
Multigrid notes and lab, 2D1255 Spring ‘07
JOp p. 1(5)

Multigrid for Poisson’s Equation
(Inspired by Ch x in “Computational Electromagnetics”, Bondeson & al., Springer)

The task is to compute the capacitance per
unit length of a wave-quide with an outer
conductor and an inner. We compute the
potential as the solution to Laplace’s
equation over the annular domain between
them, with Dirichlet conditions, V = 1 on the
inner (G1) and V = 0 on the outer (G0).
Then, the capacitance is
 !

"

#$= dsVC n

with Γ any closed curve encircling the inner
conductor, like the dashed curve.

The unit square is discretized by an n x n grid, Δx = Δy = 1/(n-1), and we propose to
solve the discretized equations by explicit time-stepping:

!

"V

"t
=
"2V

"x2
+
"2V

"x2
,(x, y)# G

V =
0,(x, y)# G0

1,(x, y)# G1

$
%
&

'

for k = 0,1,...

 for i,j = 2,...,n (1

 Vij
(k+1)

= Vij
(k+1)

+
)t

)x2
*ij Vi, j+1

(k)
+ Vi, j(1

(k)
+ Vi+1, j

(k)
+ Vi(1, j

(k) (4Vi, j
(k)+

,
- .

/
0

 end

end

*ij =
0,(i, j)# G01G1

**, elsewhere

$
%
&

with initial values

Vij
(0)

=
0, (i, j)# G01G

1, (i, j)# G1

$
%
&

Notes
1. The gridpoints with ω = 0 are unchanged
2. ω* = const. recovers the explicit time stepping scheme; ω* < 1/4 is necessary for
stability (see below)
3. The boundary conditions are approximated with O(Δx) error, since the boundary
may be Δx from G0 and G1.
4. The central difference approximation to the Laplace operator is second order
accurate.
5. G0 includes the outermost gridpoint layers (i = 1 and n, j = 1 and n)

G0

G1

G

Multigrid notes and lab, 2D1255 Spring ‘07
JOp p. 2(5)

How many steps are necessary to obtain an accurate solution?
The answer is produced most expeditiously by Fourier analysis. In order to illustrate
with simpler formulas we consider the 1D problem with solution u = 0,

!

ut = uxx ,u(0) = u(1) = 0

u(x,0) = f (x)"

for k = 0,1,...

 u j
k+1

= u j
k+1

+#
$t

$x2
u j%1

k % 2u j
k

+ u j+1
k&

'
()

*
+ , j =1,..., n %1

end

$x =1/n,u j
0

= f (j$x),, =#
$t

$x2

where the initial guess is u = f(x) and we have defined the “Courant number” σ.
By separation of variables, the solution uj can be written as a linear combination of
exponential functions,

!

u j
k

= ! u m
kWn

mj

m=0

n"1

,Wn = e

2$i

n , j = 0,1,..,n

the Discrete Fourier Transform. Let us see what happens to one of the exponentials,
say

!

u j = ! u exp i"x j(), j = 0,1,..,n;

u j#1 # 2u j + u j+1 = ... = (2cos"$x # 2)u j

so

!

! u
(k+1)

= G(" ,#) ! u
(k) ,G = (1+" (2cos# $ 2)),# = %&x

which defines the “von Neumann amplification factor” G for the wave-number ξ,
which has phase-shift per cell θ.
For the boundary conditions here, u(0) = u(1) = 0, the smallest θ is π/n, and the largest
is π. So, we have

!

1" 4# $G $1"#
%

n

&

'
(

)

*
+

2

,# =,
-t

-x
2

It is clear that
1. σ < 1/2 is necessary for the iteration to decrease all the harmonics. Then

!

max G "1#
$

n

%

&
'

(

)
*

2

(*)

For the 2D case the condition is σ < ¼.
Exercise: Prove!

2. The smooth, long-wavelength harmonics with small θ are damped much more
slowly than the oscillatory, short-wavelength ones.

The number of steps N to reduce all harmonics (initially assumed to have amplitude
O(1)) to an amplitude d is given by

Multigrid notes and lab, 2D1255 Spring ‘07
JOp p. 3(5)

 GN < d or

!

N >
ln d

ln(1"
#2

n
2

)

$ n
2 " ln d

#2

so the iteration is extremely slow for large n. It is the
 smooth components, say with θ < π/2,
which are responsible for the slow convergence, whereas the
 oscillatory components with θ > π/2,
are quickly damped.
This is where the multi-grid idea enters: The time-stepping is efficient at reducing the
short harmonics (θ > π/2) if σ < 1/2. But the long harmonics can be well represented
on a coarser grid on which they will appear more oscillatory. Indeed, half of them will
be oscillatory according to the definition.
So the following is a natural attempt at a two-grid iteration to solve Au + f = 0 where
A corresponds to an elliptic operator like the Laplace operator, with all negative
eigenvalues.
Indeed, we have
 vTAv ≤ -µvTv
and µ = π2/n2 in the above 1D example.

