
Lecture Notes 3

Finite Volume Discretization of the Heat Equation
We consider finite volume discretizations of the one-dimensional variable coefficient heat

equation, with Neumann boundary conditions

ut − ∂x(k(x)∂xu) = S(t, x), 0 < x < 1, t > 0, (1)
u(0, x) = f(x), 0 < x < 1,
ux(t, 0) = ux(t, 1) = 0, t ≥ 0.

The coefficient k(x) is strictly positive.

1 Semi-discrete approximation

By semi-discretization we mean discretization only in space, not in time. This approach is also
called method of lines.

Discretization

We discretize space into N equal size grid cells (bins) of size h = 1/N , and define xj = h/2 + jh,
so that xj is the center of cell j, see figure. The edges of cell j are then xj−1/2 and xj+1/2.

x0 x1 xN−1

h

Unknowns
In a finite volume method the unknowns approximate the
average of the solution over a grid cell. More precisely, we
let qj(t) be the approximation

qj(t) ≈ uj(t) :=
1
h

∫ xj+1/2

xj−1/2

u(t, x)dx.

Note the contrast with finite difference methods, where
pointwise values are approximated, and finite element
methods, where basis function coefficients are approxi-
mated.
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Exact update formula

We derive an exact update formula for uj(t), the exact local averages. Integrating (1) over cell
j and dividing by h we get

1
h

∫ xj+1/2

xj−1/2

ut(t, x)dx =
1
h

∫ xj+1/2

xj−1/2

∂x(k(x)∂xu)dx+
1
h

∫ xj+1/2

xj−1/2

S(t, x)dx

=
k(xj+1/2)ux(t, xj+1/2)− k(xj−1/2)ux(t, xj−1/2)

h
+

1
h

∫ xj+1/2

xj−1/2

S(t, x)dx.

Upon defining the flux
Fj(t) = F (t, xj) = −k(xj)ux(t, xj),

and the local average of the source

Sj(t) =
1
h

∫ xj+1/2

xj−1/2

S(t, x)dx,

we get the exact update formula

duj(t)
dt

= −
Fj+1/2(t)− Fj−1/2(t)

h
+ Sj(t).

The fluxes Fj+1/2 and −Fj−1/2 then represents
how much heat flows out through the left and
right boundary of the cell.
Note, this is an instance the conservation law in integral form,

d

dt

∫
V
udV +

∫
S

~F · ~ndS =
∫
V
SdV,

where we have picked V as the interval [xj−1/2, xj+1/2], and scaled by |V | = h.

Approximation of the flux

To use the exact update formula as the basis for a numerical scheme we must approximate the
fluxes Fj±1/2. Since the value in the midpoint of the cell is a second order approximation of the
average, we have for smooth u,

Fj−1/2(t) = −k(xj−1/2)ux(t, xj−1/2) = −k(xj−1/2)
u(t, xj)− u(t, xj−1)

h
+O(h2)

= −k(xj−1/2)
uj(t)− uj−1(t)

h
+O(h2).

We therefore use
Fj−1/2(t) ≈ F̃j−1/2(t) = −k(xj−1/2)

qj(t)− qj−1(t)
h

.

as approximation. This leads to the numerical scheme for inner points 1 ≤ j ≤ N − 2,

dqj(t)
dt

= −
F̃j+1/2(t)− F̃j−1/2(t)

h
+ Sj(t) (2)

=
k(xj+1/2)(qj+1(t)− qj(t))− k(xj−1/2)(qj(t)− qj−1(t))

h2
+ Sj(t).
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Hence, with kj := k(xj),

dqj
dt

=
kj+1/2qj+1 − (kj+1/2 + kj−1/2)qj + kj−1/2qj−1

h2
+ Sj , (3)

for j = 1, . . . , N − 2. This is a second order approximation.

Boundary conditions

To complete the scheme (3) we need update formulae also
for the boundary points j = 0 and j = N − 1. These
must be derived by taking the boundary conditions into
account. We introduce the ghost cells j = −1 and j = N
which are located just outside the domain. The boundary
conditions are used to fill these cells with values q−1 and
qN , based on the values qj in the interior cells. The same
update formula (3) as before can then be used also for
j = 0 and j = N − 1.

Let us consider our boundary condition ux = 0 at x = 0. (We can also think of this as a
"no flux" condition, F = 0.) We formally extend the definition of the solution u for x < 0, i.e.
outside the domain, and, as before, approximate

0 = ux(t, 0) =
u(t, x0)− u(t, x−1)

h
+O(h2)

=
u0(t)− u−1(t)

h
+O(h2) ⇒ u−1(t) = u0(t) +O(h3).

