Lecture Notes 3

Finite Volume Discretization of the Heat Equation

We consider finite volume discretizations of the one-dimensional variable coefficient heat equation, with Neumann boundary conditions

$$
\begin{align*}
u_{t}-\partial_{x}\left(k(x) \partial_{x} u\right) & =S(t, x), & & 0<x<1, t>0, \tag{1}\\
u(0, x) & =f(x), & & 0<x<1, \\
u_{x}(t, 0) & =u_{x}(t, 1)=0, & & t \geq 0 .
\end{align*}
$$

The coefficient $k(x)$ is strictly positive.

1 Semi-discrete approximation

By semi-discretization we mean discretization only in space, not in time. This approach is also called method of lines.

Discretization

We discretize space into N equal size grid cells (bins) of size $h=1 / N$, and define $x_{j}=h / 2+j h$, so that x_{j} is the center of cell j, see figure. The edges of cell j are then $x_{j-1 / 2}$ and $x_{j+1 / 2}$.

Unknowns

In a finite volume method the unknowns approximate the average of the solution over a grid cell. More precisely, we let $q_{j}(t)$ be the approximation

$$
q_{j}(t) \approx u_{j}(t):=\frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u(t, x) d x
$$

Note the contrast with finite difference methods, where pointwise values are approximated, and finite element methods, where basis function coefficients are approxi-
 mated.

Exact update formula

We derive an exact update formula for $u_{j}(t)$, the exact local averages. Integrating (1) over cell j and dividing by h we get

$$
\begin{aligned}
\frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u_{t}(t, x) d x & =\frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} \partial_{x}\left(k(x) \partial_{x} u\right) d x+\frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} S(t, x) d x \\
& =\frac{k\left(x_{j+1 / 2}\right) u_{x}\left(t, x_{j+1 / 2}\right)-k\left(x_{j-1 / 2}\right) u_{x}\left(t, x_{j-1 / 2}\right)}{h}+\frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} S(t, x) d x
\end{aligned}
$$

Upon defining the flux

$$
F_{j}(t)=F\left(t, x_{j}\right)=-k\left(x_{j}\right) u_{x}\left(t, x_{j}\right),
$$

and the local average of the source

$$
S_{j}(t)=\frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} S(t, x) d x
$$

we get the exact update formula

$$
\left.\begin{array}{l|l|l|l}
\qquad \frac{d u_{j}(t)}{d t}=-\frac{F_{j+1 / 2}(t)-F_{j-1 / 2}(t)}{h}+S_{j}(t) . & F_{j-1 / 2} & \longleftarrow & \\
\\
\text { The fluxes } F_{j+1 / 2} \text { and }-F_{j-1 / 2} \text { then represents }
\end{array}\right) \quad \rightarrow F_{j+Y_{2}}
$$ right boundary of the cell.

Note, this is an instance the conservation law in integral form,

$$
\frac{d}{d t} \int_{V} u d V+\int_{S} \vec{F} \cdot \vec{n} d S=\int_{V} S d V
$$

where we have picked V as the interval $\left[x_{j-1 / 2}, x_{j+1 / 2}\right]$, and scaled by $|V|=h$.

Approximation of the flux

To use the exact update formula as the basis for a numerical scheme we must approximate the fluxes $F_{j \pm 1 / 2}$. Since the value in the midpoint of the cell is a second order approximation of the average, we have for smooth u,

$$
\begin{aligned}
F_{j-1 / 2}(t) & =-k\left(x_{j-1 / 2}\right) u_{x}\left(t, x_{j-1 / 2}\right)=-k\left(x_{j-1 / 2}\right) \frac{u\left(t, x_{j}\right)-u\left(t, x_{j-1}\right)}{h}+O\left(h^{2}\right) \\
& =-k\left(x_{j-1 / 2}\right) \frac{u_{j}(t)-u_{j-1}(t)}{h}+O\left(h^{2}\right) .
\end{aligned}
$$

