLj—1/2 Tj_1/2

1 Tj+1/2 1 Tj+1/2 9
= —/x u(t, z, yp)dx + h?/ u(t, , yy—1)dz + O(h7)
j—1/2

Tj—1/2
1
= _h3/ u(t, z,y)dzdy + h3/ u(t, z,y)dzdy + O(h?)
Iy, k=1

_ Uik T Uik
h
Replacing i, by gjx, dropping O(h?) and inserting in the exact formula we get the five-point
formula,

+ O(h?).

dq ik 1
7; = 23 Gk T G-k + Gar + die-1 — dg5) + S

Boundary conditions is done as in 1D. The matrix form is more complicated and the subject of
Homework 1.

2 Properties of the semi-discrete approximation
2.1 Conservation

When § =0 in we have seen that the solution has the conservation property

1 1
/ u(t, x)dxr = constant = / f(x)dx
0 0

In fact this holds for all conservation laws with "no-flux" boundary conditions F' = 0, which is
easily seen from the integral form of the PDE. An analogue of this holds also for the semi-discrete
approximation. More precisely, let us define

N—

—_

gj(t)h
§=0

Then
Q(t) = constant. (9)

Moreover, if we start the approximation with exact values, ¢;(0) = u;(0), then it follows that
Q(t) is exactly the integral of the solution u for all time,

N-1
Q(t) = constant = Q(0) = Z u;(0)h = Z /
7=0

We prove the exact discrete conservation @D in two ways.

i+1/2 1 1
u(0, x)hdx —/ u(0, x)dx :/ u(t, z)dx.
0 0

Tj—1/2
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e Recall from that when S =0,

dg;(t) Fyiqpa(t) — Fj_y)a(t)

e - . (10)
Then
N— N— ~ ~
Z dfj Z Fiipp=F_ 13— Fy_12 =0,
=0 7=0
where we used the boundary conditions . and . which implies that
= qo — g4-1 ~ N — AN—
F_ip= k’mT =0, Fy_1)2= kNA/zfl =0.

Note that this discrete conservation property is true for any discretization of the type (110
if F 12 = Fy_ 1/2, regardless of how the fluxes F)j1;/, are computed.

e Recall from that when S =0,

dq(t)
—= = Aq(t
7 q(t)
Moreover,
1
1
Q(t) =1T¢qh, 1=|. | eRr".
1
Then J J

e dt
since 17 Aq(t) = (A1)Tq(t) by the symmetry of A and A1 are the row sums of A which
are zero, by @

2.2 Maximum principle

We have seen before that in the continuous case that when S = 0 in , the maximum value of
the solution u(¢, x) in [0, 7] x [0, 1] is either attained on the boundary = € {0, 1} or for the initial
data at t = 0 (regardless of boundary conditions). The corresponding result in the semi-discrete

case says that

¢" = max sup |g;(t)]

J€0,...N-1o<t<T
is attained either for j = 0, j = N — 1 or for the initial data ¢ = 0. This is easily shown by
contradiction. Suppose the maximum is attained at ¢ = t* > 0 and that it is strictly larger than

qo(t*) and gn_1(t*). Then, there must be an interior index j* € [1, N — 2] such that

g —1(t7) < g (t7), g+ (t") > g1 (7).
Therefore
de* (t*)

dt = kj*+1/2 (Qj*+1 — Qj* ) k‘] _1/2( o — qj*_l) < 0.

<0 >0
Hence, there is an e such that g;«(t) > ¢;+(t*) for all t € (t* — e,t*), which contradicts the
assumption that g;«(t*) is a maximum.
Furthermore, as in the continuous case local spatial maximum (minimum) of g; in the interior
cannot increase (decrease) in time.
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Figure 1. Stability regions D for the Forward and Backward Euler methods.

3 Fully discrete approximation

The semi-discrete approximation leads to a system of ODEs.

d‘gl(tt) — Aq(t) + S(b). (11)

This can be solved by standard numerical methods for ODEs with a time step At, e.g. the
Forward Euler method
" = u" 4 Atf(tn, u"), tn, = nAt.

