FEM09

Johan Jansson

jjan@csc.kth.se

CSC
KTH

Course overview

- Science - differential equations
- Function approximation using polynomials
- Galerkin's method (finite element method)
- Assembly of discrete systems
- Error estimation
- Mesh operations
- Stability
- Existence and uniqueness of solutions

Course structure

- Course divided into self-contained modules (from preceding slide)
- Module:
- Theory
- Software
- Write report (theory + software)

Science - modeling

Science: modeling (formulating equations) + computation (solving equations)

- Model natural laws (primarily) in terms of differential equations
- Partial differential equation (PDE):

$$
A(u(x))=f, \quad x \in \Omega
$$

with A differential operator.
Initial value problem $u\left(x_{0}\right)=g$ (x is "time", $\Omega=[0, T]$)
Boundary value problem $u(x)=g, \quad x \in \Gamma$ or

$$
(\nabla u(x)) \cdot n=g, \quad x \in \Gamma(\mathrm{x} \text { is "space" })
$$

Boundary value problem $u(x)=g, \quad x \in \Gamma$ (x is "space")
Initial boundary value problem Both are also possible

Science - computation

Finite Element Method (FEM): approximate solution function u as (piecewise) polynomial.

Compute coefficients by enforcing orthogonality (Galerkin's method).

Implement general algorithms for arbitrary differential equations
In this course we will use and understand a general implementation for discretizing PDE with FEM: FEniCS using the Python programming language.

Free software / Open source implementations

Science/FEM - examples

Newton's 2nd law: $F=m a, u=\left(u_{1}, u_{2}\right)$:

$$
\begin{aligned}
& \dot{u_{1}}(t)=u_{2}(t) \\
& \dot{u_{2}}(t)=F(u(t)) \\
& u(0)=u_{0}, \quad t \in[0, T]
\end{aligned}
$$

Science/FEM - examples

Incompressible Navier-Stokes

$$
\begin{aligned}
\dot{u}+u \cdot \nabla u-\nu \Delta u+\nabla p & =f \\
\nabla \cdot u & =0
\end{aligned}
$$

Elasticity - solid mechanics

$$
\dot{u}+\nabla \cdot \sigma=f
$$

Polynomial approximation

Systematic method for computing approximate solutions:
We seek polynomial approximations U to u.
A vector space can be constructed with set of polynomials on domain (a, b) as basis vectors, where function addition and scalar multiplication satisfy the requirements for a vector space.

We can also define an inner product space with the L_{2} inner product defined as:

$$
(f, g)_{L_{2}}=\int_{\Omega} f(x) g(x) d x
$$

Polynomial approximation

The L_{2} inner product generates the L_{2} norm:

$$
\left.\|f\|_{L_{2}}=\sqrt{(} f, f\right)_{L_{2}}
$$

Just like in R^{d} we define orthogonality between two vectors as:

$$
(f, g)_{L_{2}}=0
$$

We also have Cauchy-Schwartz inequality:

$$
\left|(f, g)_{L_{2}}\right| \leq\|f\|_{L_{2}}\|g\|_{L_{2}}
$$

Basis

We call our polynomial vector space $V^{q}=P^{q}(a, b)$ consisting of polynomials:

$$
p(x)=\sum_{i=0}^{q} c_{i} x^{i}
$$

One basis is the monomials: $\left\{1, x, \ldots, x^{q}\right\}$

Equation

What do we mean by equation?
We define the residual function $R(U)$ as:
$R(U)=A(U)-f$
We can thus define an equation with exact solution u as:
$R(u)=0$

Galerkin's method

We seek a solution U in finite element vector space V^{q} of the form:

$$
U(x)=\sum_{j=1}^{M} \xi_{j} \phi_{j}(x)
$$

We require the residual to be orthogonal to V^{q} :

$$
(R(U), v)=0, \forall v \in V^{q}
$$

Appendix

Example - heat equation

Thin wire occupying $x \in[0,1]$ heated by a heat source $f(x)$.
We seek stationary temperature $u(x)$.
Let $q(x)$ be heat flux along positive x-axis.
Conservation of energy in arbitrary sub-interval:

$$
q\left(x_{2}\right)-q\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} f(x) d x
$$

Fundamental theorem of calculus:

$$
q\left(x_{2}\right)-q\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} q^{\prime}(x) d x
$$