0. v = 0 - take a better initial guess if it exists
1. Run N1 timesteps (= iterations) v = v + α(Av + f). This reduces the oscillatory
components of the residual r = Av–f :
 even if the solution u is oscillatory due to oscillatory f !!
2. Solve the correction equation Ae = r on a coarser grid:
 restrict r onto rC;
 (*) solve ACeC = rC;
3. Interpolate (prolong) the coarse correction eC onto the fine grid as e;
 correct v: v = v + e;
If not converged, goto 1.

When the exact solve step (*) is replaced by an approximate iterative solution by
recursive use of even coarser grids the multi-grid V-cycle algorithm appears (Briggs
p. 48) on a hierarchy of grids which we label 0 for finest and lmax for coarsest. The
grids here will be obtained by successively doubling the mesh-width, and the number
of gridpoints on the finest level (2M + 1) is such that all gridpoints on level m appear
also on all finer levels.

There remains to define the restriction and prolongation operators, and how to
construct the matrix AC from A, generally, how to construct A for a given grid level.
At least two ideas come to mind,
1. set A = difference approximation to d2/dx2 on the current grid, ie.

!

A =
1

"x2

#2 1 0 ... 0

1 #2 1 ... 0

0 1 #2 ... 0

...

0 ... 0 1 #2

$

%

&
&
&
&
&
&

'

(

)
)
)
)
)
)

, f =

f (x1)

f (x2)

f (x3)

...

f (xn#1)

$

%

&
&
&
&
&
&

'

(

)
)
)
)
)
)

Multigrid notes and lab, 2D1255 Spring ‘07
JOp p. 4(5)

This requires computation to set up AC from A. If we multiply the equations by ∆x2
the matrices look the same on all grid levels, but the right-hand side f has to be scaled:

!

A =

"2 1 0 ... 0

1 "2 1 ... 0

0 1 "2 ... 0

...

0 ... 0 1 "2

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

, f =)x2

f (x1)

f (x2)

f (x3)

...

f (xn"1)

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

The intergrid transfer operators are defined next (see Briggs). The prolongation from
stepsise 2h to h will be done by linear interpolation, and the restriction can be done by
simple injection, or by the Galerkin construction. The gridlevels are denoted by
superscripts and component numbers are subscripts,

!

Prolong, I2h
h :

v2 j
h := v j

2h

v2 j+1
h :=

1

2
(v j

2h
+ v j+1

2h)

"

$

%
$

, Restrict, Ih
2h : v j

2h := v2 j
h

!

I
2h

h
= Pn = 0.5

2 0 0 ...

1 1 0 ...

0 2 0 ...

0 1 1 ...

0 0 2 ...

0 0 1 ...

...

0 0 ... 2

"

$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'

, n ((n +1) / 2,

I
h

2h
= R(n+1) / 2 =

Injection :

1 0 0 0 0 ... 0

0 0 1 0 0 ... 0

0 0 0 0 1 ... 0

0 0 0 0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

,(n +1) / 2 (n

Galerkin : 0.5Pn
T

)

*

+
+ +

,

+
+
+

The Galerkin restriction is also called “full weighting”. The recipes for constructing
AC from A may be explained as follows:
Find an approximate solution to Au + f = 0 in the subspace u = Pv, i.e., with u a
linear interpolant to a coarse grid function, such that the restriction of the residual
vanishes:
 RAPv + Rf = 0
With R as injection, we simply pick every second of the equations. The Galerkin
recipe is symmetric,
 PTAPv + PTf = 0

Multigrid notes and lab, 2D1255 Spring ‘07
JOp p. 5(5)

If A is a symmetric definite matrix (such as the Laplace matrix) the Galerkin v is the
best in the sense of minimizing the “energy error” (v–u)TA(v–u) over the subspace P.
This property enables error estimates. Note, however, that the MG never solves the
equation exactly on any grid, so the benefit in actual computation may be limited.

Exercise: Prove that for the Laplace matrix in 2D, the three variants:
 i) Difference approximation on the current grid
 ii) Restriction as Injection
 ii) Restriction as full weighting
give the same matrices (possibly with different scalings)

The MG algorithm needs a simple interface to the difference equations. The scheme
requires no coefficient matrices, only an evaluation of the difference equations for a
candidate solution v on a grid hierarchy.

1. A basic iterative smoother for the residual v(n+1) := smooth(v(n))
2. The residual r = Av+f itself

When the basic smoother is a time-stepper,

!

v
(n+1)

= S(v
(n)), S(x) = x +"r,

r(x) = Ax + f ;

Qr(x) = (S(x) # x) /"

we may choose S as the only interface. α is called the relaxation parameter.

The lab. represents the solutions etc. as 2D arrays. Let U be m x n. A few notes:
• The Laplace operator may be evaluated by matrix multiplication without BIG
matrices:

!

"5U =
1

"x2
TmU +

1

"y2
UTn, Tk =

#2 1 0 ... 0

1 #2 1 ... 0

0 1 #2 ... 0

...

0 ... 0 1 #2

$

%

&
&
&
&
&
&

'

(

)
)
)
)
)
)

, k * k

• A matlab implementation can use diff(U,n,k) which computes the n:th order
differences along direction k, the array diff(U,2,1) is (m–2) x n and
diff(U,2,2) is m x (n–2).

