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Last lecture...

We saw that Laplace’s equation in Ω could be reformulated as an
integral equation on the boundary ∂Ω of the domain in several
ways.

We derived Green’s representation formula and noted that it could
be used to solve Laplace’s equation.

Opting for simplicity we instead picked the double layer
representation

U(x0) =
1

2π

∫
∂Ω
µ(x)

∂

∂n
log(|x0 − x|) dl(x)

of the solution in Ω

Using the jump relations we got the following integral equation for
the density µ on ∂Ω:

1

2
µ(x0) +

1

2π

∫
∂Ω
µ(x)

∂

∂n
log(|x0 − x|) dl(x) = f(x0)
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Last lecture...

I decided that the equivalent complex representation was easier to
handle (which it is). The double layer representation in complex
variables is

U(z0) =
1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
.

and using the jump relations we get the integral equation

1

2
µ(z0) +

1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
= f(z0),

for µ on the boundary.
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Compact integral operators

We can write

1

2
µ(z0) +

1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
= f(z0),

symbolically as (
1

2
I +K

)
µ = f.

Here, we call I the identity operator and K is an integral operator
with kernel

K(z, z0) =
1

2π
Im

{
dz

z − z0

}
.

Integral operators are in general infinite dimensional, but there is
a special kind of integral operator that is ”almost finite
dimensional”.

We call such operators compact integral operators.
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Compact integral operators

We will need some terminology.
A linear space is a collection of objects on which the operations
addition and multiplication by scalar are defined, obeying the
common rules such as commutativity, etc.
A normed linear space S, also has a norm ‖ · ‖ defined on it for
which it should hold for x, y ∈ S that

I ‖x‖ = 0 then x = 0,
I ‖ax‖ = |a|‖x‖ for scalars a,
I ‖x+ y‖ ≤ ‖x‖+ ‖y‖

There are many examples of normed linear spaces. For example
Rn equipped with various norms.
We will discuss spaces of functions here. Popular examples of such
are

I C([a, b]), the space of continuous functions over [a, b] with norm
‖f‖ = sup

x∈[a,b]

f(x),

I L2([a, b]), the space of square integrable functions over [a, b] with

norm ‖f‖ =
√∫ b

a
|f(x)|2dx.
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Compact integral operators

An open ball of radius r centered at x0 consists of all x such that
‖x− x0‖ < r.

A sequence is an ordered list x1, x2, ... of elements and a Cauchy
sequence is a sequence where elements get closer and closer. That
is for any ε > 0, ‖xn − xk‖ < ε for some N such that
n > N, k > N .

A sequence converges to x if ‖x− xn‖ → 0 as n→∞.

A space for which all Cauchy sequences converge is called a
Banach space.

The closure of a set X is X but with the limit points added. For
example, the closure of the interval (a, b) on the real line is [a, b].
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Compact integral operators

We first need the concept of a compact set.

Definition

A set X in a Banach space is called compact if and only if every
sequence x1, x2, x3, ... of elements in X contains a converging
subsequence.

If a set X can be covered by a finite number of balls of radius ε for each
ε > 0 then the closure of X is compact.

These definitions are equivalent and they both hint that compact
sets are in some sense small.

Heine-Borel’s theorem says that any closed and bounded subset of
Rn is compact.

So [a, b] is compact for any finite a and b but the whole real line R
is not.
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Compact integral operators

Definition

An integral operator K taking inputs from X and producing outputs in
Y is called a compact integral operator if and only if every bounded
subset of X is mapped into a subset of Y whose closure is compact.

We could say that a compact integral operator takes inputs from a
potentially large set and produces outputs in a smaller set.
So what are the conditions for an integral operator to be compact?
Well, it depends on what space we are dealing with. For our
purposes we can limit ourselves to the space of square integrable
functions on the interval [a, b]. Then

Theorem

An integral operator from L2([a, b]) to L2([a, b]) is compact if its kernel
K(x, x0) obeys ∫ b

a

∫ b

a
|K(x, x0)|2dxdx0 <∞.
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Compact integral operators

Let us check how our integral operator

Kµ(z0) =

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
does.