Replacing uj by our approximation qj and dropping the O(h2) term we get an expression for q−1

in terms of q0 as the boundary rule
q−1(t) = q0(t).

We now insert this into the update formula (3) for j = 0,

dq0
dt

=
k1/2q1 − (k1/2 + k−1/2)q0 + k−1/2q−1

h2
+ S0 = k1/2

q1 − q0
h2

+ S0. (4)

In exactly the same way we obtain for j = N − 1 that qN (t) = qN−1(t) and therefore

dqN−1

dt
= kN−3/2

qN−2 − qN−1

h2
+ SN−1. (5)

Remark 1 Dirichlet boundary conditions u(t, 0) = u(t, 1) = 0 can be approximated to second
order in two ways.

First, one can use a shifted grid, xj = jh so that x0 and xN , the centers of cells 0 and N ,
are precisely on the boundary. Then one does not need ghost cells; one just sets q0 = qN = 0.
Note that the number of unknows are now only N − 1, so A ∈ R(N−1)×(N−1) etc.

Second, one can take the average of two cells to approximate the value in between,

0 = u(t, 0) =
u(t, x0) + u(t, x−1)

2
+O(h2) =

u0(t) + u−1(t)
2

+O(h2),

leading to the approximations

q−1 = −q0, qN = −qN−1.
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Matrix form

We put all the formulae (3), (4), (5) together and write them in matrix form. Introduce

q =

 q0
...

qN−1

, S =

 S0
...

SN−1

, q,S ∈ R

and

A =
1
h2


−k1/2 k1/2

k1/2 −(k1/2 + k3/2) k3/2

. . . . . . . . .
kN−5/2 −(kN−5/2 + kN−3/2) kN−3/2

−kN−3/2 kN−3/2

 ∈ RN×N . (6)

Then we get the linear ODE system

dq(t)
dt

= Aq(t) + S(t). (7)

Hence, in this semi-discretization the time-dependent PDE has been approximated by a system
of ODEs, where the matrix A is a discrete approximation of the second order differential operator
∂xk(x)∂x, including its boundary conditions.

1.1 Brief outline of extensions to 2D

The same strategy can be used in 2D. We give a cursory description of the main steps here. To
simplify things we consider the constant coefficient problem,

ut −∆u = S(t, x, y), 0 < x < 1, 0 < y < 1, t > 0,
u(0, x, y) = f(x, y), 0 < x < 1, 0 < y < 1,
ux(t, 0, y) = ux(t, 2π, y) = uy(t, x, 0) = uy(t, x, 2π) = 0, 0 < x < 1, 0 < y < 1, t ≥ 0.

Discretization

We discretize the domain [0, 1]2 into N ×N equal size grid cells of size h × h, where h = 1/N .
We define xj = h/2 + jh and yk = h/2 + kh and denote the cell with center (xj , yk) by Ijk.
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x0 x1 xN−1

y0

y1

yN−1

Ijk

Unknowns

The unknowns are now qjk(t), which are approximations of the average of the solution over the
grid cell Ijk,

qjk(t) ≈ ujk(t) :=
1
h2

∫
Ijk

u(t, x, y)dxdy.

Exact update formula

The update formula is again an instance of the conservation law in integral form where we pick
the volume V as Ijk and scale by |Ijk| = h2,

d

dt

1
h2

∫
Ijk

udxdy +
1
h2

∫
∂Ijk

~F · ~ndS =
1
h2

∫
Ijk

Sdxdy,

where F = −∇u. Upon defining

Sjk(t) :=
1
h2

∫
Ijk

S(t, x, y)dxdy,

this can be written as
dujk(t)
dt

= − 1
h2

∫
∂Ijk

~F · ~ndS + Sjk(t).

Let F = (f1, f2) and define the average flux through each side of the cell,

Fj,k±1/2(t) :=
1
h

∫ xj+1/2

xj−1/2

f2(t, x, yk±1/2)dx, Fj±1/2,k(t) :=
1
h

∫ yk+1/2

yk−1/2

f1(t, xj±1/2, y)dy,

we get the exact formula

dujk
dt

= −1
h

(Fj+1/2,k − Fj−1/2,k + Fj,k+1/2 − Fj,k−1/2) + Sjk. (8)
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Again, the fluxes Fj,k±1/2 and Fj±1/2,k represent the
heat flux (upto sign) out through the four sides of the
cell.