Applied to this would give the fully discrete scheme for ,
" =q" + At[Aq" + S(ta)],  q" = q(tn).
As for any ODE method we must verify its absolute stability: that for our choice of step size At
At € D, vk,

where D is the stability region of the ODE solver and {\y} are the eigenvalues of A. For parabolic
problems the real part of the eigenvalues are negative, and the size of them in general grow as
1/h?. This is a major difficulty. It means that when the stability region D is bounded, as in
explicit methods, we get a time step restriction of the type

At < Ch2.

This is a severe restriction, which is seldom warranted from an accuracy point of view. It leads
to unnecessarily expensive methods.

Example 1 In the constant coefficient case k(x) = 1 the eigenvalues of A are precisely

4, (kmh
)\k:—ﬁsm <2>, k=0,...,N —1.

This gives the stability condition At < h?/2 for Forward Euler.
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The underlying reason for the severe time-step restriction is the fact that parabolic problems
include processes on all time-scales: high frequencies decay fast, low frequencies slowly. Their
semi-discretization have time-scales spread out all over the interval [—1/h? 0], which means
that the ODEs are stiff. The consequence is that implicit methods should be used for parabolic
problems. Implicit methods typically have unbounded stability domains D and have no stability
restriction on the time-step — they are unconditionally stable. Of course, implicit methods are
more expensive per time-step than explicit methods, since a system of equations must be solved,
but this is outweighed by the fact that much longer time-steps can be taken. Moreover, w hen
the coefficients do not vary with time, matrices etc. can be constructed once, and re-factored
only as changes of time-step make it necessary.
The "f-method" is a class of ODE methods defined as

ut =" AL[Of (tpgr, W) + (1= 0) f(ta,u™)] ., 0<6O< L

This includes some common methods:

=0 = Forward Euler (explicit, 1st order),
0=1/2 = Crank-Nicolson (implicit, 2nd order),
=1 = Backward Euler (implicit, 1st order),

Applied to we have
g =q" + AtA[Oq"T 4 (1 — 0)q"] + At [0S (tny1) + (1 — 0)S(tn)], (12)
=Sy

or

(1 —0AtA) " = (1 + (1 — 0)AtA)g" + AtSy.

For the constant coefficient problem & = 1 one can show the time-step restriction

1
At < 2 20-20)° 0 <1/2,
N 00, 1/2 <60 <1, (unconditionally stable).

Remark 2 The Crank-Nicolson scheme is second order accurate but gives slowly decaying os-
cillations for large eigenvalues. It is unsuitable for parabolic problems with rapidly decaying
transients. The 8 = 1 scheme damps all components, and should be used in the initial steps.

Remark 3 The most used family of time-stepping schemes for parabolic problems are the Back-
ward Differentiation Formulas (BDF), of order 1 through 5 which are A(«a)-stable. They are
multistep methods generalizing Backward Fuler to higher order. For instance, the second order

BDF method is 4 . 5
u"tl = gu" — gun_l + gAtf(th, u ).

BDF methods are also known as Gear’s methods and available in MATLAB as ODE15S.

3.1 Fully discrete conservation

For the #8-method we also have discrete conservation when S = 0. Let
N-1
Q" = Z qih = 17q"h.
=0
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Then upon multiplying by 1 from the left in we get
QU1 =17q" h = 17q" hr AT Al9g" 1 +(1-60)q"|h = Q"+ AHAL)T [9g" +(1-0)g"]h = Q",

since as before A1 = 0. In particular, if initial data is exact, q? = u;(0), then

1
Q”:/ u(ty, x)dx,
0

for all n > 0. The same is true for the second order BDF method if the initialization of the first
step Q' is conservative so that Q' = Q°. Then

4 1 2
n+tl _ = n_ — _n—1 ZALA n+1
q 3q 3q + 3 q
implies

1

7Qn_1-

4 1 2 4
Qn—H _ 1an+1h — *1anh _ *1an_1h + ngAtAqn—l-lh — an . 3

3 3

With the stipulated initial data this difference equation has the solution Q™ = QV for all n > 0.
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