Introduce a parameterization z(t), t ∈ [0, 2π] of the boundary. We
then get

Kµ(z0) =

∫ 2π

0
µ(z)Im

{
z′(t)

z(t)− z0

}
dt,

and using the same parameterization for z0 we write the kernel as

K(t, s) = Im

{
z′(t)

z(t)− z(s)

}
.

Is K(t, s) square integrable? Yes, for smooth boundaries it is, even
though the denominator looks problematic for t = s. It is in fact
continuous, which you will show in the homework.
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Compact integral operators

Great, so our integral operator is compact. What does that buy
us?
First off, we have the following theorem

Theorem

If K is a compact operator then its spectrum consists of either a finite
number of eigenvalues, or a denumerable set of eigenvalues
accumulating only at the origin.

This basically says that either K has a finite number of
eigenvalues, in which case K is finite dimensional, or
K has infinitely many eigenvalues, but they tend toward zero. K is
”almost finite dimensional”.
In either case, making K finite dimensional by discretizing it
should not remove too much information.
These spectral properties will also be very advantageous later
when we discuss iterative solvers for solving the discretized linear
systems of equations.
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Compact integral operators

Knowing that K is compact gives us the opportunity to use
another theorem

Theorem

Fredholm’s alternative. If the integral operator K is compact, then
either the homogenous integral equation (I +K)µ = 0 has a non-trivial
solution(µ not identically zero), or (I +K)µ = f has a unique solution
for every f .

Compare this to the finite dimensional case : either the linear
system of equations Ax = 0 has a non-trivial solution, or Ax = f
has a unique solution for every f

One can show that (I +K)µ = 0 for our integral operator has only
the solution µ = 0, thereby showing by Fredholm’s alternative that
(I +K)µ = f is uniquely solvable for any f . This requires quite a
lot of analytic function theory so we will skip that here.
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Recap and what now?

To recap, compactness of our integral operator gave us
I a way to show existence and uniqueness of solutions to the integral

equation,
I that the integral operator is almost finite dimensional, it should

discretize nicely, and
I once discretized, the linear system of equations can be solved

rapidly using iterative solvers (but more on that later).

So, let us discretize the integral equation. We will need to evaluate
integrals, and we will do this using the good old trapezoidal rule.

As it turns out, the trapezoidal rule is astoundingly good for
evaluating the integrals we will encounter.
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Trapezoidal rule error

The standard error estimate for the trapezoidal rule says that the
error decays as h2.

This is a massive overestimation of the error when
1 the integrand is smooth, many times continuously differentiable,
2 the integrand is periodic.

For periodic functions the trapezoidal rule becomes the midpoint
rule, but this does not explain the higher order. Why would the
error be much lower?

A first ”hand waving” explanation might be that because of
periodicity, the over and underestimations cancel over one period.
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Trapezoidal rule error

More precisely we have the following :

Theorem

Let m ≥ 0, N ≥ 1, and define h = 2π/N, xj = jh for j = 0, 1, ..., N − 1.
Further assume that f(x) is 2m+ 2 times continuously differentiable
on [0, 2π] for some m ≥ 0. Then, for the error in the trapezoidal rule∫ 2π

0
f(x)dx− TN (f) = −

m∑
k=1

B2k

(2k)!
h2k

(
f (2k−1)(2π)− f (2k−1)(0)

)
−2πh2m+2 B2m+2

(2m+ 2)!
f (2m+2)(ξ)

for some ξ in [0, 2π]. The Bk are the Bernoulli numbers, and TN (f)
denotes the N -point trapezoidal rule applied to f .

For smooth (m large), periodic (f (n)(0) = f (n)(2π)) functions we
get very high order, ”spectral accuracy”.
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Nyström discretization

Given a periodic parameterization z(t), t ∈ [0, 2π] we would like to
discretize our integral equation so that we can solve it.

