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Homework 4: 
High-resolution shock-capturing methods  
Max. 5.0 p 

1 Shallow water with non-horizontal bottom (0.25 p) 
The shallow water model of HW2 is now extended to a non-horizontal bottom “bathymetry” 
B(x), 
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• Show that still water (u = 0) must have, as it should, a horizontal water level. 
• Write the equation in conservation form for h and m = hu: 
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 It is important that the source function s should not contain derivatives of h or m. 
 
In the remaining part of the homework your job is to write a Roe-solver and extend it to a 
high-resolution scheme for the model.  

2  First order Roe scheme 
The first order Roe scheme has the numerical flux 
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where ),(~~

12/1 ++ = iii QQAA is the Roe-average matrix at the i+1/2 interface (Leveque  
15.3.3). When you implement the scheme it may be worthwhile to use the form in Leveque eq 
(15.51) instead, 
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which is easier to extend to the high-resolution scheme later on. You need eigenvalues and 
eigenvectors to the Roe matrix to compute the waves 

 

W j+1/ 2
p . Formulas can be found in 

Leveque 15.3.3. 
 

B(x) 

h(x,t) u(x,t) 
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2.1 Roe tests with flat bottom (0.5 p) 
Implement the first order Roe scheme for the case of a flat bottom, i.e. s(h,m,x) = 0. Let the 
channel be L long, with n cells Δx = L/n. The bottom is horizontal (B = 0) and the water depth 
is H. Use “wall” boundary conditions at x = 0 and L, i.e. h0 = h1, m0 = -m1, (and similarly at x 
= L). Choose initial data to give a right running Gaussian pulse with height a and width w 
starting at x = L/2, 
 

 

 

h(x,0) = H + ae! x!L / 2( )2 /w 2  
 
Take H = 1, w = 0.1L, a = H/5 or so, to make the wave almost linear.  
 

• Explain how to choose m(x,0) to make a single pulse (not two!) based on the 
linearized problem. Hint: Eigenvectors… 

• Use this initial data and run the Roe solver with n = 80, 160, 320, CFL number as 
large as possible without instability, until the wave has been fully reflected at L. Plot 
the wave shapes. 

• Compare with solutions obtained using your Lax-Friedrichs solver from HW2. 
• Comment about order of accuracy, dissipation and dispersion.  
• Then try also a higher pulse, say a = 2H. Comment on how well the single pulse 

initial data works. 

2.2 Steady solutions with non-horizontal bottom 
Now consider the case with a bump on the bottom, say 
 

 

 

B(x) = B0 cos
2 !(x " L /2)

2r
# 
$ 
% 

& 
' 
( , x " L /2 < r,

0, x " L /2 ) r.

* 
+ 
, 

- , 
 

 
Variable B introduces a source term, so a conservative first order scheme is 
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where the 

 

ˆ F i+1/ 2
n  are the numerical flux functions for S = 0.  

2.2.1 Boundary conditions (0.5 p) 
Since the problem is non-linear, the number of boundary conditions that should be prescribed 
at each boundary depends on the solution itself. The flow is called sub-critical if the water 

velocity is less than the characteristic speed, i.e. if   u(x) < gh(x) . Otherwise it is called 
super-critical. 

• Suppose we want to use Dirichlet boundary conditions for u(x) and/or h(x). 
Determine where we should put them when the flow is sub- and super-critical 
respectively in a neighborhood of the two boundaries x = 0 and x = L. 
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2.2.2 Smooth steady state solutions (0.75 p) 
Now compute steady solutions for the non-horizontal bottom by running a time-accurate 
simulation for a LONG time. Use for instance B0 = H/10, r = L/6. Implement inflow by 
prescribing the value in the ghost cell and outflow by extrapolation.  

• Find initial data and boundary conditions at x=0 and x=L which give the following 
types of solutions (cf. figures below): 
1. All sub-critical flow: water accelerates on the bump (but remains sub-critical), 

and then slows down again, 
2. All super-critical flow: water decelerates on the bump (but remains super-

critical), then accelerates again to super-critical outflow. 
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2.2.3 Entropy fix for steady states with transonic rarefaction (1.0 p) 
You shall now find steady solutions where part of the solution is sub-critical and part of it is 
super-critical. The two parts will be connected by shocks and rarefactions, which will then be 
transonic. These rarefactions will not be captured correctly with the vanilla Roe scheme. To 
get it right one must add an entropy fix. 
 
Use the same setup as in the previous exercise but now find initial data and boundary 
conditions at x=0 and x=L which give the following types of steady solutions: 

3. Sub-critical inflow, which accelerates to super-critical on the bump and then, 
reverts to sub-critical through a shock. 

4. Sub-critical inflow which accelerates to super-critical on the bump and stays 
super-critical  

See figures below for examples. 
• First try to find the solutions without an entropy fix. Provide plots showing what goes 

wrong. 
• Implement Harten's entropy fix (Leveque p 326) and compute the steady solutions. 

Indicate in your plots where the solutions are sub- and super-critical. Try varying the 
parameter δ. How should it scale with Δx? 

• Try solving the same problem with Lax-Friedrichs. Show plots that demonstrate the 
difference in dissipation between the two schemes. How many grid points would you 
need to get a reasonable looking solution? 
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Note the small entropy-violating “shocklet” in type 3… the entropy fix should be 
strengthened. 
 

3 High-resolution Roe scheme 
Extend to a Roe high-resolution scheme as explained in Leveque 6.13-6.15, 15.4. You need to 
add a correction    

!Fi+1/2
n  to the flux,    Fi+1/2

n ,  (see eq (15.63) in Leveque) where  
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and 

 

˜ W j +1/ 2
p  is a limited version of 

 

W j+1/ 2
p . Use the minmod limiter and note the comments 

(Leveque pp 121-122) on how to compare the waves from a cell interface to its upstream 
neighbor: take scalar products and define 

 

! i+1/ 2
n this way. It is sufficient to apply the limiter to 

the waves in the interior. Just use 

 

W j+1/ 2
p  itself at the boundary. A vectorized matlab 

implementation is preferable, but use loops if you like. 

3.1.1 High-resolution tests (2.0 p) 
• Run the flat bottom tests in Section 2.1. Check that the dissipation is much smaller than 

for the Lax-Friedrichs and the standard Roe scheme. Show plots comparing the solutions 
after short and long time. 

• Check that smooth extrema (no shocks) get clipped – the effect of the limiter. Show a 
zoomed plot! 

• Try the four different types of solution above (see 2.2.2 and 2.2.3). Compare with the 
standard Roe scheme with the same number of grid points. 

 
 


