
Lecture Notes 4

Convergence Theory for Linear Methods

Let qn
j be the numerical approximation of the exact cell average,

qn
j ≈ un

j :=
1

∆x

∫ xj+1

xj

u(tn, x)dx, tn = n∆t. (1)

We want to check

• Convergence qn
j → un

j as ∆x,∆t → 0,

• Accuracy and convergence rate

qn
j = un

j + O(∆xp + ∆tr),

for some p, r ≥ 1.

Notation

We consider two cases of the numerical approximation: with and without boundaries. When
there are boundaries, we let q

n be the finite length vector

q
n = (qn

0 , . . . , qn
N )T .

When there are no boundaries we let q
n denote the infinite sequence

q
n = (. . . , qn

−1, q
n
0 , qn

1 . . .),

and similarly for the exact solution u
n. We write the numerical scheme compactly as an operator

N acting on q
n,

q
n+1 = N (qn,∆t,∆x).

When N only depends on the CFL number λ = ∆t/∆x we simply write N (qn, λ) or just N (qn)
when there is no risk for confusion.

Linear methods

We assume that N is a linear method, i.e. if α, β are scalars,

N (αq + βu) = αN (q) + βN (u).

A linear method can always be represented by sequences of numbers, {bj,ℓ}, that depend on the
time and spatial step size,

qn+1
j =

M
∑

ℓ=−m

bj,ℓ(∆t,∆x)qn
j+ℓ, (2)
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for some finite m and M , which determines the width of the spatial stencils used. (All methods
we considered so far are of this type. When the equation itself is nonlinear the scheme would in
general not be linear, however.)

Example 1 When N is the upwind scheme applied to

ut + a(x)ux = 0, a(x) > 0,

then

qn+1
j = qn

j − ∆t

∆x
a(xj)(q

n
j − qn

j−1),

so that

bj,0 = 1 − a(xj)
∆t

∆x
, bj,−1 = a(xj)

∆t

∆x
,

and all other bj,ℓ are zero, i.e. m = 1 and M = 0.

Norms

To measure errors we need norms. We use the discrete version of the L2 norm,

||q||22,∆x =

N
∑

j=0

|qj|2∆x,

for the case with boundaries. Note that by the scaling with N∆x =constant, the size of the
norm should not increase as we refine the grid. In the case of no boundaries we similarly use

||q||22,∆x =

∞
∑

j=−∞

|qj |2∆x,

which mimics a trapezoidal rule approximation of the continuous L2 norm when qj approximates
a smooth function – again the norm should then be bounded as ∆x → 0.

One can also use the discrete L1 norm,

||q||1,∆x =
N

∑

j=0

|qj|∆x, ||q||1,∆x =
∞
∑

j=−∞

|qj|∆x.

Sometimes we just write || · ||∆x when the precise norm type is not important.

1 Convergence theory

Convergence is usually established using the Lax equivalence theorem which states that a scheme
is convergent if and only if it is consistent and stable. To check convergence for our scheme N
we must thus verify these two properties and then apply the theorem. We go through the three
steps here.

1.1 Consistency

A scheme is consistent if the exact solution fits the scheme well. More precisely, we define the
local truncation error τ

n as
u

n+1 = N (un) + ∆tτn.
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The local truncation error is thus the residual when the exact solution u
n (instead of q

n) is
entered into the scheme, scaled by ∆t. One can also think of it as the error performed in one
time step, scaled by ∆t.

For convergence we need a small τ
n. We say that the method is consistent if

max
0≤n∆t≤T

||τn||∆x → 0

as ∆t,∆x → 0, for a fixed T . Moreover, if there is a number C independent of ∆t and ∆x such
that

max
0≤n∆t≤T

||τn||∆x ≤ C(∆xp + ∆tr)

we say that the method is of order p in space and r in time. If we use a constant λ = ∆t/∆x, or
more generally if λ = O(1), then ||τn||∆x = O((∆x)p + (∆x)r) = O((∆x)q) where q = min(p, r)
and we simply say that the method is of order q.

Consistency and order can usually be checked by simple Taylor expansion of the exact solution
and using the fact that it satisfies the PDE.

Example 2 Consider the upwind method for ut + aux = 0. The local truncation error τn
j is

defined by

un+1
j = un

j − a
∆t

∆x
(un

j − un
j−1) + ∆tτn

j ,

where un
j is the exact local average defined in (1). We can rewrite this as

τn
j =

un+1
j − un

j

∆t
+ a

un
j − un

j−1

∆x

=
1

∆x

∫ xj+1

xj

u(tn+1, x) − u(tn, x)

∆t
+ a

u(tn, x) − u(tn, x − ∆x)

∆x
dx.

