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Multigrid for Poisson’s Equation 
(Inspired by Ch x in “Computational Electromagnetics”, Bondeson & al., Springer) 
 
The task is to compute the capacitance per 
unit length of a wave-quide with an outer 
conductor and an inner. We compute the 
potential as the solution to Laplace’s 
equation over the annular domain between 
them, with Dirichlet conditions, V = 1 on the 
inner (G1) and V = 0 on the outer (G0). 
Then, the capacitance is 
 !

"

#$= dsVC n  

with Γ any closed curve encircling the inner 
conductor, like the dashed curve. 
 
The unit square is discretized by an n x n grid, Δx = Δy = 1/(n-1), and we propose to 
solve the discretized equations by explicit time-stepping: 
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Notes 
1. The gridpoints with ω = 0 are unchanged 
2. ω* = const. recovers the explicit time stepping scheme; ω* < 1/4 is necessary for 
stability (see below) 
3. The boundary conditions are approximated with O(Δx) error, since the boundary 
may be Δx from G0 and G1. 
4. The central difference approximation to the Laplace operator is second order 
accurate. 
5. G0 includes the outermost gridpoint layers (i = 1 and n, j = 1 and n) 
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How many steps are necessary to obtain an accurate solution? 
The answer is produced most expeditiously by Fourier analysis. In order to illustrate 
with simpler formulas we consider the 1D problem with solution u = 0, 
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where the initial guess is u = f(x) and we have defined the “Courant number” σ. 
By separation of variables, the solution uj can be written as a linear combination of 
exponential functions, 
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the Discrete Fourier Transform. Let us see what happens to one of the exponentials, 
say  
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u j = ! u exp i"x j( ), j = 0,1,..,n;

u j#1 # 2u j + u j+1 = ... = (2cos"$x # 2)u j
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which defines the “von Neumann amplification factor” G for the wave-number ξ, 
which has phase-shift per cell θ. 
For the boundary conditions here, u(0) = u(1) = 0, the smallest θ is π/n, and the largest 
is π. So, we have 
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It is clear that  
1. σ < 1/2 is necessary for the iteration to decrease all the harmonics. Then  
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For the 2D case the condition is σ < ¼. 
Exercise: Prove! 
 
2. The smooth, long-wavelength harmonics with small θ are damped much more 
slowly than the oscillatory, short-wavelength ones. 
  
The number of steps N to reduce all harmonics (initially assumed to have amplitude 
O(1)) to an amplitude d is given by 
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so the iteration is extremely slow for large n. It is the  
 smooth components, say with θ < π/2,  
which are responsible for the slow convergence, whereas the  
 oscillatory components with  θ > π/2, 
are quickly damped. 
This is where the multi-grid idea enters: The time-stepping is efficient at reducing the 
short harmonics (θ > π/2) if σ < 1/2. But the long harmonics can be well represented 
on a coarser grid on which they will appear more oscillatory. Indeed, half of them will 
be oscillatory according to the definition.  
So the following is a natural attempt at a two-grid iteration to solve Au + f = 0 where 
A corresponds to an elliptic operator like the Laplace operator, with all negative 
eigenvalues.  
Indeed, we have  
 vTAv ≤ -µvTv 
and µ = π2/n2 in the above 1D example. 
 
0. v = 0 - take a better initial guess if it exists 
1. Run N1 timesteps (= iterations) v = v + α(Av + f). This reduces the oscillatory 
components of the residual r = Av–f :  
 even if the solution u is oscillatory due to oscillatory f !! 
2. Solve the correction equation Ae = r on a coarser grid: 
 restrict r onto rC;  
           (*) solve ACeC = rC; 
3. Interpolate (prolong) the coarse correction eC onto the fine grid as e; 
   correct v: v = v + e; 
If not converged, goto 1. 
 
 
When the exact solve step (*) is replaced by an approximate iterative solution by 
recursive use of even coarser grids the multi-grid V-cycle algorithm appears (Briggs 
p. 48) on a hierarchy of grids which we label 0 for finest and  lmax for coarsest. The 
grids here will be obtained by successively doubling the mesh-width, and the number 
of gridpoints on the finest level (2M + 1) is such that all gridpoints on level m appear 
also on all finer levels. 
 
There remains to define the restriction and prolongation operators, and how to 
construct the matrix AC from A, generally, how to construct A for a given grid level. 
At least two ideas come to mind,  
1. set A = difference approximation to d2/dx2 on the current grid, ie.  
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This requires computation to set up AC from A. If we multiply the equations by ∆x2 
the matrices look the same on all grid levels, but the right-hand side f has to be scaled: 
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The intergrid transfer operators are defined next (see Briggs). The prolongation from 
stepsise 2h to h will be done by linear interpolation, and the restriction can be done by 
simple injection, or by the Galerkin construction. The gridlevels are denoted by 
superscripts and component numbers are subscripts, 
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The Galerkin restriction is also called “full weighting”. The recipes for constructing 
AC from A  may be explained as follows: 
Find an approximate solution to Au + f = 0 in the subspace u = Pv, i.e., with u a 
linear interpolant to a coarse grid function, such that the restriction of the residual 
vanishes: 
 RAPv + Rf = 0 
With R as injection, we simply pick every second of the equations. The Galerkin 
recipe is symmetric, 
 PTAPv + PTf = 0 
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If A is a symmetric definite matrix (such as the Laplace matrix) the Galerkin v is the 
best in the sense of minimizing the “energy error” (v–u)TA(v–u) over the subspace P. 
This property enables error estimates. Note, however, that the MG never solves the 
equation exactly on any grid, so the benefit in actual computation may be limited. 
 
Exercise: Prove that for the Laplace matrix in 2D, the three variants: 
 i) Difference approximation on the current grid  
 ii) Restriction as Injection 
 ii) Restriction as full weighting 
give the same matrices (possibly with different scalings) 
 
The MG algorithm needs a simple interface to the difference equations. The scheme 
requires no coefficient matrices, only an evaluation of the difference equations for a 
candidate solution v on a grid hierarchy. 
 
1. A basic iterative smoother for the residual v(n+1) := smooth(v(n)) 
2. The residual r = Av+f itself  
 
When the basic smoother is a time-stepper, 
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we may choose S as the only interface. α is called the relaxation parameter.  
 
The lab. represents the solutions etc. as 2D arrays. Let U be m x n. A few notes: 
• The Laplace operator may be evaluated by matrix multiplication without BIG 
matrices: 
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• A matlab implementation can use diff(U,n,k) which computes the n:th order 
differences along direction k,  the array diff(U,2,1) is (m–2) x n and 
diff(U,2,2) is m x (n–2). 
 