We therefore use

$$
F_{j-1 / 2}(t) \approx \tilde{F}_{j-1 / 2}(t)=-k\left(x_{j-1 / 2}\right) \frac{q_{j}(t)-q_{j-1}(t)}{h} .
$$

as approximation. This leads to the numerical scheme for inner points $1 \leq j \leq N-2$,

$$
\begin{align*}
\frac{d q_{j}(t)}{d t} & =-\frac{\tilde{F}_{j+1 / 2}(t)-\tilde{F}_{j-1 / 2}(t)}{h}+S_{j}(t) \tag{2}\\
& =\frac{k\left(x_{j+1 / 2}\right)\left(q_{j+1}(t)-q_{j}(t)\right)-k\left(x_{j-1 / 2}\right)\left(q_{j}(t)-q_{j-1}(t)\right)}{h^{2}}+S_{j}(t) .
\end{align*}
$$

2 (10)

Hence, with $k_{j}:=k\left(x_{j}\right)$,

$$
\begin{equation*}
\frac{d q_{j}}{d t}=\frac{k_{j+1 / 2} q_{j+1}-\left(k_{j+1 / 2}+k_{j-1 / 2}\right) q_{j}+k_{j-1 / 2} q_{j-1}}{h^{2}}+S_{j}, \tag{3}
\end{equation*}
$$

for $j=1, \ldots, N-2$. This is a second order approximation.

Boundary conditions

To complete the scheme (3) we need update formulae also for the boundary points $j=0$ and $j=N-1$. These must be derived by taking the boundary conditions into account. We introduce the ghost cells $j=-1$ and $j=N$ which are located just outside the domain. The boundary conditions are used to fill these cells with values q_{-1} and q_{N}, based on the values q_{j} in the interior cells. The same
 update formula (3) as before can then be used also for $j=0$ and $j=N-1$.

Let us consider our boundary condition $u_{x}=0$ at $x=0$. (We can also think of this as a "no flux" condition, $F=0$.) We formally extend the definition of the solution u for $x<0$, i.e. outside the domain, and, as before, approximate

$$
\begin{aligned}
0 & =u_{x}(t, 0)=\frac{u\left(t, x_{0}\right)-u\left(t, x_{-1}\right)}{h}+O\left(h^{2}\right) \\
& =\frac{u_{0}(t)-u_{-1}(t)}{h}+O\left(h^{2}\right) \quad \Rightarrow \quad u_{-1}(t)=u_{0}(t)+O\left(h^{3}\right)
\end{aligned}
$$

Replacing u_{j} by our approximation q_{j} and dropping the $O\left(h^{2}\right)$ term we get an expression for q_{-1} in terms of q_{0} as the boundary rule

$$
q_{-1}(t)=q_{0}(t) .
$$

We now insert this into the update formula (3) for $j=0$,

$$
\begin{equation*}
\frac{d q_{0}}{d t}=\frac{k_{1 / 2} q_{1}-\left(k_{1 / 2}+k_{-1 / 2}\right) q_{0}+k_{-1 / 2} q_{-1}}{h^{2}}+S_{0}=k_{1 / 2} \frac{q_{1}-q_{0}}{h^{2}}+S_{0} . \tag{4}
\end{equation*}
$$

In exactly the same way we obtain for $j=N-1$ that $q_{N}(t)=q_{N-1}(t)$ and therefore

$$
\begin{equation*}
\frac{d q_{N-1}}{d t}=k_{N-3 / 2} \frac{q_{N-2}-q_{N-1}}{h^{2}}+S_{N-1} . \tag{5}
\end{equation*}
$$

Remark 1 Dirichlet boundary conditions $u(t, 0)=u(t, 1)=0$ can be approximated to second order in two ways.

First, one can use a shifted grid, $x_{j}=j h$ so that x_{0} and x_{N}, the centers of cells 0 and N, are precisely on the boundary. Then one does not need ghost cells; one just sets $q_{0}=q_{N}=0$. Note that the number of unknows are now only $N-1$, so $A \in \mathbb{R}^{(N-1) \times(N-1)}$ etc.

