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So far...

We have discussed Laplace’s equation with Dirichlet boundary
conditions

∆U = 0, in Ω,

U = f, on ∂Ω.

One possible integral equation formulation of this problem is the
double layer representation, where we represent the solution U as

U(z0) =
1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
.

and solve the integral equation

1

2
µ(z0) +

1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
= f(z0),

for the unknown density µ.
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So far...

We found out that our integral operator was compact, and in turn
that gave us

I a way to prove existence and uniqueness of solutions to the integral
equation via Fredholm’s alternative,

I a theoretical explanation why we could expect the iterative solver
GMRES to work well on the discretized equation.

We used Nyström discretization to get a linear system of equation
to solve. Nyström discretization had the property that it preserves
the order of the underlying quadrature rule in the solution of the
integral equation.

This was very good for us, since we found that the trapezoidal rule
was very accurate for smooth and periodic integrands.

Finally, we discussed a way to speed up the solution of the
equation system significantly: the fast multipole method.
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So, what is left?

What about Laplace’s equation with Neumann boundary
conditions? Or mixed boundary conditions?

What about the solution close to the boundary?

What about non-smooth domains?

What about other PDE:s?
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Neumann boundary conditions

The solution to

∆U = 0, in Ω,

∂U

∂n
= g, on ∂Ω,

is not unique.

We could set up an integral equation as before, though, but it
makes better sense to look at

∆U = 0, in Ωc,

∂U

∂n
= g, on ∂Ω,

instead, where Ωc is the complement of Ω.

It is reasonable to look for solutions that decay to zero far away.
This is equivalent to the condition∫

∂Ω
g dl = 0.
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Neumann boundary conditions

So let us as before use the double layer representation

U(z0) =
1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
.

We want the normal derivative on ∂Ω, so we compute

∂U

∂n
=

∂

∂n

1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
,

let z0 approach the boundary and set this equal to g there. Just as
before, right?

Well, no. The normal derivative makes the kernel look like 1
(z−z0)2

.

We call integral operators with such kernels hypersingular integral
operators and they are a nasty bunch.
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Neumann boundary conditions

Instead we use a single layer representation, we touched on these
briefly in the first lecture. Represent the solution as

U(x0) =

∫
∂Ω
ρ(x)G(x, x0) dl,

or in complex variables

U(z0) =
1

2π

∫
∂Ω
ρ(z) log(|z0 − z|) |dz|.

Taking the normal derivative of this is no problem, we end up with
something very similar to the double layer representation.
However, the point where the normal is evaluated differs.

We get the integral equation

1

2
ρ(z0)− 1

2π

∫
∂Ω
ρ(z)Im

{
nz0nzdz

z − z0

}
= g(z0),

for the Neumann problem. Same properties as for Dirichlet.
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Mixed boundary conditions

A common problem is

∆U = 0, in Ω,

U = f, on ∂ΩD,

∂U

∂n
= g, on ∂ΩN .

Drawing on past experiences we represent the solution as

U(z0) =
1

2π

∫
∂ΩD

µ(z)Im

{
dz

z − z0

}
+

1

2π

∫
∂ΩN

µ(z) log(|z0−z|) |dz|.

This works, and we get a system of integral equations for the
mixed density µ. We could also do Robin boundary conditions in
this way.

But what happens where different boundary conditions meet? Bad
things, actually pretty much the same things as with the corners
of non-smooth domains. We will look at these later.
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The solution close to the boundary

Let us return to Laplace’s equation with Dirichlet boundary
conditions.
Assume we have solved the integral equation and have obtained
the density µ. Now we wish to compute the solution in the domain
using

U(z0) =
1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
.

We do OK in the center of the domain.
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The solution close to the boundary

Let us return to Laplace’s equation with Dirichlet boundary
conditions.
Assume we have solved the integral equation and have obtained
the density µ. Now we wish to compute the solution in the domain
using

U(z0) =
1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
.

But not close to the boundary.
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The solution close to the boundary

The same problem occurs when we want to solve the integral
equation

1

2
µ(z0) +

1

2π

∫
∂Ω
µ(z)Im

{
dz

z − z0

}
= f(z0),

for domains whose boundary falls back on itself.
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The solution close to the boundary

So let us see what we can do if we wish to evaluate the solution
close to the boundary. We will restrict ourselves to the boundary
segment closest to the point, since that is where the integrand is
troublesome.
We note that it is the behavior of 1

z−z0
that is the problem, not µ

which is in fact well-behaved in most cases.
Since the density µ is real we may remove the imaginary part
temporarily. That is, we want to compute

Ũ(z0) =
1

2π

∫
∂Ωpart

µ(z)
dz

z − z0
.

