
Lecture Notes 2

Heat Equation

1 Derivation

Denote the temperature T (t, x) [K], with x ∈ R
3, and the internal energy per unit mass H(T )

[J]. For a solid (or liquid) a small change of temperature leads to a small change in internal
energy1,

dH = C(T )dT.

The coefficient C(T ) is called the specific heat, [J/(K kg)]. We furthermore let the density be ρ
[kg/m3] and the heat flux ~F , [W/m2]. We also assume that there is a heat source S(t, x) [W/m3]
(from combustion, ohmic electric heating, . . . )

In this setting the thermal energy ρH is conserved. As before, this gives the conservation
law in integral form,

d

dt

∫
V

ρH(T )dV +

∫
S

~F · ~ndS =

∫
V

SdV,

for any volume V with surface S. We also get the conservation law in differential form,

∂

∂t
(ρH(T )) + ∇ · ~F = S.

We suppose ρ is independent of time, such that

∂

∂t
(ρH(T )) = ρ

∂H(T )

∂t
= ρC(T )

∂T

∂t
.

To complete the derivation we use Fourier’s law, which states that the heat flux ~F is in the
direction of the negative temperature gradient: ~F = −k∇T , where k is the heat conductivity,
units [W/(mK)]. The final form of the heat equation is

ρC(T )
∂T

∂t
−∇ · (k∇T ) = S.

This is the correct form also when the data ρ, C and k vary with position and with T . If the
coefficients are constant, it reduces to

∂T

∂t
− α∆T =

S

ρC
, α =

k

ρC
,

where α is called the thermal diffusivity with units [m2/s].
When the heat equation models heat conduction inside a domain Ω, natural boundary con-

ditions are
k∇T · ~n = h(Te − T ), x ∈ ∂Ω,

1At phase changes, however, H(T ) will have a jump corresponding to the latent heat.
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which represents conductive cooling of the domain. Here h [W/(m2K)] is the heat transfer
coefficient and Te is the surrounding temperature.

In the following we will often formulate the models in non-dimensional quantities. Here is an
example. Suppose ρC is constant and that k0 is a typical value of k(x). Choose temperature scale
Ts, length-scale L, and time scale ts = ρCL2/k0. Then introduce the scaled non-dimensional
variables q = (T − Te)/Ts, y = x/L and τ = t/ts. The heat equation for q = q(τ, y) becomes,

∂q

∂τ
−∇ · (k̃(y)∇q) = S̃(τ, y), k̃(y) = k(yL)/k0, S̃(τ, y) = S(τts, yL)

L2

Tsk0
,

with boundary conditions2

∂q

∂n
+ bq = 0, b =

hL

k0
.

The non-dimensional coefficient b > 0 is called the Biot number. It represents the ratio of thermal
resistance inside the domain (L/k) and at the boundary (1/h). For very small Biot numbers the
boundary condition can be replaced by the Neumann condition ∂q/∂n = 0. Large Biot numbers,
on the other hand, leads to the Dirichlet condition q = 0.

The final initial boundary value problem that we consider is

ut −∇ · (k(x)∇u) = S(t, x), x ∈ Ω, t > 0, (1)

u(0, x) = f(x), x ∈ Ω,

∂u

∂n
+ b(x)u = 0, x ∈ ∂Ω, t ≥ 0,

where Ω is an open domain with boundary ∂Ω, k(x) > 0 and b(x) ≥ 0.

2 Well-posedness

In order to check well-posedness we need to show existence of a solution and an energy estimate.

2.1 Existence

We will do this in a simplified setting. We consider the 2D case and take Ω = (0, 2π)2, k(x, y) ≡ 1
and b(x, y) = S(t, x, y) ≡ 0, so that

ut − ∆u = 0, 0 < x < 2π, 0 < y < 2π, t > 0,

u(0, x) = f(x), 0 < x < 2π, 0 < y < 2π,

ux(t, 0, y) = ux(t, 2π, y) = uy(t, x, 0) = uy(t, x, 2π) = 0, 0 < x < 2π, 0 < y < 2π, t ≥ 0.

