
Homework 5 : Boundary integral equation
methods for elliptic problems

April 30, 2013

In this homework you will solve Laplace’s equation with Dirichlet boundary
conditions on two dimensional domains. There will be both theoretical and
programming problems.

The problem we wish to solve is

∆U(x) = 0, x ∈ Ω, (1)
U(x) = f(x), x ∈ ∂Ω, (2)

where Ω is a smooth domain in 2D with boundary ∂Ω.
We begin by expressing the solution U as a double layer potential,

U(x0) =

∫
∂Ω

∂G(x, x0)

∂nx
µ(x)dl, x0 ∈ Ω (3)

with nx being the outward unit normal at x and G(x, x0) = 1
2π log (|x0 − x|)

is the Green’s function for the Laplace operator in the plane. The integral is
with respect to arclength. To compute the solution at some point x0 we need
to first compute the unknown double layer density µ. As x0 approaches the
boundary in (3), the jump relations together with the boundary conditions give
the integral equation

1

2
µ(x0) +

1

2π

∫
∂Ω

µ(x)
∂

∂nx
log (|x0 − x|) dl = f(x0), x0 ∈ ∂Ω (4)

for µ. It is common to absorb the factor 1/2 into the density µ, in which case
(3) must be adjusted accordingly.

In complex notation the same equation is

1

2
µ(z0) +

1

2π

∫
∂Ω

µ(z)Im

{
dz

z − z0

}
= f(z0), z0 ∈ ∂Ω, (5)

where Im denotes the imaginary part. Note that the density is still real. When
(5) has been solved for µ the solution in Ω can be computed via

U(z0) =
1

2π

∫
∂Ω

µ(z)Im

{
dz

z − z0

}
, z0 ∈ Ω. (6)

1) : Confirm that the real and complex equations indeed are equivalent, for
example by parameterizing both equations and comparing the results.
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We will use complex representations here. The equations generally turn out
more compact that way, and simpler to program. Furthermore, it is easier to
handle your next task in the complex plane. Suppose that the boundary ∂Ω has
the parameterization z(t) for t ∈ [a, b]. The integral equation (5) then becomes

1

2
µ(z(s)) +

1

2π

∫ b

a

µ(z(t))Im

{
z′(t)

z(t)− z(s)

}
dt = f(z(s)), s ∈ [a, b], (7)

and it seems that we may have a problem for t = s, that there is a singularity
in the integrand there. It turns out that we are fine, though. For smooth z(t),
the limit

lim
h→0

Im

{
z′(t)

z(t)− z(t+ h)

}
(8)

exists.

2) : Compute the limit (8) in terms of derivatives of z(t). Use Taylor expan-
sions and remember that you are dealing with complex valued functions.

To solve (7) we need to evaluate integrals numerically, and we will use the
trapezoidal rule. For periodic and smooth integrands the trapezoidal rule has
very nice convergence properties. Using Nyström discretization/method, you
are now in a position to solve Laplace’s equation. As for what domain to use,
any smooth, reasonably well behaved one can be tried. Circles and such may
be too boring, though, and a parametrization for a somewhat more interesting
five-armed starfish domain is

z(t) = (1 + 0.3 cos(5t)) eit, t ∈ [0, 2π] (9)

Furthermore, we would like to choose the boundary conditions in such a way
that we know the correct solution for comparisons. For this we may use

f(z) = Im

{
1

z − zp

}
, z ∈ ∂Ω, (10)

where zp is not in Ω. As a function of two real variables, if z = x + iy and
zp = xp + iyp, the function f is

f(x, y) = − y − yp
(x− xp)2 + (y − yp)2

. (11)

3) : If (10) is used as right hand side what will U(z), z ∈ Ω be and why?

4) : Use the parameterization of the five-armed starfish domain, and use
Nyström discretization to set up a linear equation system for solving (5)
with the right hand side as in 10, not forgetting the diagonal elements you
computed the limits for. Solve it using Gaussian elimination and use the
discrete density to compute the solution at points along a line from the
center of the starfish to the tip of one of its arms. Compare with the known
solution. What happens and why? Try different numbers of discretization
points.
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5) : Compute the condition number of the system matrix for increasing
numbers of discretization points and plot them. What is the difference in
behaviour compared to finite difference schemes? Also, plot the eigenvalues
of the matrix for increasing numbers of discretization points. What does this
suggest regarding the nature of the integral operator?

6) : Solve the linear system to full accuracy using Matlab’s in-built iterative
solver gmres for increasing numbers of discretization points. What happens
in terms of iterations required and what does this mean for the asymptotic
time complexity of the solver? What would happen in this regard if the fast
multipole method was employed?
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