Second, one can take the average of two cells to approximate the value in between,

$$
0=u(t, 0)=\frac{u\left(t, x_{0}\right)+u\left(t, x_{-1}\right)}{2}+O\left(h^{2}\right)=\frac{u_{0}(t)+u_{-1}(t)}{2}+O\left(h^{2}\right),
$$

leading to the approximations

$$
q_{-1}=-q_{0}, \quad q_{N}=-q_{N-1}
$$

Matrix form

We put all the formulae (3), (4), (5) together and write them in matrix form. Introduce

$$
\boldsymbol{q}=\left(\begin{array}{c}
q_{0} \\
\vdots \\
q_{N-1}
\end{array}\right), \quad \boldsymbol{S}=\left(\begin{array}{c}
S_{0} \\
\vdots \\
S_{N-1}
\end{array}\right), \quad \boldsymbol{q}, \boldsymbol{S} \in \mathbb{R}
$$

and

$$
A=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
-k_{1 / 2} & k_{1 / 2} & & & \tag{6}\\
k_{1 / 2} & -\left(k_{1 / 2}+k_{3 / 2}\right) & k_{3 / 2} & & \\
& \ddots & \ddots & \ddots & \\
& & k_{N-5 / 2} & -\left(k_{N-5 / 2}+k_{N-3 / 2}\right) & k_{N-3 / 2} \\
& & & -k_{N-3 / 2} & k_{N-3 / 2}
\end{array}\right) \in \mathbb{R}^{N \times N}
$$

Then we get the linear ODE system

$$
\begin{equation*}
\frac{d \boldsymbol{q}(t)}{d t}=A \boldsymbol{q}(t)+\boldsymbol{S}(t) \tag{7}
\end{equation*}
$$

Hence, in this semi-discretization the time-dependent PDE has been approximated by a system of ODEs, where the matrix A is a discrete approximation of the second order differential operator $\partial_{x} k(x) \partial_{x}$, including its boundary conditions.

1.1 Brief outline of extensions to 2D

The same strategy can be used in 2D. We give a cursory description of the main steps here. To simplify things we consider the constant coefficient problem,

$$
\begin{array}{rlrl}
u_{t}-\Delta u & =S(t, x, y), & & 0<x<1, \quad 0<y<1, \quad t>0 \\
u(0, x, y) & =f(x, y), & & 0<x<1,0<y<1, \\
u_{x}(t, 0, y) & =u_{x}(t, 2 \pi, y)=u_{y}(t, x, 0)=u_{y}(t, x, 2 \pi)=0, & 0<x<1, \quad 0<y<1, \quad t \geq 0
\end{array}
$$

Discretization

We discretize the domain $[0,1]^{2}$ into $N \times N$ equal size grid cells of size $h \times h$, where $h=1 / N$. We define $x_{j}=h / 2+j h$ and $y_{k}=h / 2+k h$ and denote the cell with center $\left(x_{j}, y_{k}\right)$ by $I_{j k}$.

Unknowns

The unknowns are now $q_{j k}(t)$, which are approximations of the average of the solution over the grid cell $I_{j k}$,

$$
q_{j k}(t) \approx u_{j k}(t):=\frac{1}{h^{2}} \int_{I_{j k}} u(t, x, y) d x d y .
$$

Exact update formula

The update formula is again an instance of the conservation law in integral form where we pick the volume V as $I_{j k}$ and scale by $\left|I_{j k}\right|=h^{2}$,

$$
\frac{d}{d t} \frac{1}{h^{2}} \int_{I_{j k}} u d x d y+\frac{1}{h^{2}} \int_{\partial I_{j k}} \vec{F} \cdot \vec{n} d S=\frac{1}{h^{2}} \int_{I_{j k}} S d x d y,
$$

where $F=-\nabla u$. Upon defining

$$
S_{j k}(t):=\frac{1}{h^{2}} \int_{I_{j k}} S(t, x, y) d x d y
$$

this can be written as

$$
\frac{d u_{j k}(t)}{d t}=-\frac{1}{h^{2}} \int_{\partial I_{j k}} \vec{F} \cdot \vec{n} d S+S_{j k}(t) .
$$