Together:

$$
\int_{x_{1}}^{x_{2}} q^{\prime}(x) d x=\int_{x_{1}}^{x_{2}} f(x) d x
$$

Since the sub-interval is arbitrary:

$$
q^{\prime}(x)=f(x) \quad \text { for } 0<x<1
$$

Example - heat equation

Constitutive law - Fourier's law:

$$
q(x)=-a(x) u^{\prime}(x)
$$

Inserting gives the heat equation:

$$
-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x) \text { for } 0<x<1
$$

Lagrange (nodal) Basis

We will use the Lagrange basis: $\left.\left\{\lambda_{i}\right\}_{i=0}^{q}\right\}$ associated to the distinct points $\xi_{0}<\xi_{1}<\ldots<\xi_{q}$ in (a, b), determined by the requirement that $\lambda_{i}\left(\xi_{j}\right)=1$ if $i=j$ and 0 otherwise.

$$
\begin{aligned}
& \lambda_{i}(x)=\prod_{j \neq i} \frac{x-\xi_{j}}{\xi_{i}-\xi_{j}} \\
& \lambda_{0}(x)=\left(x-\xi_{1}\right)\left(\xi_{0}-\xi_{1}\right) \\
& \lambda_{1}(x)=\left(x-\xi_{0}\right) /\left(\xi_{1}-\xi_{0}\right)
\end{aligned}
$$

Polynomial interpolation

We assume that f is continuous on $[a, b]$ and choose distinct interpolation nodes $a \leq \xi_{0}<\xi_{1}<\cdots<\xi_{q} \leq b$ and define a polynomial interpolant $\pi_{q} f \in \mathcal{P}^{q}(a, b)$, that interpolates $f(x)$ at the nodes $\left\{\xi_{i}\right\}$ by requiring that $\pi_{q} f$ take the same values as f at the nodes, i.e. $\pi_{q} f\left(\xi_{i}\right)=f\left(\xi_{i}\right)$ for $i=0, \ldots, q$. Using the Lagrange basis corresponding to the ξ_{i}, we can express $\pi_{q} f$ using "Lagrange's formula":
$\pi_{q} f(x)=f\left(\xi_{0}\right) \lambda_{0}(x)+f\left(\xi_{1}\right) \lambda_{1}(x)+\cdots+f\left(\xi_{q}\right) \lambda_{q}(x) \quad$ for $a \leq x \leq b$

Interpolation error

Mean value theorem:

$$
f(x)=f\left(\xi_{0}\right)+f^{\prime}(\eta)\left(x-\xi_{0}\right)=\pi_{0} f(x)+f^{\prime}(\eta)\left(x-\xi_{0}\right)
$$

for some η between ξ_{0} and x, so that

$$
\left|f(x)-\pi_{0} f(x)\right| \leq\left|x-\xi_{0}\right| \max _{[a, b]}\left|f^{\prime}\right| \quad \text { for all } a \leq x \leq b
$$

Giving:

$$
\left\|f-\pi_{0} f\right\|_{L_{2}(a, b)} \leq C_{i}(b-a)\left\|f^{\prime}\right\|_{L_{2}(a, b)}
$$

L_{2} projection

We seek a polynomial approximate solution $U \in P^{q}(a, b)$ to the equation:

$$
R(u)=u-f=0, \quad x \in(a, b)
$$

where f in general is not polynomial, i.e. $f \notin P^{q}(a, b)$.
This means $R(U)$ can in general not be zero. The best we can hope for is that $R(U)$ is orthogonal to $P^{q}(a, b)$ which means solving the equation:

$$
(R(U), v)_{L_{2}}=(U-f, v)_{L_{2}}=0, \quad x \in \Omega, \quad \forall v \in P^{q}(a, b)
$$

Error estimate

The orthogonality condition means the computed L_{2} projection U is the best possible approximation of f in $P^{q}(a, b)$ in the L_{2} norm:

$$
\begin{aligned}
& \|f-U\|^{2}=(f-U, f-U)= \\
& \quad(f-U, f-v)+(f-U, v-U)= \\
& \quad\left[v-U \in P^{q}(a, b)\right]=(f-U, f-v) \leq\|f-U\|\|f-v\| \\
& \quad \Rightarrow \\
& \|f-U\| \leq\|f-v\|, \quad \forall v \in P^{q}(a, b)
\end{aligned}
$$

Error estimate

Since $\pi f \in P^{q}(a, b)$, we can choose $v=\pi f$ which gives:

$$
\|f-U\| \leq\|f-\pi f\|
$$

i.e. we can use an interpolation error estimate since it bounds the projection error.

