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Homework 2: Linear and nonlinear hyperbolic 
systems 
Max. 4 p 
 
Topics 
Conservation form; Relation between non-linear and linearized problems; The Shallow-water 
equations; The Lax-Friedrichs Scheme; Solution by characteristics; Boundary conditions. 
Purpose 
To get acquainted with elementary properties of and solution schemes for initial-boundary 
value problems for hyperbolic systems 
Instructions 
Write a short report with the plots and answers to the questions posed. Make sure the plots 
are annotated and there is explanation for what they illustrate. 

1 The Shallow Water Model 
In this exercise we shall investigate the relation between a non-linear problem and the 
corresponding linearized system. In particular we will see how well linear analysis predicts 
the behavior of the nonlinear problem.  
Shallow water flow over a horizontal bottom is modeled by 
 

 

 

ht + hv( )x = 0,                  (conservation of volume)   
vt + vvx + ghx = 0,            (force balance in x)
on (x,t)![0,L] " [0,#),

(1) 

 
where h is the water height (depth) and v the velocity of the water.  The PDEs are augmented 
with boundary conditions v(0) = v(L) = 0, and initial conditions representing a localized 
"water hill", 
 

 

 

h(x,0) = H +  !e" x"L / 2( ) 2 /w 2

  ,
v(x,0) = 0.

     (2) 

 
We shall take L = 10m, H = 1m, and g = 9.61 (m/s2).  The width w of the water hill is 0.4 m 
and its height ε will be varied.  
 

1.1 Conservation form (0.5 p) 
The mass balance equation is in conservation form, but not the momentum. Introduce m = hv 
as a new variable instead of v and derive the flux function F in 
 
 0),( =+ xt hmFm        (3) 
 
h and m are the proper quantities that should be conserved, see the discussion in Leveque.  Of 
course, the smooth solutions, wave speeds, etc., are the same no matter how the equations are 
written. The quasi-linear form (1) is often most convenient for linearization. 
 

1.2 Numerical Solution (1 p) 
To begin with, let ε = 0.1 and solve numerically the conservation form equations using the 
Lax-Friedrichs method. Use ghost cells at the boundaries. Prescribe values there by the 
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procedure described in Leveque Ch 7 for solid walls. Choose Δt and Δx after making 
numerical experiments with different discretization parameters. Use ∆t/∆x as large as 
possible, without violating stability.  

1. Make plots showing wave propagation and reflections at the boundaries. Compute at 
least until waves have been reflected at both boundaries and crossed each other, say 
until t = 3.5. 

2. Run the program again with larger values of ε (= 0.4, 0.8, 1.2, …). Describe how the 
solution changes with respect to 

a. Wave shape, amplitude 
b. Wave speed 
c. You may have to adjust the time-step to ensure stability. Why? 

 
Illustrate these changed with plots.  

 

1.3 Linearization  (1p) 
Choose a relevant constant state and derive the linearized problem at that state. Don’t forget 
initial and boundary conditions. Show that the linear problem is hyperbolic and compute 
wave speeds.  
 

1.4 Analysis of Linear Problem (1p) 
The linear problem can be solved analytically. Determine the solution of the linear problem at 
for instance t = 1. For this you need also the eigenvectors. Discuss how information 
propagates, if the boundary conditions cause reflections and when reflected waves will 
appear. Compare with the numerical results for the non-linear case.  
 

1.5 Non-reflecting Boundary Conditions (0.5p) 
Derive boundary conditions that do not cause reflections for the linear problem. Formulate the 
corresponding conditions for the non-linear case. Implement the conditions in your program 
using either the technique of characteristic variables or by simply extrapolating all variables 
at the boundary (as described in Leveque Ch 7). How well does the method work? Try to 
measure the size of the reflection.  
 

2 Suggestions for program structure 
The labs that follow require coding of several finite volume schemes for initial-boundary 
value problems for a number of different models, mostly explicit. You can of course code as 
you find practical; we have found the following structure useful. It is possible to separate the 
scheme from the equation system by defining the flux function  f as the programming 
interface between scheme and equation. The state variables q for a system of s equations can 
be stored in an N x s array, say Q(1:N,1:s) 
 
 
 
 
 
 
 
 

1. Fill ghost cells 0 and N+1 by the boundary conditions; and augment Q by rows for the 

 q0   q1  q2  qN   …  qi  qN+1 

x = 0 x = L 
Fi-1/2 Fi+1/2 

Δx 

F1/2 FN+1/2 
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ghost cells 0 and N+1. 
2. Compute the numerical fluxes Fi+1/2, i = 0, 1, …, N.  This may entail much more 

computation than evaluating the flux function f which defines the differential equation, 
but for the Lax-Friedrichs scheme it is not much more. 

3.  Compute the flux differences 
4.  Update the cells 1, …, N 
5.  Go to 1 

 
a) For debugging, put plotting into the code so you can inspect the solution and the fluxes and 
other ingredients at each time step; turn off the plotting and printing when the code works. 
 
b) Arrange – by saving solutions on file and implementing interpolation functions, if need be 
– that solutions from different grids and with different parameter settings can be compared 
point-wise (in time and space), e.g. for showing convergence in l2 – norm and showing 
several solutions in one plot. 
 