Let $F=\left(f_{1}, f_{2}\right)$ and define the average flux through each side of the cell,

$$
F_{j, k \pm 1 / 2}(t):=\frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} f_{2}\left(t, x, y_{k \pm 1 / 2}\right) d x, \quad F_{j \pm 1 / 2, k}(t):=\frac{1}{h} \int_{y_{k-1 / 2}}^{y_{k+1 / 2}} f_{1}\left(t, x_{j \pm 1 / 2}, y\right) d y,
$$

we get the exact formula

$$
\begin{equation*}
\frac{d u_{j k}}{d t}=-\frac{1}{h}\left(F_{j+1 / 2, k}-F_{j-1 / 2, k}+F_{j, k+1 / 2}-F_{j, k-1 / 2}\right)+S_{j k} . \tag{8}
\end{equation*}
$$

Again, the fluxes $F_{j, k \pm 1 / 2}$ and $F_{j \pm 1 / 2, k}$ represent the heat flux (upto sign) out through the four sides of the cell.

Approximation of the flux

We use the same type of approximation as in 1D for $F=-\nabla u$. We get for instance

$$
\begin{aligned}
F_{j, k-1 / 2} & =-\frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u_{y}\left(t, x, y_{k-1 / 2}\right) d x=-\frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} \frac{u\left(t, x, y_{k}\right)-u\left(t, x, y_{k-1}\right)}{h} d x+O\left(h^{2}\right) \\
& =-\frac{1}{h^{2}} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u\left(t, x, y_{k}\right) d x+\frac{1}{h^{2}} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u\left(t, x, y_{k-1}\right) d x+O\left(h^{2}\right) \\
& =-\frac{1}{h^{3}} \int_{I_{j k}} u(t, x, y) d x d y+\frac{1}{h^{3}} \int_{I_{j, k-1}} u(t, x, y) d x d y+O\left(h^{2}\right) \\
& =\frac{-u_{j k}+u_{j, k-1}}{h}+O\left(h^{2}\right)
\end{aligned}
$$

Replacing $u_{j k}$ by $q_{j k}$, dropping $O\left(h^{2}\right)$ and inserting in the exact formula (8) we get the five-point formula,

$$
\frac{d q_{j k}}{d t}=\frac{1}{h^{2}}\left(q_{j+1, k}+q_{j-1, k}+q_{j, k+1}+q_{j, k-1}-4 q_{j k}\right)+S_{j k}
$$

Boundary conditions is done as in 1 D . The matrix form is more complicated and the subject of Homework 1.

2 Properties of the semi-discrete approximation

2.1 Conservation

When $S=0$ in (1) we have seen that the solution has the conservation property

$$
\int_{0}^{1} u(t, x) d x=\mathrm{constant}=\int_{0}^{1} f(x) d x
$$

In fact this holds for all conservation laws with "no-flux" boundary conditions $F=0$, which is easily seen from the integral form of the PDE. An analogue of this holds also for the semi-discrete approximation. More precisely, let us define

$$
Q(t)=\sum_{j=0}^{N-1} q_{j}(t) h
$$

Then

$$
\begin{equation*}
Q(t)=\text { constant } \tag{9}
\end{equation*}
$$

Moreover, if we start the approximation with exact values, $q_{j}(0)=u_{j}(0)$, then it follows that $Q(t)$ is exactly the integral of the solution u for all time,
$Q(t)=$ constant $=Q(0)=\sum_{j=0}^{N-1} u_{j}(0) h=\sum_{j=0}^{N-1} \frac{1}{h} \int_{x_{j-1 / 2}}^{x_{j+1 / 2}} u(0, x) h d x=\int_{0}^{1} u(0, x) d x=\int_{0}^{1} u(t, x) d x$.
We prove the exact discrete conservation (9) in two ways.
$6(10)$