Rikard Ojala (NA, KTH) Boundary integral equation methods for elliptic problems - part 3May 7, 2013 12 / 21



The solution close to the boundary

So, µ(z) is well-behaved. Then let us expand µ(z) as an nth
degree polynomial in z over the boundary segment.

µ(z) ≈
n∑

k=0

ckz
k

Substituting, we get

Ũ(z0) =
1

2π

∫
∂Ωpart

µ(z)
dz

z − z0
≈ 1

2π

n∑
k=0

ck

∫
∂Ωpart

zkdz

z − z0
.

These last integrals, which are not easily evaluated numerically, we
can evaluate analytically. The theory of analytic function tells us
that the curve integral of an analytic function is independent of
the path. We may choose a straight line.

But we must be careful not to pass z0 when we deform our path.
The integrands are singular there, and hence not analytic.
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The solution close to the boundary

So this looks nice, but haven’t we overlooked something?

We compute ck such that

µ(z) ≈
n∑

k=0

ckz
k,

which is basically interpolation. And our points are equispaced.

High-order interpolation for equispaced points is a bad idea
(Runge’s phenomenon).

So we throw away the trapezoidal rule and instead go for Gaussian
quadrature. The points are now better spaced for interpolation,
they are in fact ”almost” Chebyshev nodes which are optimal for
interpolation.

We lose the amazing accuracy of the trapezoidal rule integration,
but if we use, say, a 16-point Gaussian rule we get 32nd order,
which is not bad either. Now, however, we have no problems close
to the boundary.
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Non-smooth domains

Non-smooth, or piece-wise smooth domains are a headache for
integral equation solvers.
In fact, they are a problem for basically any solution strategy.
Below, (a) FD, (b) FEM, (c) Spectral method, (d) BIE

(a) (b)

(c) (d)
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Non-smooth domains

For integral equation solvers the main problem is that the
compactness of the integral operator is lost. The kernel is singular
at the corners.

As a result we lose Fredholm’s alternative and the nice spectral
properties for GMRES.

Refining the discretization close to corners is a common strategy,
but more points equals more work and we cannot be sure the
number of GMRES iterations stays bounded anymore either.

We can refine the discretization while retaining the nice GMRES
convergence by constructing a preconditioner.
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Non-smooth domains

Let us say we have discretized the integral equation on a refined
mesh with Gaussian quadrature. The resulting matrix is K, and
we have the equation system

(
1

2
I + K)µ = f .

We do the split K = K◦ + K? where K? contains the elements
corresponding to self interaction at the corners. The red portions
below. All the bad behavior is now in K?.
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Non-smooth domains

We get

(
1

2
I + K◦ + K?)µ = f .

(
1

2
I + K◦ + K?)(

1

2
I + K?)−1(

1

2
I + K?)µ = f .

And setting µ̃ = (1
2I + K?)µ we get(
I + K◦(

1

2
I + K?)−1

)
µ̃ = f .

It turns out that we only need the refined mesh for computing
(1

2I + K?)−1, we can solve the main equation on an unrefined
mesh, saving work.

Also, (1
2I + K?)−1 can be computed very rapidly using a recursion.

This strategy also works for the interfaces in mixed boundary
condition problems.
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A Laplace demo

So using this corner strategy and the scheme for computing the
solution close to the boundary, how well does integral equation
methods do for Laplace’s equation?
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Other PDEs

The derivation of boundary integral equation formulations for
other PDEs are often similar to what we have done for Laplace’s
equation.

One often starts with a fundamental solution, or Green’s function,
for the problem and use it to represent the solution of the specific
problem at hand.

For Helmholtz’ equation

∆U + k2U = 0, in Ω,

the Green’s function is

G(z, z0) =
i

4
H

(1)
0 (k|z − z0|)

where H
(1)
0 (z) is the zeroth order Hankel function of the first kind.

It is related to the Bessel functions and is singular and oscillatory.

One uses a sum of a single and double layer representation to
represent the solution.
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Other PDEs

For Stokes flow, the Green’s function is

G(z, z0) =
1

2
− log(|z − z0|) +

1

2

z − z0

z̄ − z0
C

where bar denotes complex conjugation and C is the complex
conjugation operator.
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