Introducing the parameterization in our equation we get

1

2
µ(z(s)) +

1

2π

∫
∂Ω
µ(z(t))Im

{
z′(t)

z(t)− z(s)

}
dt = f(z(s)).

for s ∈ [0, 2π].

Let us pick N equidistant points tj = 2πj/N, j = 0, ..., N − 1. The
distance between them is h = 2π/N . Evaluating the integral with
the trapezoidal rule we get

1

2
µ(z(s)) +

h

2π

N−1∑
j=0

µ(z(tj))Im

{
z′(tj)

z(tj)− z(s)

}
= f(z(s)).

We are halfway there. We can now compute this for every
s ∈ [0, 2π], but there are an infinite number of values of s. We
need to pick a finite number of them.
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Nyström discretization

The idea in Nyström discretization is to pick the quadrature nodes
as the points at which we require the integral equation to hold.
We get

1

2
µ(z(ti)) +

h

2π

N−1∑
j=0

µ(z(tj))Im

{
z′(tj)

z(tj)− z(ti)

}
= f(z(ti)),

for i = 0, 1, ..., N − 1.

If we write zj = z(tj), z
′
j = z′(tj), µj = µ(z(tj)), fj = f(z(tj)) we

get

1

2
µi +

h

2π

N−1∑
j=0

µjIm

{
z′j

zj − zi

}
= fi.

This is an N ×N equation system with µj as unknowns. We can
write it as (

1

2
I + K

)
µ = f
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Nyström discretization

Once we have solved (
1

2
I + K

)
µ = f

for µ we know the value of the density µ(z) at the quadrature
nodes.

We may then directly use

U(z0) =
1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
,

discretized in the same way to compute the solution U(z0) at any
point z0 in the domain.

This is a natural and simple idea, and there are other upshots as
well.
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Nyström discretization

For the error in Nyström discretization we have

Theorem

If KN is K but with its integral evaluated numerically by the N point
trapezoidal rule, and x and xN obeys (I +K)x = f and
(I +KN )xN = f then

‖x− xN‖ ≤ C max
s

∣∣∣∣∣∣
∫
K(t, s)x(t)dt− h

N−1∑
j=0

K(tj , s)x(tj)

∣∣∣∣∣∣
It turns out that Nyström discretization preserves the order of the
underlying quadrature rule.

This is very good for us, since the trapezoidal rule has very high
order.
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Solving the system

The matrix K with elements

Kij =
h

2π
Im

{
z′j

zj − zi

}
is not sparse.

This means that solving (
1

2
I + K

)
µ = f

using Gaussian elimination costs O(N3) operations for N
discretization points. This is too expensive for larger problems.

We need iterative solvers, but our choice is limited by the fact that
the matrix 1

2I + K is neither symmetric nor positive definite.
These are properties often exploited by iterative solvers.
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GMRES

Let’s say we wish to solve Ax = b (with A invertible).

Iterative solvers in general work by computing the matrix-vector
products Ayn for some yn and using the information to construct
an approximate solution.

Each matrix-vector multiplication costs O(N2) operations for an
N ×N matrix, so if we need much less than N such
multiplications we gain something.

The iterative solver that best suits our problem is GMRES
(Generalized Minimum RESidual).

GMRES belongs to the class of Krylov subspace methods, along
with for example the conjugate gradient method.

Unlike the conjugate gradient method it works on general
matrices, but as we will see, this is not the only reason for
choosing GMRES.
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GMRES

When solving the system Ax = b, the main idea of GMRES is to
look for approximate solutions in the successive Krylov subspaces

Sk = span
{
b,Ab,A2b, ...,Ak−1b

}
.

For an invertible N ×N matrix, the solution x can be written as a
linear combination of the columns in SN . But we hope to be able
to find an accurate solution for k much less than N .

At step k, we look for the vector xk in Sk that minimizes the
euclidean norm of the residual

rk = b−Axk.