- Recall from (2) that when $S=0$,

$$
\begin{equation*}
\frac{d q_{j}(t)}{d t}=-\frac{\tilde{F}_{j+1 / 2}(t)-\tilde{F}_{j-1 / 2}(t)}{h} \tag{10}
\end{equation*}
$$

Then

$$
\frac{d Q}{d t}=\sum_{j=0}^{N-1} \frac{d q_{j}}{d t} h=\sum_{j=0}^{N-1} \tilde{F}_{j-1 / 2}(t)-\tilde{F}_{j+1 / 2}=\tilde{F}_{-1 / 2}-\tilde{F}_{N-1 / 2}=0
$$

where we used the boundary conditions (4) and (5) which implies that

$$
\tilde{F}_{-1 / 2}=k_{-1 / 2} \frac{q_{0}-q_{-1}}{h}=0, \quad \tilde{F}_{N-1 / 2}=k_{N-1 / 2} \frac{q_{N}-q_{N-1}}{h}=0
$$

Note that this discrete conservation property is true for any discretization of the type (10) if $\tilde{F}_{-1 / 2}=\tilde{F}_{N-1 / 2}$, regardless of how the fluxes $\tilde{F}_{j \pm 1 / 2}$ are computed.

- Recall from (7) that when $S=0$,

$$
\frac{d \boldsymbol{q}(t)}{d t}=A \boldsymbol{q}(t)
$$

Moreover,

$$
Q(t)=\mathbf{1}^{T} \boldsymbol{q} h, \quad \mathbf{1}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) \in \mathbb{R}^{N}
$$

Then

$$
\frac{d Q(t)}{d t}=\mathbf{1}^{T} \frac{d \boldsymbol{q}(t)}{d t} h=\mathbf{1}^{T} A \boldsymbol{q}(t) h=0
$$

since $\mathbf{1}^{T} A \boldsymbol{q}(t)=(A \mathbf{1})^{T} \boldsymbol{q}(t)$ by the symmetry of A and $A \mathbf{1}$ are the row sums of A which are zero, by (6).

2.2 Maximum principle

We have seen before that in the continuous case that when $S=0$ in (1), the maximum value of the solution $u(t, x)$ in $[0, T] \times[0,1]$ is either attained on the boundary $x \in\{0,1\}$ or for the initial data at $t=0$ (regardless of boundary conditions). The corresponding result in the semi-discrete case says that

$$
q^{*}=\max _{j \in 0, \ldots, N-1} \sup _{0 \leq t<T}\left|q_{j}(t)\right|
$$

is attained either for $j=0, j=N-1$ or for the initial data $t=0$. This is easily shown by contradiction. Suppose the maximum is attained at $t=t^{*}>0$ and that it is strictly larger than $q_{0}\left(t^{*}\right)$ and $q_{N-1}\left(t^{*}\right)$. Then, there must be an interior index $j^{*} \in[1, N-2]$ such that

$$
q_{j^{*}-1}\left(t^{*}\right)<q_{j^{*}}\left(t^{*}\right), \quad q_{j^{*}}\left(t^{*}\right) \geq q_{j^{*}+1}\left(t^{*}\right)
$$

Therefore

$$
\frac{d q_{j^{*}}\left(t^{*}\right)}{d t}=k_{j^{*}+1 / 2} \underbrace{\left(q_{j^{*}+1}-q_{j^{*}}\right)}_{\leq 0}-k_{j^{*}-1 / 2} \underbrace{\left(q_{j^{*}}-q_{j^{*}-1}\right)}_{>0}<0 .
$$

Hence, there is an ε such that $q_{j^{*}}(t)>q_{j^{*}}\left(t^{*}\right)$ for all $t \in\left(t^{*}-\varepsilon, t^{*}\right)$, which contradicts the assumption that $q_{j^{*}}\left(t^{*}\right)$ is a maximum.

