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Why integral equation methods?

The basic idea is to rewrite a PDE as an integral equation.
So, we go from differentiation to integration.
High accuracy integration is a lot easier than high accuracy
differentiation.
Condition numbers stay bounded with integral equations.
Example problem :

d2u

dx2
= sin(πx), x ∈ [−1, 1], u(−1) = u(1) = 0.
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Green’s function approach
Finite element approach
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Why integral equation methods?

In some cases the solution of the PDE in the interior of a domain
Ω is completely determined by the boundary conditions on ∂Ω.

An example is Laplace’s equation :

∆U = 0, in Ω,

U = f, on ∂Ω.

It seems unnecessary to worry about discretizing the entire Ω as is
done in FEM or FD.

As we will see later, rewriting Laplace’s equation as an integral
equation results in an integral equation on the boundary ∂Ω only.

We reduce the dimension of the problem by one.

If the right hand side is non-zero, however, things are different.
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Why integral equation methods?

For some problems, the boundaries move. One example is bubbles
and drops in fluid dynamics.

It is much easier to keep track of the boundaries only, rather than
say a FEM mesh convering the whole of the domain.
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Why integral equation methods?

Sometimes it is natural to have an infinite domain, for example in
electromagnetic scattering problems.

We can’t set up an infinite FEM or FD mesh, we need to
introduce a wall somewhere.

Since integral equations most often are on the boundaries only,
there is no need for a wall.
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When do integral equation methods apply?

We can only do linear problems.

It is not necessary for the problem to be elliptic, but the ones
treated with integral equation methods often are.

If we want the reduction in dimension, we
I cannot have non-zero right hand sides,
I only have piecewise constant coefficients, for example in the heat

conduction problem
∇ · (σ∇T ) = 0.

So integral equation methods aren’t very versatile, but when they
apply they are very powerful.
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Examples : Laplace’s equation

∆U = 0, in Ω

Heat conduction, electrostatics, etc.
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Examples : Helmholtz’ equation

∆U + k2U = 0, in Ω

Electromagnetic scattering, acoustics.
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Examples : The biharmonic equation

∆2U = 0, in Ω

Linear elasticity, Stokes flow.
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Integral equation formulations of PDEs

What are we aiming for? What is an integral equation?

We will encounter two types :∫
∂Ω
ρ(x)K(x, y) dlx = g(y), y ∈ ∂Ω

µ(y) +

∫
∂Ω
µ(x)K(x, y) dlx = g(y), y ∈ ∂Ω

These are called Fredholm integral equations of the first and
second kind, respectively.

We call the known functions K(x, y) and g(y) the kernel and the
right hand side. The unknown functions that we wish to compute
are ρ(x) and µ(x).

These equations very seldom have closed form solutions. We need
to solve them numerically.
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Integral equation formulation of Laplace’s equation

So, how do we turn a PDE into an integral equation?

For simplicity, we will mainly look at Laplace’s equation in 2D

∆U = 0, in Ω,

U = f, on ∂Ω.

The Green’s function G(x, x0) of the Laplace operator ∆ satisfies

∆G(x, x0) = δ(x− x0)

where δ(x− x0) is the Dirac delta distribution at x0. In physics, there
is often an extra minus sign.

Rikard Ojala (NA, KTH) Boundary integral equation methods for elliptic problemsApril 23, 2013 12 / 27



Integral equation formulation of Laplace’s equation

Let us begin with Gauss’ divergence theorem∫
Ω
∇ · F dA =

∫
∂Ω
F · n dl,

where n is the outward unit normal.

If we set F = v∇u− u∇v we get Green’s second identity∫
Ω
v∆u− u∆v dA =

∫
∂Ω
v
∂u

∂n
− u∂v

∂n
dl

which holds for u, v ∈ C2(Ω).

Now we set u = U and v = G.
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Integral equation formulation of Laplace’s equation

We ”get”

U(x0) =

∫
∂Ω
U
∂G

∂n
−G∂U

∂n
dl

for any x0 in Ω.

So, the solution to Laplace’s equation inside Ω can be written as
an integral over the boundary.

But what is G really? Is it really twice continuously differentiable?
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The Green’s function

The Laplace operator is scale, translation and rotation invariant.

Assume that x0 = (0, 0) and that the domain Ω contains the origin.

Ω
∂ Ω
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The Green’s function

We get:

1 =

∫
Ω
δ(x) dA =

∫
Ω

∆GdA =

∫
Ω
∇ · ∇GdA =

=

∫
∂Ω
∇G · n dl =

∫
∂Ω

∂G

∂n
dl

Because of rotational invariance, we expect G(x, 0) to depend only
on r = |x|.
Take Ωc to be a circle, centered at the origin and with radius a.
On ∂Ωc we then have

∂G

∂n
=
∂G

∂r
,

and ∂G
∂r = Const. there.
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The Green’s function

We get:

1 =

∫
∂Ωc

∂G

∂n
dl =

∫ 2π

0

∂G

∂r
a dθ = 2πa

∂G

∂r
,

which holds for any a.

We pick a = r and get

∂G

∂r
=

1

2πr

G(r) =
1

2π
log(r) + C

Setting C = 0 for physical reasons, we finally get

G(x, x0) =
1

2π
log(|x0 − x|).
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Green’s representation formula

So, let us return to∫
Ω
G∆U − U∆G dA =

∫
∂Ω
G
∂U

∂n
− U ∂G

∂n
dl

and take a more thorough look.
For simplicity, let x0 = 0 and cut out a circle of radius ε around
the origin. On the circle, ∂

∂n = − ∂
∂r .