Then we can explicitly construct a solution via Fourier analysis. Write the solution in terms of
a cosine series,

u(t, x, y) =

∞∑
k=0

∞∑
ℓ=0

ûkℓ(t) cos(kx) cos(ℓy).

This satisfies the boundary conditions, and to satisfy the initial condition we choose ûkℓ(0) = f̂kℓ,
the corresponding coefficients of the cosine series for f . Inserting the series in the equation gives

ut =
∞∑

k=0

∞∑
ℓ=0

dûkℓ(t)

dt
cos(kx) cos(ℓy) = uxx + uyy =

∞∑
k=0

∞∑
ℓ=0

−(k2 + ℓ2)ûkℓ(t) cos(kx) cos(ℓy),

2 ∂q

∂n
:= ∇q · ~n
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so that
dûkℓ(t)

dt
= −(k2 + ℓ2)ûkℓ(t),

with solution ûkℓ(t) = ûkℓ(0) exp(−(k2 + ℓ2)t). Finally,

u(t, x, y) =

∞∑
k=0

∞∑
ℓ=0

f̂kℓ cos(kx) cos(ℓy)e−(k2+ℓ2)t.

This shows existence of a solution for this simple case. Note:

• High frequencies in the initial data (large k, ℓ) are damped fast. This means that rough
initial data (= many high frequencies) is rapidly smoothed, or "smeared".

• For the backward heat equation we would have e+(k2+ℓ2)t instead of e−(k2+ℓ2)t, which
instead amplifies high frequencies, more the higher they are. Small perturbations will then
quickly destroy the solution.

• For the general setting proving existence is more complicated and beyond the scope of the
course. One standard way is to design a numerical method for the problem and show 1)
that it converges (by compactness or completeness) and 2) that the limit solution obtained
indeed satisfies the PDE.

2.2 Energy estimate

We consider the full case (1) and make the estimate in L2-norm

||u(t, ·)||2 =

∫
Ω

u(t, x)2dx.

Then when S ≡ 0,

1

2

d

dt
||u(t, ·)||2 =

∫
Ω

u(t, x)ut(t, x)dx = {use the PDE (1)} =

=

∫
Ω

u∇ · (k(x)∇u)dx = {integration by parts} =

=

∫
Ω
−k(x)|∇u|2dx +

∫
∂Ω

k(x)u
∂u

∂n
dx = {use bc in (1)} =

= −

∫
Ω

k(x)|∇u|2dx −

∫
∂Ω

b(x)k(x)u2dx ≤ {b(x), k(x) ≥ 0}

= −

∫
Ω

k(x)|∇u|2dx ≤ 0.

Hence,
||u(t, ·)|| ≤ ||u(0, ·)|| = ||f ||,

which is the desired energy estimate (with C = 1).

3 Properties

Here we discuss some properties of the heat equation.
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Smoothing

As we saw above, high frequencies in initial data are damped quickly and the solution is therefore
smooth for t > 0. In fact, even for initial data in L2, which can be arbitrarily rough, the mapping
x 7→ u(t, x) (with fixed t) is analytic for all t > 0, i.e. very smooth. (Assuming for instance that
k ≡ 1 and S ≡ 0.)

Decay of L2-norm

While proving the energy estimate above, we obtained as an intermediate result that

1

2

d

dt
||u(t, ·)||2 = −

∫
Ω

k(x)|∇u|2dx −

∫
∂Ω

b(x)k(x)u2dx ≤ −

∫
Ω

k(x)|∇u|2dx.

We simply estimated this by ≤ 0, but typically the right hand side remains strictly smaller than
zero and there is a monotone decrease in time of the L2-norm ||u(t, ·)||. When we have Dirichlet
conditions, u = 0 on ∂Ω, this follows directly from one version of the Poincaré inequality, which
says that, for any sufficiently smooth function v(x) defined on Ω̄ and is zero on the boundary,
there is a number C such that

||v|| ≤ C||∇v||, (2)

provided Ω is smooth enough, open and connected. The number C only depends on the shape
of Ω (not on v!). Let km := infx∈Ω k(x) > 0. Using (2) we get

1

2

d

dt
||u(t, ·)||2 ≤ −km

∫
Ω
|∇u|2dx ≤ −Ckm||u(t, ·)||2.