Furthermore, as in the continuous case local spatial maximum (minimum) of q_{j} in the interior cannot increase (decrease) in time.

Figure 1. Stability regions \mathcal{D} for the Forward and Backward Euler methods.

3 Fully discrete approximation

The semi-discrete approximation leads to a system of ODEs.

$$
\begin{equation*}
\frac{d \boldsymbol{q}(t)}{d t}=A \boldsymbol{q}(t)+\boldsymbol{S}(t) \tag{11}
\end{equation*}
$$

This can be solved by standard numerical methods for ODEs with a time step Δt, e.g. the Forward Euler method

$$
u^{n+1}=u^{n}+\Delta t f\left(t_{n}, u^{n}\right), \quad t_{n}=n \Delta t .
$$

Applied to (11) this would give the fully discrete scheme for (1),

$$
\boldsymbol{q}^{n+1}=\boldsymbol{q}^{n}+\Delta t\left[A \boldsymbol{q}^{n}+\boldsymbol{S}\left(t_{n}\right)\right], \quad \boldsymbol{q}^{n} \approx \boldsymbol{q}\left(t_{n}\right) .
$$

As for any ODE method we must verify its absolute stability: that for our choice of step size Δt

$$
\Delta t \lambda_{k} \in \mathcal{D}, \quad \forall k
$$

where \mathcal{D} is the stability region of the ODE solver and $\left\{\lambda_{k}\right\}$ are the eigenvalues of A. For parabolic problems the real part of the eigenvalues are negative, and the size of them in general grow as $1 / h^{2}$. This is a major difficulty. It means that when the stability region \mathcal{D} is bounded, as in explicit methods, we get a time step restriction of the type

$$
\Delta t \leq C h^{2} .
$$

This is a severe restriction, which is seldom warranted from an accuracy point of view. It leads to unnecessarily expensive methods.

Example 1 In the constant coefficient case $k(x) \equiv 1$ the eigenvalues of A are precisely

$$
\lambda_{k}=-\frac{4}{h^{2}} \sin ^{2}\left(\frac{k \pi h}{2}\right), \quad k=0, \ldots, N-1 .
$$

This gives the stability condition $\Delta t \leq h^{2} / 2$ for Forward Euler.

The underlying reason for the severe time-step restriction is the fact that parabolic problems include processes on all time-scales: high frequencies decay fast, low frequencies slowly. Their semi-discretization have time-scales spread out all over the interval $\left[-1 / h^{2}, 0\right]$, which means that the ODEs are stiff. The consequence is that implicit methods should be used for parabolic problems. Implicit methods typically have unbounded stability domains \mathcal{D} and have no stability restriction on the time-step - they are unconditionally stable. Of course, implicit methods are more expensive per time-step than explicit methods, since a system of equations must be solved, but this is outweighed by the fact that much longer time-steps can be taken. Moreover, when the coefficients do not vary with time, matrices etc. can be constructed once, and re-factored only as changes of time-step make it necessary.

The " θ-method" is a class of ODE methods defined as

$$
u^{n+1}=u^{n}+\Delta t\left[\theta f\left(t_{n+1}, u^{n+1}\right)+(1-\theta) f\left(t_{n}, u^{n}\right)\right], \quad 0 \leq \theta \leq 1
$$

This includes some common methods:

$$
\begin{array}{lll}
\theta=0 & \Rightarrow \quad \text { Forward Euler (explicit, 1st order) } \\
\theta=1 / 2 & \Rightarrow \quad \text { Crank-Nicolson (implicit, 2nd order) } \\
\theta=1 & \Rightarrow \quad \text { Backward Euler (implicit, 1st order), }
\end{array}
$$

