
FEM09
Johan Jansson

jjan@csc.kth.se

CSC

KTH

FEM09 – p. 1

Course overview

• Science - differential equations
• Function approximation using polynomials
• Galerkin’s method (finite element method)
• Assembly of discrete systems
• Error estimation
• Mesh operations
• Stability
• Existence and uniqueness of solutions

FEM09 – p. 2

Course structure

• Course divided into self-contained modules (from preceding
slide)

• Module:
• Theory
• Software
• Write report (theory + software)

FEM09 – p. 3

Science - modeling

Science: modeling (formulating equations) + computation
(solving equations)

• Model natural laws (primarily) in terms of differential equations
• Partial differential equation (PDE):

A(u(x)) = f, x ∈ Ω

with A differential operator.
Initial value problem u(x0) = g (x is “time”, Ω = [0, T])
Boundary value problem u(x) = g, x ∈ Γ or

(∇u(x)) · n = g, x ∈ Γ (x is “space”)
Boundary value problem u(x) = g, x ∈ Γ (x is “space”)
Initial boundary value problem Both are also possible

FEM09 – p. 4

Science - computation

Finite Element Method (FEM): approximate solution function u
as (piecewise) polynomial.

Compute coefficients by enforcing orthogonality (Galerkin’s
method).

Implement general algorithms for arbitrary differential equations

In this course we will use and understand a general
implementation for discretizing PDE with FEM: FEniCS using
the Python programming language.

Free software / Open source implementations

FEM09 – p. 5

Science/FEM - examples

Newton’s 2nd law: F = ma, u = (u1, u2):

u̇1(t) = u2(t)

u̇2(t) = F (u(t))

u(0) = u0, t ∈ [0, T]

FEM09 – p. 6

Science/FEM - examples

Incompressible Navier-Stokes

u̇ + u · ∇u − ν∆u + ∇p = f

∇ · u = 0

Elasticity - solid mechanics

u̇ + ∇ · σ = f

FEM09 – p. 7

Polynomial approximation

Systematic method for computing approximate solutions:

We seek polynomial approximations U to u.

A vector space can be constructed with set of polynomials on
domain (a, b) as basis vectors, where function addition and
scalar multiplication satisfy the requirements for a vector space.

We can also define an inner product space with the L2 inner
product defined as:

(f, g)L2
=

∫

Ω
f(x)g(x)dx

FEM09 – p. 8

Polynomial approximation

The L2 inner product generates the L2 norm:

‖f‖L2
=

√

(f, f)L2

Just like in Rd we define orthogonality between two vectors as:

(f, g)L2
= 0

We also have Cauchy-Schwartz inequality:

|(f, g)L2
| ≤ ‖f‖L2

‖g‖L2

FEM09 – p. 9

Basis

We call our polynomial vector space V q = P q(a, b) consisting of
polynomials:

p(x) =

q
∑

i=0

cix
i

One basis is the monomials: {1, x, ..., xq}

FEM09 – p. 10

Equation

What do we mean by equation?

We define the residual function R(U) as:
R(U) = A(U) − f

We can thus define an equation with exact solution u as:
R(u) = 0

FEM09 – p. 11

Galerkin’s method

We seek a solution U in finite element vector space V q of the
form:

U(x) =
M
∑

j=1

ξjφj(x)

We require the residual to be orthogonal to V q:

(R(U), v) = 0,∀v ∈ V q

FEM09 – p. 12

Appendix

FEM09 – p. 13

Example - heat equation

Thin wire occupying x ∈ [0, 1] heated by a heat source f(x).
We seek stationary temperature u(x).
Let q(x) be heat flux along positive x-axis.
Conservation of energy in arbitrary sub-interval:

q(x2) − q(x1) =

Z

x2

x1

f(x) dx.

Fundamental theorem of calculus:

q(x2) − q(x1) =

Z

x2

x1

q
′

(x) dx,

Together:
Z

x2

x1

q
′

(x) dx =

Z

x2

x1

f(x) dx.

Since the sub-interval is arbitrary:

q
′

(x) = f(x) for 0 < x < 1,

FEM09 – p. 14

Example - heat equation

Constitutive law - Fourier’s law:

q(x) = −a(x)u
′

(x),

Inserting gives the heat equation:

−(a(x)u
′

(x))
′

= f(x) for 0 < x < 1.

FEM09 – p. 15

Lagrange (nodal) Basis

We will use the Lagrange basis: {λi}
q
i=0} associated to the

distinct points ξ0 < ξ1 < ... < ξq in (a, b), determined by the
requirement that λi(ξj) = 1 if i = j and 0 otherwise.

λi(x) =
∏

j 6=i

x − ξj

ξi − ξj

λ0(x) = (x − ξ1)(ξ0 − ξ1)

λ1(x) = (x − ξ0)/(ξ1 − ξ0)

FEM09 – p. 16

Polynomial interpolation

We assume that f is continuous on [a, b] and choose distinct
interpolation nodes a ≤ ξ0 < ξ1 < · · · < ξq ≤ b and define a
polynomial interpolant πqf ∈ Pq(a, b), that interpolates f(x) at
the nodes {ξi} by requiring that πqf take the same values as f
at the nodes, i.e. πqf(ξi) = f(ξi) for i = 0, ..., q. Using the
Lagrange basis corresponding to the ξi, we can express πqf
using “Lagrange’s formula”:

πqf(x) = f(ξ0)λ0(x) + f(ξ1)λ1(x) + · · · + f(ξq)λq(x) for a ≤ x ≤ b

FEM09 – p. 17

Interpolation error

Mean value theorem:

f(x) = f(ξ0) + f ′(η)(x − ξ0) = π0f(x) + f ′(η)(x − ξ0)

for some η between ξ0 and x, so that

|f(x) − π0f(x)| ≤ |x − ξ0| max
[a,b]

|f ′| for all a ≤ x ≤ b

Giving:

‖f − π0f‖L2(a,b) ≤ Ci(b − a)‖f ′‖L2(a,b)

FEM09 – p. 18

L2 projection

We seek a polynomial approximate solution U ∈ P q(a, b) to the
equation:

R(u) = u − f = 0, x ∈ (a, b)

where f in general is not polynomial, i.e. f /∈ P q(a, b).
This means R(U) can in general not be zero. The best we can
hope for is that R(U) is orthogonal to P q(a, b) which means
solving the equation:

(R(U), v)L2
= (U − f, v)L2

= 0, x ∈ Ω, ∀v ∈ P q(a, b)

FEM09 – p. 19

Error estimate

The orthogonality condition means the computed L2 projection
U is the best possible approximation of f in P q(a, b) in the L2

norm:

‖f − U‖2 = (f − U, f − U) =

(f − U, f − v) + (f − U, v − U) =

[v − U ∈ P q(a, b)] = (f − U, f − v) ≤ ‖f − U‖‖f − v‖

⇒

‖f − U‖ ≤ ‖f − v‖, ∀v ∈ P q(a, b)

FEM09 – p. 20

Error estimate

Since πf ∈ P q(a, b), we can choose v = πf which gives:

‖f − U‖ ≤ ‖f − πf‖

i.e. we can use an interpolation error estimate since it bounds
the projection error.

FEM09 – p. 21

	Course overview
	Course structure
	Science - modeling
	Science - computation
	Science/FEM - examples
	Science/FEM - examples
	Polynomial approximation
	Polynomial approximation
	Basis
	Equation
	Galerkin's method
	Appendix
	Example - heat equation
	Example - heat equation
	Lagrange (nodal) Basis
	Polynomial interpolation
	Interpolation error
	L_2 projection
	Error estimate
	Error estimate

