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Homework/Lab 3 
Due April 17.   

A consolidation model 
An aqueous suspension of small particles, heavier than water, is 
left undisturbed under the influence of gravity. The falling 
particles experience flow resistance, more the higher their 
concentration. 
Let the concentration be φ(x,t),[-], 0 < φ < 1. When φ  = 1 the 
particles form an impermeable continuum. The liquid pressure 
is p [Pa] and the solids velocity u [m/s]. Then, with  
g = gravitational acceleration [m/s2] and Δρ = density 
difference [kg/m3] between water and solids, 
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Comments:  

• You would expect a minus sign in the Darcy law; but there is more than meets 
the eye here, the model has to take also the fluid velocity into account, and the 
final result after elimination of the fluid velocity is then … this. 

• The model neglects contact forces between particles. This may be reasonable 
for sand but is certainly not for colloidal suspensions, or surface active 
particles. 

 
Viscosity µ [Nm/s] and Darcy coefficient D […] depend strongly on concentration. 
For simplification we will use a constant µ and variable D. Elimination of p leads to 
the system 
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where the flux in the conservation law is determined from φ through the elliptic 
equation. The boundary conditions are u(0) = u(1) = 0. The single characteristic of the 
hyperbolic equation runs parallel to the boundary, so φ should not need boundary 
conditions. l is small ( << 1) for most materials. 
 
Your task is to write a simulator for the process. The elliptic equation is discretized by 
second order accurate central differences.  
To define a suitable scheme for the hyperbolic equation, consider the limiting case  
l = 0, a scalar non-linear conservation law with flux function f, 
 )()(,0 2 !"!!! Dff xt #==+                               (B) 
so we can set α = 1 by choosing the time-scale. 
 
A physically reasonable D for (B) should satisfy the conditions  

• D(1) = 0, impermeable at close packing 
• All 0 <= φ < 1 give finite, positive fall velocity φD 
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1. Taking 0,)1(1 >!=
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b""  satisfies some of the above. b = 1 gives 
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so the characteristic changes sign (at φ = 1/2). It follows that a symmetric scheme like 
the Lax-Friedrichs scheme is preferable.  
1 a) Implement this for model (A). Take α = 1. 
1 b) Find the stability limit for the time step 

• for small perturbations around u = U, φ = Φ (What relation between U and 
Φ?) 

• by numerical experiments 
1 c) Take l = 0.1, 0.01, and if you have patience, 0.001. How many cells are necessary 
to obtain a good solution? Please describe how you determine the “goodness” of a 
solution.  (We shall return to this model later and develop a High-Resolution scheme 
which will be much less dissipative, so does not need so many cells.) 
 
Exercise 1 c) should convince you of the efficiency of taking l = 0. However, then the 
solution may develop shocks which we must deal with.  
Note: It was an open question for a considerable time if (A) can develop shocks, but it was finally 
proved by K.Gustavsson and B.Sjogreen in 2003 that it cannot. 
 
2. Implement the classical Godunov’s method for (B).  
2 a) Derive the formulas for an exact Riemann solver. For b = 1 the solution is a 
shock or an expansion wave. Use the properties of f in the manner of L p 228-229 to 
help develop the solution. The shock is easy: only the sign of the shock speed is 

needed (Why?). For the wave use the similarity solution 
t
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2 b) What values of b comply with the conditions above? Why is b = 1 special and 
simple? Hint: consider the convexity of f i.e. the monotonicity of f '. Also compare to 
the shallow water equations of Lab 2. 
 
For (B) the issue of boundary conditions has to be considered again. Why? Hint: 
Charcteristics. At x = 1 we set φ = 0. Try c) and d) at x = 0: 
2 c) Set outflow conditions (see L Ch 7). Is this a well posed problem? 
2 d) Propose a condition that will allow φ(0,t) to grow (in its own fashion) from its 
initial value, approaching 1 only in the long time limit. Hint: The flux is zero. 

2 e) Check the conservation of φ: 0)),((
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" . Propose a discrete counterpart, 

prove that it is conserved by the Godunov scheme, and verify by simulation. 
 
 
  