Applied to (11) we have

$$
\begin{equation*}
\boldsymbol{q}^{n+1}=\boldsymbol{q}^{n}+\Delta t A\left[\theta \boldsymbol{q}^{n+1}+(1-\theta) \boldsymbol{q}^{n}\right]+\Delta t \underbrace{\left[\theta \boldsymbol{S}\left(t_{n+1}\right)+(1-\theta) \boldsymbol{S}\left(t_{n}\right)\right]}_{\equiv \boldsymbol{S}_{\theta}^{n}} \tag{12}
\end{equation*}
$$

or

$$
(1-\theta \Delta t A) \boldsymbol{q}^{n+1}=(1+(1-\theta) \Delta t A) \boldsymbol{q}^{n}+\Delta t \boldsymbol{S}_{\theta}^{n}
$$

For the constant coefficient problem $k \equiv 1$ one can show the time-step restriction

$$
\Delta t \leq h^{2} \begin{cases}\frac{1}{2(1-2 \theta)}, & \theta<1 / 2 \\ \infty, & 1 / 2 \leq \theta \leq 1, \quad \text { (unconditionally stable) }\end{cases}
$$

Remark 2 The Crank-Nicolson scheme is second order accurate but gives slowly decaying oscillations for large eigenvalues. It is unsuitable for parabolic problems with rapidly decaying transients. The $\theta=1$ scheme damps all components, and should be used in the initial steps.

Remark 3 The most used family of time-stepping schemes for parabolic problems are the Backward Differentiation Formulas $(B D F)$, of order 1 through 5 which are $A(\alpha)$-stable. They are multistep methods generalizing Backward Euler to higher order. For instance, the second order BDF method is

$$
u^{n+1}=\frac{4}{3} u^{n}-\frac{1}{3} u^{n-1}+\frac{2}{3} \Delta t f\left(t_{n+1}, u^{n+1}\right)
$$

BDF methods are also known as Gear's methods and available in MATLAB as ODE15S.

3.1 Fully discrete conservation

For the θ-method we also have discrete conservation when $S \equiv 0$. Let

$$
Q^{n} \equiv \sum_{j=0}^{N-1} q_{j}^{n} h=\mathbf{1}^{T} \boldsymbol{q}^{n} h
$$

Then upon multiplying by 1 from the left in 12 we get

$$
Q^{n+1}=\mathbf{1}^{T} \boldsymbol{q}^{n+1} h=\mathbf{1}^{T} \boldsymbol{q}^{n} h+\Delta t \mathbf{1}^{T} A\left[\theta \boldsymbol{q}^{n+1}+(1-\theta) \boldsymbol{q}^{n}\right] h=Q^{n}+\Delta t(A \mathbf{1})^{T}\left[\theta \boldsymbol{q}^{n+1}+(1-\theta) \boldsymbol{q}^{n}\right] h=Q^{n}
$$ since as before $A \mathbf{1}=0$. In particular, if initial data is exact, $q_{j}^{0}=u_{j}(0)$, then

$$
Q^{n}=\int_{0}^{1} u\left(t_{n}, x\right) d x
$$

for all $n \geq 0$. The same is true for the second order BDF method if the initialization of the first step Q^{1} is conservative so that $Q^{1}=Q^{0}$. Then

$$
\boldsymbol{q}^{n+1}=\frac{4}{3} \boldsymbol{q}^{n}-\frac{1}{3} \boldsymbol{q}^{n-1}+\frac{2}{3} \Delta t A \boldsymbol{q}^{n+1}
$$

implies

$$
Q^{n+1}=\mathbf{1}^{T} \boldsymbol{q}^{n+1} h=\frac{4}{3} \mathbf{1}^{T} \boldsymbol{q}^{n} h-\frac{1}{3} \mathbf{1}^{T} \boldsymbol{q}^{n-1} h+\frac{2}{3} \mathbf{1}^{T} \Delta t A \boldsymbol{q}^{n+1} h=\frac{4}{3} Q^{n}-\frac{1}{3} Q^{n-1} .
$$

With the stipulated initial data this difference equation has the solution $Q^{n}=Q^{0}$ for all $n \geq 0$.

4 Acknowledgement

Part of these notes are based on earlier notes by Prof. Jesper Oppelstrup.