Now we can Taylor expand the expressions inside the integral

u(tn+1, x) − u(tn, x)

∆t
= ut(tn, x) +

1

2
∆tutt(tn, x) + O(∆t2),

and

a
u(tn, x) − u(tn, x − ∆x)

∆x
= aux(tn, x) − a

2
∆xuxx(tn, x) + O(∆x2).

Then, since ut + aux = 0,

τn
j =

1

∆x

∫ xj+1

xj

ut(tn, x) +
1

2
∆tutt(tn, x) + aux(tn, x) − a

2
∆xuxx(tn, x) + O(∆x2 + ∆t2)dx

=
1

2∆x

∫ xj+1

xj

∆tutt(tn, x) − a∆xuxx(tn, x)dx + O(∆x2 + ∆t2)

=
∆t

2
· 1

∆x

∫ xj+1

xj

utt(tn, x)dx − a∆x

2
· 1

∆x

∫ xj+1

xj

uxx(tn, x)dx + O(∆x2 + ∆t2).

Since the integrals are both bounded as ∆t,∆x → 0 (they are local averages of utt and uxx) we
conclude that

τn
j = O(∆x + ∆t),

showing that upwind is a consistent method that is first order in time and space.
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We can make a more precise characterization of the local truncation error by differentiating
the equation once in time and space to get

utt + auxt = 0, utx + auxx = 0.

Together this shows that utt = a2uxx. Therefore

τn
j =

a(a∆t − ∆x)

2

1

∆x

∫ xj+1

xj

uxx(tn, x)dx + O(∆x2 + ∆t2).

This kind of characterization is useful when one derives modified equations (see Leveque 8.6). It
also shows that if one chooses the "magic time step" ∆t = ∆x/a the method is more accurate.
In fact, then the numerical scheme is exact and τn

j ≡ 0. This is, however, very special to the
constant coefficient advection equation, and does not happen in general.

1.2 Stability

The scheme is called (Lax-Richtmyer) stable if

||N (q)||∆x ≤ (1 + α∆t)||q||∆x

for all q and with α independent of q, ∆t and ∆x. We will get back later to how this can be
shown for a scheme.

Note that when N is nonlinear then we need instead an "almost contraction" property,

||N (q) −N (q′)||∆x ≤ (1 + α∆t)||q − q
′||∆x

for all q,q′ and with α independent of q, q
′, ∆t and ∆x. See Leveque 8.3.

1.3 Convergence

By the Lax equivalence theorem

"stability + consistency ⇔ convergence".

More precisely, the right implication ⇒ gives both convergence and an error estimate — if the
method is stable and consistent with order p in space and r in time (in the way defined above)
we get

max
0≤n∆t≤T

||qn − u
n||∆x ≤ C(∆xp + ∆tr),

where C is independent of ∆x and ∆t, but in general depends on T and the exact solution
u(t, x). This is quite straightforward to prove, as follows:

We assume

• Stability
||N (q)||∆x ≤ (1 + α∆t)||q||∆x, ∀q,

• Consistency such that

τ := max
0≤n∆t≤T

||τn||∆x ≤ C(∆xp + ∆tr),

• Exact initial data,
q0
j = u0

j , ||q0 − u
0||∆x = 0.
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Let us first define the error en
j = un

j − qn
j and in vector form e

n = u
n − q

n. Then

e
n+1 = u

n+1 − q
n+1 = N (un) + ∆tτn −N (qn) = N (en) + ∆tτn,

where we used the definition of the truncation error and the linearity of N . Then

||en+1||∆x ≤ ||N (en)||∆x + ∆t||τn||∆x ≤ {stability and def. of τ}
≤ (1 + α∆t)||en||∆x + ∆tτ ≤ {applying same estimate to e

n}
≤ (1 + α∆t)2||en−1||∆x + (1 + α∆t)∆tτ + ∆tτ ≤ {induction}

≤ (1 + α∆t)n+1||e0||∆x +
n

∑

j=0

(1 + α∆t)j∆tτ = {exact initial data}

= ∆tτ

n
∑

j=0

(1 + α∆t)j .

The sum is a geometric series,

n
∑

j=0

(1 + α∆t)j =
(1 + α∆t)n+1 − 1

(1 + α∆t) − 1
=

(1 + α∆t)n+1 − 1

α∆t
.

