FEM09

•

Johan Jansson

jjan@csc.kth.se

CSC KTH

Course overview

- Science differential equations
- Function approximation using polynomials
- Galerkin's method (finite element method)
- Assembly of discrete systems
- Error estimation
- Mesh operations
- Stability

۲

Existence and uniqueness of solutions

Course structure

- Course divided into self-contained modules (from preceding slide)
- Module:

۲

- Theory
- Software
- Write report (theory + software)

Science - modeling

۲

Science: modeling (formulating equations) + computation (solving equations)

- Model natural laws (primarily) in terms of differential equations
- Partial differential equation (PDE):

$$A(u(x)) = f, \quad x \in \Omega$$

• • • • •

with A differential operator.

Initial value problem $u(x_0) = g$ (x is "time", $\Omega = [0, T]$) Boundary value problem u(x) = g, $x \in \Gamma$ or $(\nabla u(x)) \cdot n = g$, $x \in \Gamma$ (x is "space") Boundary value problem u(x) = g, $x \in \Gamma$ (x is "space") Initial boundary value problem Both are also possible

Science - computation

Finite Element Method (FEM): approximate solution function u as (piecewise) polynomial.

Compute coefficients by enforcing orthogonality (Galerkin's method).

Implement general algorithms for arbitrary differential equations

In this course we will use and understand a general implementation for discretizing PDE with FEM: FEniCS using the Python programming language.

•

Free software / Open source implementations

Science/FEM - examples

•

Newton's 2nd law: $F = ma, u = (u_1, u_2)$:

$$\dot{u_1}(t) = u_2(t)$$

 $\dot{u_2}(t) = F(u(t))$
 $u(0) = u_0, \quad t \in [0, T]$

Science/FEM - examples

Incompressible Navier-Stokes

Elasticity - solid mechanics

$$\dot{u} + u \cdot \nabla u - \nu \Delta u + \nabla p = f$$

 $\nabla \cdot u = 0$

$$\dot{u} + \nabla \cdot \sigma \quad = \quad f$$

• • • • • • • • •

Polynomial approximation

Systematic method for computing approximate solutions:

We seek polynomial approximations U to u.

A vector space can be constructed with set of polynomials on domain (a, b) as basis vectors, where function addition and scalar multiplication satisfy the requirements for a vector space.

We can also define an inner product space with the L_2 inner product defined as:

$$(f,g)_{L_2} = \int_{\Omega} f(x)g(x)dx$$

Polynomial approximation

۲

The L_2 inner product generates the L_2 norm:

$$||f||_{L_2} = \sqrt{(f,f)_{L_2}}$$

Just like in R^d we define orthogonality between two vectors as:

$$(f,g)_{L_2} = 0$$

We also have Cauchy-Schwartz inequality:

 $|(f,g)_{L_2}| \le ||f||_{L_2} ||g||_{L_2}$

Basis

۲

We call our polynomial vector space $V^q = P^q(a, b)$ consisting of polynomials:

$$p(x) = \sum_{i=0}^{q} c_i x^i$$

One basis is the monomials: $\{1, x, ..., x^q\}$

Equation

۲

What do we mean by equation?

We define the *residual* function R(U) as: R(U) = A(U) - f

We can thus define an *equation* with exact solution u as: R(u) = 0

Galerkin's method

We seek a solution U in finite element vector space V^q of the form:

$$U(x) = \sum_{j=1}^{M} \xi_j \phi_j(x)$$

We require the residual to be orthogonal to V^q :

$$(R(U), v) = 0, \forall v \in V^q$$

Appendix

•

• • • • • • • • •

Example - heat equation

Thin wire occupying $x \in [0, 1]$ heated by a heat source f(x).

We seek stationary temperature u(x).

Let q(x) be heat flux along positive x-axis.