Approximation of the flux

We use the same type of approximation as in 1D for
F = −∇u. We get for instance

Fj,k−1/2 = −1
h

∫ xj+1/2

xj−1/2

uy(t, x, yk−1/2)dx = −1
h

∫ xj+1/2

xj−1/2

u(t, x, yk)− u(t, x, yk−1)
h

dx+O(h2)

= − 1
h2

∫ xj+1/2

xj−1/2

u(t, x, yk)dx+
1
h2

∫ xj+1/2

xj−1/2

u(t, x, yk−1)dx+O(h2)

= − 1
h3

∫
Ijk

u(t, x, y)dxdy +
1
h3

∫
Ij,k−1

u(t, x, y)dxdy +O(h2)

=
−ujk + uj,k−1

h
+O(h2).

Replacing ujk by qjk, dropping O(h2) and inserting in the exact formula (8) we get the five-point
formula,

dqjk
dt

=
1
h2

(qj+1,k + qj−1,k + qj,k+1 + qj,k−1 − 4qjk) + Sjk.

Boundary conditions is done as in 1D. The matrix form is more complicated and the subject of
Homework 1.

2 Properties of the semi-discrete approximation

2.1 Conservation

When S = 0 in (1) we have seen that the solution has the conservation property∫ 1

0
u(t, x)dx = constant =

∫ 1

0
f(x)dx.

In fact this holds for all conservation laws with "no-flux" boundary conditions F = 0, which is
easily seen from the integral form of the PDE. An analogue of this holds also for the semi-discrete
approximation. More precisely, let us define

Q(t) =
N−1∑
j=0

qj(t)h.

Then
Q(t) = constant. (9)

Moreover, if we start the approximation with exact values, qj(0) = uj(0), then it follows that
Q(t) is exactly the integral of the solution u for all time,

Q(t) = constant = Q(0) =
N−1∑
j=0

uj(0)h =
N−1∑
j=0

1
h

∫ xj+1/2

xj−1/2

u(0, x)hdx =
∫ 1

0
u(0, x)dx =

∫ 1

0
u(t, x)dx.

We prove the exact discrete conservation (9) in two ways.
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• Recall from (2) that when S = 0,

dqj(t)
dt

= −
F̃j+1/2(t)− F̃j−1/2(t)

h
. (10)

Then
dQ

dt
=

N−1∑
j=0

dqj
dt
h =

N−1∑
j=0

F̃j−1/2(t)− F̃j+1/2 = F̃−1/2 − F̃N−1/2 = 0,

where we used the boundary conditions (4) and (5) which implies that

F̃−1/2 = k−1/2
q0 − q−1

h
= 0, F̃N−1/2 = kN−1/2

qN − qN−1

h
= 0.

Note that this discrete conservation property is true for any discretization of the type (10)
if F̃−1/2 = F̃N−1/2, regardless of how the fluxes F̃j±1/2 are computed.

• Recall from (7) that when S = 0,

dq(t)
dt

= Aq(t).

Moreover,

Q(t) = 1Tqh, 1 =


1
1
...
1

 ∈ RN .

Then
dQ(t)
dt

= 1T
dq(t)
dt

h = 1TAq(t)h = 0,

since 1TAq(t) = (A1)Tq(t) by the symmetry of A and A1 are the row sums of A which
are zero, by (6).

2.2 Maximum principle

We have seen before that in the continuous case that when S = 0 in (1), the maximum value of
the solution u(t, x) in [0, T ]× [0, 1] is either attained on the boundary x ∈ {0, 1} or for the initial
data at t = 0 (regardless of boundary conditions). The corresponding result in the semi-discrete
case says that

q∗ = max
j∈0,...,N−1

sup
0≤t<T

|qj(t)|

is attained either for j = 0, j = N − 1 or for the initial data t = 0. This is easily shown by
contradiction. Suppose the maximum is attained at t = t∗ > 0 and that it is strictly larger than
q0(t∗) and qN−1(t∗). Then, there must be an interior index j∗ ∈ [1, N − 2] such that

qj∗−1(t∗) < qj∗(t∗), qj∗(t∗) ≥ qj∗+1(t∗).

Therefore
dqj∗(t∗)
dt

= kj∗+1/2 (qj∗+1 − qj∗)︸ ︷︷ ︸
≤0

−kj∗−1/2 (qj∗ − qj∗−1)︸ ︷︷ ︸
>0

< 0.

Hence, there is an ε such that qj∗(t) > qj∗(t∗) for all t ∈ (t∗ − ε, t∗), which contradicts the
assumption that qj∗(t∗) is a maximum.

Furthermore, as in the continuous case local spatial maximum (minimum) of qj in the interior
cannot increase (decrease) in time.
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Forward Euler Im

Re

1

−1

D

Backward Euler Im

Re

1

−1

D

Figure 1. Stability regions D for the Forward and Backward Euler methods.

3 Fully discrete approximation

The semi-discrete approximation leads to a system of ODEs.

dq(t)
dt

= Aq(t) + S(t). (11)

This can be solved by standard numerical methods for ODEs with a time step ∆t, e.g. the
Forward Euler method

un+1 = un + ∆tf(tn, un), tn = n∆t.

