Re: Lab 3, $D(\phi)$, Conservation, etc.

1. The model considers ϕ , the volume fraction solids, so $0 < \phi < 1$ is assumed. This is guaranteed by the conservation law (1B),

$$\phi_t + (\phi^1 (1 - \phi)^b)_x = 0$$

which gives total variation, $TV(\phi)$, = const., but NOT by (1A). For (1A),

$$\frac{D\phi}{Dt} = \phi_t + u(x)\phi_x = -\phi u_x \neq 0$$

so the total variation is not constant. You will see $\phi > 1$ at the shock between clear fluid $\phi = 0$ and $\phi = 1$ at the bottom, and that is what the equation gives but not what a complete model should do. It happens because the model is simplified, and the interparticle forces have been left out: they become large when ϕ grows close to 1 (close packing) to prevent $\phi > 1$.

Now, D should always be non-negative, so you should for instance take

 $D(\min(1, \max(0, \phi)))$

to give a reasonable fix to the problem.

2. For the Riemann solver, the recipe on L. p xxx can be used. I would encourage you to convince yourself that this is consistent with the characteristics.

The expansion wave comes out like this: Let the discontinuity be at x = 0. Then the similarity solution q(x,t) = C(x/t), $x/t = \xi$ to the Riemann problem for the conservation law $q_t + (f(q))_x = 0$ is

$$C'(\xi) \cdot \frac{-x}{t^2} + f'(C) \cdot C'(\xi) \cdot \frac{1}{t} = 0 \Longrightarrow \begin{cases} C' = 0\\ \xi = f'(C(\xi)) \end{cases}$$

Now, the solution C' = 0 gives $Q^{\text{Riemann}} = Q_{\text{left}}$ or Q_{right} . Q^{Riemann} in the transonic expansion wave is given by $C(0) = Q^{\text{Riemann}}$, 0 = f'(C(0)). i.e., the minimizer, if f'' > 0.

3. Conservation in 1A.

The flux function is $u\phi$ to be evaluated at $x_{i+1/2}$. With the placement of gridpoints below the proper boundary condition for u is $1/2(u_1+u_0) = 0$

	Wall					
u0	I	ul		u2	u3	
Q0	I	Q1		Q2	Q3	•••
0	x	-0	x	-0x		-xo
	I					
	x=0	.5h	1h	1.5h 2h	2.5h	
	x0		x1	x2		x3
	F1/2		F3/2	F5/2		

The flux at x = 0 is 0, and $f = u\phi$ satisfies this, of course. The Lax-Friedrichs flux function is not just *f*, but (see L p xxx)

$$F_{i-1/2} = \frac{1}{2} (f(Q_i) + f(Q_{i-1})) + \frac{\Delta x}{\Delta t} (Q_i - Q_{i-1})$$

so $F_{1/2} = \frac{1}{2}(u_1\phi_1 + \underbrace{u_0}_{-u_1}\phi_0) + \frac{\Delta x}{\Delta t}(\phi_1 - \phi_0)$ and the "reflection" $\phi_0 := \phi_1$ works. But if

the *u*-gridpoints are positioned differently, another formula for the ghost point value must be used.

Hints Lab 3 April 2007 2D1255 p 2 (2)