Conservation of energy in arbitrary sub-interval:

$$q(x_2) - q(x_1) = \int_{x_1}^{x_2} f(x) \, dx.$$

Fundamental theorem of calculus:

$$q(x_2) - q(x_1) = \int_{x_1}^{x_2} q'(x) \, dx,$$

Together:

۲

$$\int_{x_1}^{x_2} q'(x) \, dx = \int_{x_1}^{x_2} f(x) \, dx.$$

Since the sub-interval is arbitrary:

$$q'(x) = f(x)$$
 for $0 < x < 1$,

Example - heat equation

Constitutive law - Fourier's law:

•

$$q(x) = -a(x)u'(x),$$

Inserting gives the heat equation:

$$-(a(x)u'(x))' = f(x)$$
 for $0 < x < 1$.

Lagrange (nodal) Basis

۲

We will use the Lagrange basis: $\{\lambda_i\}_{i=0}^q\}$ associated to the distinct points $\xi_0 < \xi_1 < ... < \xi_q$ in (a, b), determined by the requirement that $\lambda_i(\xi_j) = 1$ if i = j and 0 otherwise.

$$\lambda_{i}(x) = \prod_{j \neq i} \frac{x - \xi_{j}}{\xi_{i} - \xi_{j}}$$
$$\lambda_{0}(x) = (x - \xi_{1})(\xi_{0} - \xi_{1})$$
$$\lambda_{1}(x) = (x - \xi_{0})/(\xi_{1} - \xi_{0})$$

Polynomial interpolation

We assume that f is continuous on [a, b] and choose distinct interpolation nodes $a \leq \xi_0 < \xi_1 < \cdots < \xi_q \leq b$ and define a polynomial interpolant $\pi_q f \in \mathcal{P}^q(a, b)$, that interpolates f(x) at the nodes $\{\xi_i\}$ by requiring that $\pi_q f$ take the same values as fat the nodes, i.e. $\pi_q f(\xi_i) = f(\xi_i)$ for i = 0, ..., q. Using the Lagrange basis corresponding to the ξ_i , we can express $\pi_q f$ using "Lagrange's formula":

 $\pi_q f(x) = f(\xi_0)\lambda_0(x) + f(\xi_1)\lambda_1(x) + \dots + f(\xi_q)\lambda_q(x) \quad \text{for } a \le x \le b$

Interpolation error

Mean value theorem:

$$f(x) = f(\xi_0) + f'(\eta)(x - \xi_0) = \pi_0 f(x) + f'(\eta)(x - \xi_0)$$

for some η between ξ_0 and x, so that

$$|f(x) - \pi_0 f(x)| \le |x - \xi_0| \max_{[a,b]} |f'|$$
 for all $a \le x \le b$

Giving:

•

$$||f - \pi_0 f||_{L_2(a,b)} \le C_i(b-a)||f'||_{L_2(a,b)}$$

L_2 projection

۲

We seek a polynomial approximate solution $U \in P^q(a, b)$ to the equation:

$$R(u) = u - f = 0, \quad x \in (a, b)$$

where f in general is not polynomial, i.e. $f \notin P^q(a, b)$. This means R(U) can in general not be zero. The best we can hope for is that R(U) is orthogonal to $P^q(a, b)$ which means solving the equation:

$$(R(U), v)_{L_2} = (U - f, v)_{L_2} = 0, \quad x \in \Omega, \quad \forall v \in P^q(a, b)$$

Error estimate

۲

The orthogonality condition means the computed L_2 projection U is the best possible approximation of f in $P^q(a, b)$ in the L_2 norm:

$$\begin{split} \|f - U\|^2 &= (f - U, f - U) = \\ (f - U, f - v) + (f - U, v - U) = \\ [v - U \in P^q(a, b)] &= (f - U, f - v) \le \|f - U\| \|f - v\| \\ \Rightarrow \\ \|f - U\| \le \|f - v\|, \quad \forall v \in P^q(a, b) \end{split}$$

Error estimate

۲

Since $\pi f \in P^q(a, b)$, we can choose $v = \pi f$ which gives:

$$|f - U|| \le ||f - \pi f||$$

i.e. we can use an interpolation error estimate since it bounds the projection error.