Applied to (11) this would give the fully discrete scheme for (1),

qn+1 = qn + ∆t[Aqn + S(tn)], qn ≈ q(tn).

As for any ODE method we must verify its absolute stability: that for our choice of step size ∆t

∆tλk ∈ D, ∀k,

where D is the stability region of the ODE solver and {λk} are the eigenvalues of A. For parabolic
problems the real part of the eigenvalues are negative, and the size of them in general grow as
1/h2. This is a major difficulty. It means that when the stability region D is bounded, as in
explicit methods, we get a time step restriction of the type

∆t ≤ Ch2.

This is a severe restriction, which is seldom warranted from an accuracy point of view. It leads
to unnecessarily expensive methods.

Example 1 In the constant coefficient case k(x) ≡ 1 the eigenvalues of A are precisely

λk = − 4
h2

sin2

(
kπh

2

)
, k = 0, . . . , N − 1.

This gives the stability condition ∆t ≤ h2/2 for Forward Euler.
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The underlying reason for the severe time-step restriction is the fact that parabolic problems
include processes on all time-scales: high frequencies decay fast, low frequencies slowly. Their
semi-discretization have time-scales spread out all over the interval [−1/h2, 0], which means
that the ODEs are stiff. The consequence is that implicit methods should be used for parabolic
problems. Implicit methods typically have unbounded stability domains D and have no stability
restriction on the time-step — they are unconditionally stable. Of course, implicit methods are
more expensive per time-step than explicit methods, since a system of equations must be solved,
but this is outweighed by the fact that much longer time-steps can be taken. Moreover, w hen
the coefficients do not vary with time, matrices etc. can be constructed once, and re-factored
only as changes of time-step make it necessary.

The "θ-method" is a class of ODE methods defined as

un+1 = un + ∆t
[
θf(tn+1, u

n+1) + (1− θ)f(tn, un)
]
, 0 ≤ θ ≤ 1.

This includes some common methods:

θ = 0 ⇒ Forward Euler (explicit, 1st order),
θ = 1/2 ⇒ Crank–Nicolson (implicit, 2nd order),
θ = 1 ⇒ Backward Euler (implicit, 1st order),

Applied to (11) we have

qn+1 = qn + ∆tA[θqn+1 + (1− θ)qn] + ∆t [θS(tn+1) + (1− θ)S(tn)]︸ ︷︷ ︸
≡Sn

θ

, (12)

or
(1− θ∆tA)qn+1 = (1 + (1− θ)∆tA)qn + ∆tSn

θ .

For the constant coefficient problem k ≡ 1 one can show the time-step restriction

∆t ≤ h2

{
1

2(1−2θ) , θ < 1/2,

∞, 1/2 ≤ θ ≤ 1, (unconditionally stable).

Remark 2 The Crank-Nicolson scheme is second order accurate but gives slowly decaying os-
cillations for large eigenvalues. It is unsuitable for parabolic problems with rapidly decaying
transients. The θ = 1 scheme damps all components, and should be used in the initial steps.

Remark 3 The most used family of time-stepping schemes for parabolic problems are the Back-
ward Differentiation Formulas (BDF), of order 1 through 5 which are A(α)-stable. They are
multistep methods generalizing Backward Euler to higher order. For instance, the second order
BDF method is

un+1 =
4
3
un − 1

3
un−1 +

2
3

∆tf(tn+1, u
n+1).

BDF methods are also known as Gear’s methods and available in Matlab as ODE15S.

3.1 Fully discrete conservation

For the θ-method we also have discrete conservation when S ≡ 0. Let

Qn ≡
N−1∑
j=0

qnj h = 1Tqnh.
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Then upon multiplying by 1 from the left in (12) we get

Qn+1 = 1Tqn+1h = 1Tqnh+∆t1TA[θqn+1+(1−θ)qn]h = Qn+∆t(A1)T [θqn+1+(1−θ)qn]h = Qn,

since as before A1 = 0. In particular, if initial data is exact, q0j = uj(0), then

Qn =
∫ 1

0
u(tn, x)dx,

for all n ≥ 0. The same is true for the second order BDF method if the initialization of the first
step Q1 is conservative so that Q1 = Q0. Then

qn+1 =
4
3
qn − 1

3
qn−1 +

2
3

∆tAqn+1

implies

Qn+1 = 1Tqn+1h =
4
3
1Tqnh− 1

3
1Tqn−1h+

2
3
1T∆tAqn+1h =

4
3
Qn − 1

3
Qn−1.

With the stipulated initial data this difference equation has the solution Qn = Q0 for all n ≥ 0.
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