Hence,

||en||∆x ≤ τ
(1 + α∆t)n − 1

α
.

Now, using the fact that 1 + x ≤ ex for all x, we get

max
0≤n∆t≤T

||en||∆x ≤ max
0≤n∆t≤T

τ
eαn∆t − 1

α
≤ τ

eαT − 1

α
.

Hence,
max

0≤n∆t≤T
||un − q

n||∆x ≤ C ′(∆xp + ∆tr),

where the number C ′ is the number C in the consistency assumption multiplied by (eαT − 1)/α.
This shows the convergence and error estimate.

Remark 1 In general the boundary conditions can have a significant effect on stability, accuracy
and convergence. The above analysis is not always sharp. For instance, the local truncation error
can, sometimes, be allowed to have lower order at the boundaries without ruining the overall
convergence rate.

Also note that for higher order approximations wider spatial stencils are needed, which means
that more ghost cells are needed. Then also more boundary conditions for these cells are needed.
However, the PDE itself has a fixed number of boundary conditions. Hence, the number of
numerical boundary conditions is often larger than the number of PDE boundary conditions.
Chosing these extra conditions can be a delicate issue.
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Figure 1. The CFL condition.

2 Checking stability

Checking stability of a scheme is usually the most difficult part when proving convergence. There
are severel different approaches, for instance

1. CFL condition (necessary condition)

2. von Neumann analysis (sufficient condition, constant coefficients)

3. Energy method (sufficient condition, variable coefficients)

We will discuss the first two. The L1 version of the energy method is briefly explained in Leveque
8.3.4.

Note that von Neumann analysis can only handle periodic boundary conditions or no bound-
aries. With the energy method more general boundary conditions can be handled.

2.1 CFL condition

Consider the constant coefficient advection equation

ut + aux = 0, x ∈ R, t > 0,

u(0, x) = g(x).

and an explicit “3-point method”, i.e.

un+1
j = c−1u

n
j−1 + c0u

n
j + c1u

n
j+1,

for some coefficients cj . In its most simple form, the CFL condition says that if this scheme is
consistent then

|a| ∆t

∆x
≤ 1, (3)

is a necessary condition for stability. Note that all methods we have considered so far have been
consistent 3-point methods.

An intuitive explanation of the CFL condition can be made as follows. Consider the continu-
ous case first (Figure 1a). The exact solution in the point (x, t) then only depends on the initial
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data g(x) evaluated in the point x0 = x− at. (The line x− at = x0 is the characteristic passing
through (x, t)). We say that the “domain of dependence” of (x, t) is D(x, t) = {x0} = {x − at}.
In the numerical case (Figure 1b), each value at time level n depends on the three surrounding
values at time level n− 1. Therefore, by induction, the numerical solution un

j at (xj , tn) depends
on the initial data g(x) evaluated at the points xj−n, . . . , xj+n. In the limit as ∆t,∆x → 0, it
will depend on all points between xj−n and xj+n and we set Dnum(xj , tn) = [xj−n, xj+n]. The
general CFL condition then says that:

A consistent method can only be stable if the continuous domain of dependence
D(xj, tn) is a subset of the numerical domain of dependence Dnum(xj , tn).

This is a quite natural condition, since if D(xj , tn) 6⊂ Dnum(xj , tn) then the numerical method
cannot “know” what the exact solution in (xj , tn) should be, and there is no hope of getting a
convergent method.

We should emphasize again that the CFL condition is only a necssary condition. The scheme
may still be unstable of the condition is satisfied.

In our case, D ⊂ Dnum is equivalent to

xj−n = xj − n∆x ≤ xj − atn ≤ xj + n∆x = xj+n,

which, implies
|a|tn ≤ n∆x,

which implies the CFL condition (3) since tn = n∆t.
For a system of p equations, ut + Aux = 0, with u ∈ R

p and A ∈ R
p×p, the domain of

dependence is

D(x, t) =

p
⋃

k=1

{x − λkt},

where λk are the eigenvalues of A. The same arguments as above then leads to the CFL condition

|λk|
∆t

∆x
≤ 1, k = 1, . . . , p.

2.2 von Neumann analysis

In order to derive a sufficient condition for stability one can use von Neumann analysis. This
is based on Fourier analysis and stability is shown in a way similar to how well-posedness is
shown for the continuous problem. As in that case, von Neumann analysis requires that the
problem has constant coefficients. More precisely, the scheme should have the same form at all
grid points. This means that the (2) simplifies to

qn+1
j =

M
∑

ℓ=−m

bℓ(∆t,∆x)qn
j+ℓ, (4)

i.e. bℓ does not depend on j. Moreover, there should either be no boundaries or periodic boundary
conditions.

