Hints Lab 3 April 2007 2D1255 p 1 (2)

Re: Lab 3, $\boldsymbol{D}(\phi)$, Conservation, etc.

1. The model considers ϕ, the volume fraction solids, so $0<\phi<1$ is assumed.

This is guaranteed by the conservation law (1B),

$$
\phi_{t}+\left(\phi^{1}(1-\phi)^{b}\right)_{x}=0
$$

which gives total variation, $\mathrm{TV}(\phi),=$ const., but NOT by (1A).
For (1A),

$$
\frac{D \phi}{D t}=\phi_{t}+u(x) \phi_{x}=-\phi u_{x} \neq 0
$$

so the total variation is not constant. You will see $\phi>1$ at the shock between clear fluid $\phi=0$ and $\phi=1$ at the bottom, and that is what the equation gives but not what a complete model should do. It happens because the model is simplified, and the interparticle forces have been left out: they become large when ϕ grows close to 1 (close packing) to prevent $\phi>1$.
Now, D should always be non-negative, so you should for instance take

$$
D(\min (1, \max (0, \phi)))
$$

to give a reasonable fix to the problem.
2. For the Riemann solver, the recipe on L. p xxx can be used. I would encourage you to convince yourself that this is consistent with the characteristics.
The expansion wave comes out like this: Let the discontinuity be at $x=0$. Then the similarity solution $q(x, t)=C(x / t), x / t=\xi$ to the Riemann problem for the conservation law $q_{t}+(f(q))_{x}=0$ is

$$
C^{\prime}(\xi) \cdot \frac{-x}{t^{2}}+f^{\prime}(C) \cdot C^{\prime}(\xi) \cdot \frac{1}{t}=0 \Rightarrow\left\{\begin{array}{c}
C^{\prime}=0 \\
\xi=f^{\prime}(C(\xi))
\end{array}\right.
$$

Now, the solution $C^{\prime}=0$ gives $Q^{\text {Riemann }}=Q_{\text {left }}$ or $Q_{\text {right. }} Q^{\text {Riemann }}$ in the transonic expansion wave is given by $C(0)=Q^{\text {Riemann }}, 0=f^{\prime}(C(0))$. i.e., the minimizer, if $f^{\prime \prime}>0$.

3. Conservation in 1A.

The flux function is $u \phi$ to be evaluated at $x_{i+1 / 2}$. With the placement of gridpoints below the proper boundary condition for u is $1 / 2\left(u_{1}+u_{0}\right)=0$

u0	I	u1		u2		u3	
Q0	I	Q1		Q2		Q3	
	I	-					
	$x=0$. 5 h	1h	1.5h	2h	2.5h	
	x 0		x1		x 2		x3
	F1/2		F3/2		F5/2		

The flux at $x=0$ is 0 , and $f=u \phi$ satisfies this, of course. The Lax-Friedrichs flux function is not just f, but (see L p xxx)

$$
F_{i-1 / 2}=\frac{1}{2}\left(f\left(Q_{i}\right)+f\left(Q_{i-1}\right)\right)+\frac{\Delta x}{\Delta t}\left(Q_{i}-Q_{i-1}\right)
$$

so $F_{1 / 2}=\frac{1}{2}(u_{1} \phi_{1}+\underbrace{u_{0}}_{-u_{1}} \phi_{0})+\frac{\Delta x}{\Delta t}\left(\phi_{1}-\phi_{0}\right)$ and the "reflection" $\phi_{0}:=\phi_{1}$ works. But if
the u-gridpoints are positioned differently, another formula for the ghost point value must be used.

Hints Lab 3 April 2007 2D1255 p 2 (2)