Let z = exp(2Ckmt)||u(t, ·)||2. Then

dz

dt
= 2Ckmz + exp(2Ckmt)

d

dt
||u(t, ·)||2 ≤ 2Ckmz + −2Ckm exp(2Ckmt)||u(t, ·)||2 = 0.

Hence, z(t) ≤ z(0), or
||u(t, ·)|| ≤ exp(−Ckmt)||u(0, ·)||.

The decay of the L2-norm is thus exponential.

Maximum principle

The maximum principle for the heat equation says that when S = 0 the maximum value of
u(t, x) in [0, T ] × Ω̄ is either obtained on the boundary x ∈ ∂Ω or for the initial data at t = 0.
Note that this is true also when k depends on x and for any boundary condition.

Moreover, there is no amplification of local spatial extrema: local spatial maximum (mini-
mum) of u in Ω cannot increase (decrease). Indeed, suppose u has a local maximum at x∗ at
time t. Then ∇u(t, x∗) = 0 and D2u(t, x∗) is semi-negative definite, in particular ∆u(t, x∗) ≤ 0.
It follows that

∂u(t, x∗)

∂t
= ∇ · (k(x∗)∇u(t, x∗)) = ∇k(x∗) · ∇u(t, x∗) + k(x∗)∆u(t, x∗) = k(x∗)∆u(t, x∗) ≤ 0,

since k(x) > 0. The local maximum will thus not increase.
In one dimension the total variation of the solution is non-increaseing. The total variation

for a function v(x) on the domain [a, b] is defined as

TV (v) :=

∫ b

a

|vx|dx =

n−1∑
j=0

|v(xj+1) − v(xj)|,
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where x1, . . . , xn−1 are the local extrema in (a, b) and x0 = a, xn = b. This follows essentially
from the statement above that u(t, xj) does not increase (decrease) if it is a local maximum
(minimum), i.e. |u(t, xj+1) − u(t, xj)| decreases.

Conservation

The integral of the solution u over Ω is constant in time if S ≡ 0 and the boundary conditions
are Neumann conditions, ∂u/∂n = 0.

d

dt

∫
Ω

u(t, x)dx =

∫
Ω

ut(t, x)dx =

∫
Ω
∇ · (k(x)∇u)dx =

∫
∂Ω

k(x)
∂u

∂n
dx = 0.

This comes as no surprise – it is the basis on which the PDE was derived. In fact, it holds for
any conservation law with "no flux" boundary condition, ~F · ~n = 0,

ut + ∇ · ~F = 0 ⇒
d

dt

∫
Ω

u(t, x)dx = −

∫
Ω
∇ · ~Fdx = −

∫
∂Ω

~F · ~ndx = 0.

When S 6= 0, we get instead that

ut + ∇ · ~F = S ⇒
d

dt

∫
Ω

u(t, x)dx =

∫
Ω

S(t, x)dx

⇒

∫
Ω

u(t, x)dx =

∫
Ω

u(0, x)dx +

∫ t

0

∫
Ω

S(τ, x)dxdτ.

Inifinite speed of propagation

A spatially localized change in initial data will in general change the solution for all x immediately,
i.e. for any t > 0. For example, if

ut −∇ · (k(x)∇u) = S(t, x), x ∈ R
n, t > 0,

u(0, x) = f(x), x ∈ R
n,

and

vt −∇ · (k(x)∇v) = S(t, x), x ∈ R
n, t > 0,

v(0, x) = f(x) + δ(x), x ∈ R
n,

where δ(x) is zero outside a small ball |x − x0| ≤ ε, then in general u(t, x) 6= v(t, x) for all
x and t > 0. Hence, the perturbation δ(x) travels at "infinite speed" and affects the solution
everywhere, in infinitesimal time. This is in sharp contrast to hyperbolic problems, for which a
perturbation has "finite speed" and the two solutions u and v would be identical outside the ball
|x − x0| < ε + Ct, for some C > 0.
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