Example 3 The upwind scheme in Example 1 for the constant coefficient case ut + aux = 0
reduces to m = 1, M = 0 and

b0 = 1 − aλ, b−1 = aλ, λ =
∆t

∆x
.

Remark 2 von Neumann analysis works for any equation, not just hyperbolic equations. The
natural relation between ∆t and ∆x may then differ, however. (E.g. ∆t/∆x2 = O(1) for explicit
methods for parabolic problems.)
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2.2.1 Periodic boundary conditions

We first assume that we have periodic boundary conditions. The space discretization is

xj = j∆x, ∆x =
2π

N
,

and the approximation qn
j satisfies

qn
j = qn

j+N , ∀j, ∀n ≥ 0.

Hence, we only compute the qn
j values for j = 0, . . . , N − 1, but then define qn

j for all j by
periodicity. We assume also that N is even. Let q̂n

k be the discrete Fourier transform of qn
j , so

that

qn
j =

N/2−1
∑

k=−N/2

q̂n
k eikxj .

The Fourier coefficients can be obtained by the transform

q̂n
k =

1

N

N−1
∑

j=0

qn
j e−ikxj .

By using the scheme N in (4) we can derive an expression for q̂n+1
k in terms if q̂n

k as follows.

q̂n+1
k =

1

N

N−1
∑

j=0

qn+1
j e−ikxj

=
1

N

M
∑

ℓ=−m

N−1
∑

j=0

bℓq
n
j+ℓe

−ikxj = {by periodicity}

=
1

N

M
∑

ℓ=−m

N−1
∑

j=0

bℓq
n
j e−ikxj−ℓ = {xj−ℓ = xj − ℓ∆x}

=
1

N

M
∑

ℓ=−m

N−1
∑

j=0

bℓe
ikℓ∆xqn

j e−ikxj

= q̂n
k

M
∑

ℓ=−m

bℓe
ikℓ∆x.

We can thus write

q̂n+1
k = gk(∆t,∆x)q̂n

k , gk(∆t,∆x) =

M
∑

ℓ=−m

bℓ(∆t,∆x)eikℓ∆x.

The factor gk is called the amplification factor since it shows how the different frequencies in the
solution are amplified in each time steps.

Example 4 The amplification factor for upwind is

gk(∆t,∆x) = b0 + b−1e
−iℓ∆x = 1 − a

∆t

∆x
+ a

∆t

∆x
e−ik∆x.
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We now use Parseval’s theorem, which says that

||qn||22,∆x =
N−1
∑

j=0

|qn
j |2∆x =

N/2−1
∑

k=−N/2

|q̂n
k |2.

We get

||N (qn)||22,∆x = ||qn+1||22,∆x =

N/2−1
∑

k=−N/2

|q̂n+1
k |2 =

N/2−1
∑

k=−N/2

|gk q̂
n
k |2

≤ max
−N/2≤k≤N/2−1

|gk|2
N/2−1
∑

k=−N/2

|q̂n
k |2 = max

−N/2≤k≤N/2−1
|gk|2||qn||22,∆x.

Hence,
||N (qn)||2,∆x ≤ max

−N/2≤k≤N/2−1
|gk|||qn||2,∆x,

and we see that a sufficient condition for stability is

max
−N/2≤k≤N/2−1

|gk| ≤ 1 + α∆t. (5)

In most cases when the exact solution does not grow exponentially we can actually show the
stronger version

max
−N/2≤k≤N/2−1

|gk| ≤ 1.

Example 5 When the CFL condition |a|∆t/∆x ≤ 1 holds for the upwind scheme and a > 0 we
have for the amplification factor

|gk(∆t,∆x)| ≤
∣

∣

∣

∣

1 − a
∆t

∆x

∣

∣

∣

∣

+

∣

∣

∣

∣

a
∆t

∆x

∣

∣

∣

∣

= 1 − a
∆t

∆x
+ a

∆t

∆x
= 1.

The CFL condition is hence both necessary and sufficient for the upwind scheme.

Example 6 Consider forward Euler + central differences for the heat equation. This can be
written as

un+1
j = un

j + µ(un
j+1 − 2un

j + un
j−1), µ =

∆t

(∆x)2
.

Here m = M = 1 and
b−1 = µ, b0 = 1 − 2µ, b1 = µ.