Ω
e

∂ Ω

∂ Ω
ε
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Green’s representation formula

We now have two boundary components, but the left hand side
above is zero on Ωe. We get∫

∂Ω
G
∂U

∂n
− U ∂G

∂n
dl =

1

2π

∫
∂Ωε

log r
∂U

∂r
− U ∂

∂r
log r dl =

=
1

2π

(
2πε log ε

∂U

∂r
− 2πε

ε
U

)
where the bar denotes the mean over the circle r = ε.

In the limit ε→ 0, the first term vanishes since the derivative of U
is bounded.

The mean of U over the circle goes to U(0) as ε→ 0, so we get

U(0) =

∫
∂Ω
U
∂G

∂n
−G∂U

∂n
dl
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Green’s representation formula

So it turned out that

U(x0) =

∫
∂Ω
U
∂G

∂n
−G∂U

∂n
dl (1)

for x0 in Ω really was true. This formula is called Green’s
representation formula.

But it does not help us, we need to know both U and its normal
derivative on ∂Ω to compute U throughout Ω. In general we don’t.

If (1) held on the boundary, however, since U = f on the
boundary, we’d be able to get a first kind integral equation on ∂Ω
with ∂U

∂n as the unknown by substituting all U ’s by the boundary
data f . ∫

∂Ω
G
∂U

∂n
dl =

∫
∂Ω
f
∂G

∂n
dl − f

Rikard Ojala (NA, KTH) Boundary integral equation methods for elliptic problemsApril 23, 2013 20 / 27



The jump relations

U(x0) =

∫
∂Ω
U
∂G

∂n
−G∂U

∂n
dl

Sadly, this equation does not hold for x0 on the boundary.

For x0 outside Ω the left hand side is zero as we saw with the cut
out circle before, but just inside Ω it is not zero in general.

The behavior of the integral above as x0 approaches the boundary
is given by the jump relations

lim
x0→∂Ω

∫
∂Ω
G
∂U

∂n
dl =

∫
∂Ω
G
∂U

∂n
dl

lim
x0∈Ω
x0→∂Ω

∫
∂Ω
U
∂G

∂n
dl =

1

2
U +

∫
∂Ω
U
∂G

∂n
dl.
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Integral equation formulations for Laplace’s equation

So on the boundary ∂Ω we have the equation

1

2
U(x0) =

∫
∂Ω
U
∂G

∂n
−G∂U

∂n
dl

If U = f is prescribed we get the first kind Fredholm integral
equation ∫

∂Ω
G
∂U

∂n
dl =

∫
∂Ω
f
∂G

∂n
dl − 1

2
f

If ∂U
∂n = f we get the second kind equation

1

2
U −

∫
∂Ω
U
∂G

∂n
dl = −

∫
∂Ω
Gf dl

but beware, this last equation is not uniquely solvable.
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A direct formulation

We have finally reached a viable integral equation formulation of
Laplace’s equation. For our problem, with Dirichlet boundary
conditions we do the following:

Solve ∫
∂Ω
G
∂U

∂n
dl =

∫
∂Ω
f
∂G

∂n
dl − 1

2
f

for ∂U
∂n .

Knowing both U and ∂U
∂n on the boundary we may compute the

solution at any point x0 inside the domain via

U(x0) =

∫
∂Ω
U
∂G

∂n
−G∂U

∂n
dl

This is a two-stage process, unlike in FEM or FD.

We call this a direct formulation, we are dealing with the solution
U and its derivative on the boundary directly.
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An indirect formulation

We will not be using direct formulations here, however, but rather
indirect ones.

We call

U(x0) =
1

2π

∫
∂Ω
ρ(x) log(|x0 − x|) dl(x)

a single layer potential or single layer representation of the
solution U inside Ω, and

U(x0) =
1

2π

∫
∂Ω
µ(x)

∂

∂n
log(|x0 − x|) dl(x)

a double layer potential or double layer representation.

The terminology comes from potential theory where ρ(x) and µ(x)
are charge and dipole densities, respectively.

Each of these can be used to represent any solution to Laplace’s
equation inside Ω. We don’t need both together as above.
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An indirect formulation

You will be using the double layer representation in the homework.

U(x0) =
1

2π

∫
∂Ω
µ(x)

∂

∂n
log(|x0 − x|) dl(x) (2)

Using the appropriate jump relation we get together with the fact
that U(x0) = f(x0 on the boundary that

1

2
µ(x0) +

1

2π

∫
∂Ω
µ(x)

∂

∂n
log(|x0 − x|) dl(x) = f(x0)

holds on ∂Ω. Once we have solved this equation for µ(x0) we use
(2) to compute the solution in the domain.
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Complex variables

Since we are working in 2D, it is very natural to use complex
variables. In fact, one can derive the same double layer
representation as above using the theory of analytic functions.

We will not derive the complex equation here, but is in fact easier
to work with the complex variant. The integral equation is

1

2
µ(z0) +

1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
= f(z0),

where Im denotes the imaginary part. This is a lot more compact
than its real counterpart if you write that out.

Having solved the above equation for µ, the solution U at a point
in Ω is then computed via

U(z0) =
1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
.
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Complex variables

You will use the complex formulations in the homework. It will
potentially spare you a lot of bug hunting.

In order to do this you need to evaluate complex curve integrals on
∂Ω.

To do this you need a parameterization z(t) of the boundary
curve. For a circle, for example, we have z(t) = eit for 0 ≤ t ≤ 2π.

To evaluate an integral over the curve described by z(t) we now get∫
∂Ω
f(z) dz =

∫ 2π

0
f(z(t))z′(t) dt

In the same way,

1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
=

1

2π

∫ 2π

0
µ(z(t))Im

{
z′(t)

z(t)− z0

}
dt.
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