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Science

Function space

A vector space can be constructed with functions (a set of polynomials on a domain  for example) as vectors,
where function addition and scalar multiplication satisfies the requirements for a vector space.

We can also define an inner product space with the L2 inner product defined as:

The inner product generates the norm:

Just like in  we define orthogonality between two vectors as:

[Polynomial space]

[Piecewise polynomials]
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Polynomial interpolation

We can construct an interpolant  of the function  by requiring that:

Assume that  has  continuous derivatives in  and let  interpolate  at the points
. Then for :

L2 (orthogonal) projection

An L2 projection  is a projection of a function  in the function space A to the function space B. We can
think of this problem as solving the equation:

However, since Pf and f belong to different function spaces, the residual  can in general not be zero.
The best we can hope for is that  is orthogonal to B, which means solving the equation:

The  projection is the best possible approximation

The orthogonality condition means that  is the best possible approximation in B, i.e. we cannot pick an
object  which is a better approximation that  in the  norm:

 projection error estimate

Since , we can choose  which gives:

i.e. we can use an interpolation error estimate since it bounds the projection error.

To compute the L2 projection we want to solve the equation: . We identify the terms
with u and v as bilinear forms:  and the terms with only v as linear forms: .

We can thus define the representation of the equation in FEniCS as:

u = TrialFunction(element)
v = TestFunction(element)

a = (u * v) * dx
L = (f * v) * dx

Construct discrete functions and compute functionals. Compute an  projection of a given function and
compute the functional (norm) .

A form without u and v is identified as  (a functional), and can be used to compute a norm of a known
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function for example:

u = TrialFunction(element)
v = TestFunction(element)

M = (f * f) * dx

Assembly:

A form q is assembled by:

T = assemble(q, mesh)

This is the same basic algorithm for assembling a matrix (from a bilinear form), vector (from a linear form)
or scalar (from a functional).

Vector indexing:

You can get and set values of a vector by a standard bracket notation:

a = x[3]
x[4] = a + 4

You should now be familiar with:

L2 inner product
interpolation
L2 projection
Mesh size function 

CDE: 5.7, 5.8, 5.14, 5.17, 5.1/5.21

Problem

We let  denote the set of polynomials  of degree at most  on an interval , where the

 are called the coefficients of . We recall that two polynomials  and  may be added to give a
polynomial  defined by  and a polynomial  may be multiplied by a scalar  to
give a polynomial  defined by . Similarly,  satisfies all the requirements to be a vector
space where each ``vector is a particular polynomial function .

Prove this claim.

Problem

Compute formulas for the linear interpolant of a continuous function f through the points a and (b + a)/2.
Plot the corresponding Lagrange basis functions.

Problem

Write down the polynomial of degree 3 that interpolates  at , and , and
plot  and sin on .
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1.1

Construct linear Lagrange basis functions with the nodes in the vertices on a tetrahedron in 3D.

1.2

Using FEniCS:

Compute the L2 projection Pf of a function f (a trigonometric function for example) in 1D or 2D on a space of
piecewise linear polynomials with just a few points. Compute the L2 norm of the error  as a

functional in FEniCS. Try to choose better values of the coefficients  in . Are you able to reduce

the error?

Note: Expressions with f will be integrated with quadrature (f is represented as a finite element function on
each cell). Choose a higher order representation for f to remove the effect of the quadrature error on the
result, i.e.:

element2 = FiniteElement("Lagrange", "triangle", 2)
f = Source(element2, mesh)

represents f as a quadratic rather than linear function when integrating.

Polynomial space
Piecewise polynomials
Software part
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