Then

gk(∆t,∆x) = µe−ik∆x + 1 − 2µ + µeik∆x = 1 + 2µ(cos(k∆x) − 1) = 1 − 4µ sin2

(

k∆x

2

)

.

Since

max
|k|≤N/2

sin2

(

k∆x

2

)

= max
|k|≤N/2

sin2

(

kπ

N

)

= sin2
(π

2

)

= 1,

gk takes values in the interval [1 − 4µ, 1] and the method is stable if µ ≤ 1/2.
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Example 7 Consider forward Euler + central differences for the advection equation. This can
be written as

un+1
j = un

j +
1

2
λ(un

j+1 − un
j−1), λ =

∆t

∆x
.

Again, here m = M = 1 but

b−1 = −λ

2
, b0 = 1, b1 =

λ

2
.

Then

gk(∆t,∆x) = −λ

2
e−ik∆x + 1 +

λ

2
eik∆x = 1 + λi sin(k∆x).

Hence,
max

k
|gk(∆t,∆x)| = max

k

√

1 + λ2 sin(k∆x)2 > 1,

and the method is unstable for all fixed λ. However, if one uses the "parabolic" CFL condition
∆t ∼ ∆x2 then λ ∼ ∆x ∼

√
∆t and

√

1 + λ2 sin(k∆x)2 ∼
√

1 + ∆t sin(k∆x)2 ≤ 1 + α∆t,

for some α and small enough ∆t. This choice makes the otherwise unstable method stable.

2.2.2 No boundaries

The case of no boundaries is simlar to the periodic case, but instead of the discrete Fourier
transform we now use Fourier series. The infinite sequence q

n defines a 2π-periodic funtion
q̂n(ξ) ∈ L2([0, 2π]) via

q̂n(ξ) =
∞

∑

j=−∞

qn
j eijξ, qn

j =
1

2π

∫ 2π

0
q̂n(ξ)e−ijξdξ.

Like before we derive an expression for q̂n+1(ξ) in terms of q̂n(ξ):

q̂n+1(ξ) =
∞
∑

j=−∞

qn+1
j eijξ

=

M
∑

ℓ=−m

∞
∑

j=−∞

bℓq
n
j+ℓe

ijξ

=
M
∑

ℓ=−m

∞
∑

j=−∞

bℓq
n
j ei(j−ℓ)ξ

=

M
∑

ℓ=−m

∞
∑

j=−∞

bℓe
−iℓξqn

j eijξ

= q̂n(ξ)

M
∑

ℓ=−m

bℓe
−iℓξ.

We thus have

q̂n+1(ξ) = ḡ(ξ,∆t,∆x)q̂n(ξ), ḡ(ξ,∆t,∆x) =
M
∑

ℓ=−m

bℓ(∆t,∆x)e−iℓξ.
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For this setting Parseval’s theorem says

1

2π

∫ 2π

0
|q̂n(ξ)|2dx =

∞
∑

j=−∞

|qn
j |2 =

1

∆x
||qn||22,∆x

Therefore,

||N (qn)||22,∆x = ||qn+1||22,∆x =
∆x

2π

∫ 2π

0
|q̂n+1(ξ)|2dx =

∆x

2π

∫ 2π

0
|ḡ(ξ)q̂n(ξ)|2dx

≤ sup
ξ∈[0,2π]

|ḡ(ξ)|2 ∆x

2π

∫ 2π

0
|q̂n(ξ)|2dx = sup

ξ∈[0,2π]
|ḡ(ξ)|2||qn||22,∆x.

Hence,
||N (qn)||2,∆x ≤ sup

ξ∈[0,2π]
|ḡ(ξ)|||qn||2,∆x,

and we see that a sufficient condition for stability is

sup
ξ∈[0,2π]

|ḡ(ξ)| ≤ 1 + α∆t. (6)

We note here the relationship

gk(∆t,∆x) = ḡ(−k∆x,∆t,∆x).

Since ḡ is 2π-periodic in ξ this shows that as ∆x → 0 the two stability conditions (5) and (6)
are identical.

Remark 3 For problems with variable coefficients, one can apply von Neumann analysis to the
scheme for a fixed value of the coefficient. Stability for each such frozen coefficient problem is
a necessary condition for stability of the whole scheme. It is often also sufficient. For instance,
the von Neumann analysis above shows that for the upwind scheme we should have a∆t/∆x ≤ 1.
In the variable coefficient case we would then require a(x)∆t/∆x ≤ 1
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