There are many technical details involved here, but we are mainly
interested in the convergence properties of GMRES.
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GMRES

The convergence theory for Krylov subspace methods is
complicated, but for GMRES we can at least say that if the
spectrum of the matrix A is clustered away from the origin, then
GMRES converges quickly.

We can roughly say that the convergence depends on the size of
the cluster of eigenvalues.

Remember that for compact operators the spectrum tends to the
origin.

But we have 1
2I +K with K compact so the spectrum tends to 1

2 .
The same holds for the discrete version 1

2I + K.

Because of this, as we increase the size of the system the
additional eigenvalues will be very close to 1

2 and will not increase
the size of the cluster of eigenvalues. GMRES will converge as
rapidly as before.

We say that the number of GMRES steps is bounded as the
system size grows for these kinds of matrices.
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GMRES

Each matrix-vector multiply costs O(N2) operations.

Since the number of iterations is bounded for a given problem, we
have decreased the work required by an order of magnitude, from
O(N3) to O(N2). Not bad.

However, we need to set up the matrix K which requires N2

memory storage. For complicated boundaries, the number of
discretization points required can easily exceed 105, which
translates into 80 Gb of memory.

We can actually do better, both in terms of operation count and
memory. The structure of the matrices arising from boundary
integral equation methods is a special one.

The solution is the fast multipole method.
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The fast multipole method

The elements of our matrix are

Kij =
h

2π
Im

{
z′j

zj − zi

}
.

Ignoring the imaginary part for the moment and setting qj = h
2πz
′
j

we have
Kij =

qj
zj − zi

.

So multiplying the matrix K with a real vector x amounts to
evaluating

N−1∑
j=0

qjxj
zj − zi

for all i and then taking the imaginary part.

This is basically an n-body problem.
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The fast multipole method

Basic idea - gravity

Consider two clusters of n/2 particles each.

Classic evaluation costs ∼ n2.

Instead compute an equivalent center of mass for each cluster.

Cost drops to ∼ n2/2.

By subdividing the clusters this could drop further.
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The fast multipole method

Some details need to be adressed:
I What is the error?
I Higher order ”centers of mass”?
I How to turn this into an efficient algorithm?

The Fast Multipole Method (FMM) handles this.
I Rigorous error estimates.
I Uses multipole expansions for higher order approximations.
I Uses a tree structure to handle interactions on several scales.

x

y

log10 error
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The fast multipole method

Our goal is to compute

φ(z) =

N−1∑
j=0

qj
z − zj

,

for many points z.

We would like to separate the sources zj from the target z.

To this end we use the identity

1

z − zj
=

1

z

1

1− zj
z

=
1

z

∞∑
k=0

(zj
z

)k
,

which is valid for |z| > |zj |.
Putting these two together gives us the multipole expansion.
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The fast multipole method

The multipole expansion.
Suppose that N sources with strenghts qk are located at points zk,
with |zk| < r. Then for any z with |z| > r we have

φ(z) =

∞∑
k=0

ak
zk+1

,

where

ak =

N−1∑
j=0

qjz
k
j .

For a truncated sum with only p terms, we have the error bound∣∣∣∣∣φ(z)−
p∑

k=0

ak
zk

∣∣∣∣∣ ≤ C ∣∣∣rz ∣∣∣p
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The fast multipole method

So how do we turn this into an algorithm?

Divide the computational domain into successively finer square
grids.

Do this until the number of particles in each box is small enough
for multipole evaluation not to pay off.

Evaluate multipole expansions whenever the source box is far
enough away.
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The fast multipole method

We have to take care not to evaluate interactions more than once.

Only treat particles in the interaction list of each box.

At the finest level we use direct summation.
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The fast multipole method

The algorithm described here is O(N logN), and technically not
the FMM per se.

For the O(N) algorithm, the FMM, further machinery is needed.

See A short course on fast multipole methods by Beatson and
Greengard if you are curious
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