FEM09 - lecture 2

Johan Jansson

jjan@csc.kth.se

CSC
KTH

Piecewise linear polynomials

Global polynomials on the whole domain (a, b) led to vector space V^{q} (monomial basis: $\left\{1, x, \ldots, x^{q}\right\}$). Only way of refining approximate solution U is by increasing q.

We instead look at piecewise polynomials.
Partition domain $I=(a, b)$ into mesh:
$a=x_{0}<x_{1}<x_{2}<\cdots<x_{m+1}=b$ by placing nodes x_{i}.
Define polynomial function on each subinterval $I_{i}=\left(x_{i-1}, x_{i}\right)$ with length $h_{i}=x_{i}-x_{i-1}$.

Piecewise linear polynomials

Nodal basis: $\phi_{i}\left(x_{i}\right)=1, p h i_{i}\left(x_{j}\right)=0, i \neq j$
Basis function $\phi_{i}(x)$:

$$
\phi_{i}(x)= \begin{cases}0, & x \notin\left[x_{i-1}, x_{i+1}\right], \\ \frac{x-x_{i-1}}{x_{i}-x_{i-1}}, & x \in\left[x_{i-1}, x_{i}\right], \\ \frac{x-x_{i+1}}{x_{i}-x_{i+1}}, & x \in\left[x_{i}, x_{i+1}\right] .\end{cases}
$$

Vector space of continuous piecewise linear polynomials: V_{h} with basis $\left\{\phi_{i}\right\}_{1}^{M}$, M number of nodes in mesh.

Piecewise linear polynomials

Piecewise linear function $U(x)=\sum_{j=1}^{M} \xi_{j} \phi_{j}(x)$

Poisson's equation

Boundary value problem:
$R(u(x))=-\left(a(x) u(x)^{\prime}\right)^{\prime}-f(x)=0, \quad x \in[0,1], \quad u(0)=u(1)=0$

Exercise (section 6.2.1): explain a derivation of Poisson's equation (heating a wire) with boundary conditions (Dirichlet and Neumann).

Weak formulation

Variational/Weak formulation: multiply by test function and integrate:

$$
\begin{aligned}
& \int_{0}^{1} R(u) v d x=\int_{0}^{1}\left(-\left(a u^{\prime}\right)^{\prime}-f\right) v d x=0, \quad \forall v \in V \\
& V=\left\{v: \int_{0}^{1} v^{2} d x<C, \int_{0}^{1}\left(v^{\prime}\right)^{2} d x<C, v(0)=v(1)=0\right\}
\end{aligned}
$$

Exercise (section 8.1.2): explain why
$\int_{0}^{1} R(u) v d x=0 \Rightarrow R(u)=0$ for continuous a and u.

Galerkin's method

$$
(R(U), v)_{L_{2}}=0, \quad x \in[a, b], \quad \forall v \in V_{h}
$$

But we have:

$$
(R(u), v)=\int_{0}^{1}\left(-\left(a u^{\prime}\right)^{\prime}-f\right) v d x=0
$$

U is not compatible (only has one derivative).
Technical step:
Integrate by parts (move derivative to test function)

- Piecewise linear approximation only has one derivative
- Simplifies enforcement of boundary conditions

Galerkin's method

Recall integration by parts (fundamental theorem):

$$
\begin{gathered}
\int_{0}^{1} w^{\prime} v d x=-\int_{0}^{1} w v^{\prime} d x+w(1) v(1)-w(0) v(0) \\
R(u)=-\left(a u^{\prime}\right)^{\prime}-f \\
(R(u), v)=\int_{0}^{1}-\left(a u^{\prime}\right)^{\prime} v-f v d x=\left[w=a u^{\prime}\right]= \\
\int_{0}^{1}\left(a u^{\prime}\right) v^{\prime}-f v d x+a u^{\prime}(1) v(1)-a u^{\prime}(0) v(0)
\end{gathered}
$$

For homogenous Dirichlet BC we can use $v(a)=v(b)=0$ For homogenous Neumann BC we have $-a u^{\prime}=0$

Galerkin's method

Insert piecewise linear approximation:

$$
U(x)=\sum_{j=1}^{M} \xi_{j} \phi_{j}(x)
$$

We are left to solve:

$$
\int_{a}^{b}\left(a U^{\prime}\right) v^{\prime}-f v d x=0, \quad x \in[a, b], \quad \forall v \in V_{h}
$$

Or equivalently:

$$
\begin{gathered}
\int_{a}^{b}\left(a U^{\prime}\right) \phi_{i}^{\prime}-f \phi_{i} d x=0 \\
x \in[a, b], \quad i=1, \ldots, M
\end{gathered}
$$

Discrete system

Substituting U:

$$
\begin{array}{r}
\int_{a}^{b}\left(a\left(\sum_{j=1}^{M} \xi_{j} \phi_{j}\right)^{\prime}\right) \phi_{i}^{\prime}-f \phi_{i} d x=0 \\
x \in[a, b], i=1, \ldots, M
\end{array}
$$

Clean up:

$$
\begin{array}{r}
\sum_{j=1}^{M} \int_{a}^{b} a \xi_{j} \phi_{j}^{\prime} \phi_{i}^{\prime}-f \phi_{i} d x=0 \\
x \in[a, b], i=1, \ldots, M
\end{array}
$$

Discrete system

Left with algebraic system in $\xi=\left(\xi_{1}, \ldots, \xi_{M}\right)^{\top}$:

$$
F(\xi)=0
$$

In this case F is a linear system $F(\xi)=A \xi-b=0$ with:

$$
\begin{aligned}
A_{i j} & =\sum_{j=1}^{M} \int_{a}^{b} a \phi_{j}^{\prime} \phi_{i}^{\prime} d x \\
b_{i} & =\int_{a}^{b}-f \phi_{i} d x
\end{aligned}
$$

Solve $A \xi=b$, costruct solution function $U(x)=\sum_{j=1}^{M} \xi_{j} \phi_{j}(x)$
If F is not linear, can use Newton's method.

Discrete system

Exercise: 6.9 and 6.10 (explain computation of matrix and vector entries)

Piecewise polynomials in 2D

Construct triangulation T of domain Ω
Define size of triangle $K \in T$ is h_{K} as diameter of triangle
Define N as node (in this case vertex of triangle)
Want to define basis functions for vector space V_{h} : space of piecewise linear functions on T

Requirement for nodal basis:

$$
\phi_{j}\left(N_{i}\right)=\left\{\begin{array}{ll}
1, & i=j, \tag{1}\\
0, & i \neq j,
\end{array} \quad i, j=1, \ldots, M\right.
$$

Piecewise polynomials in 2D

Define local basis functions v^{i} on triangle K with vertices $a^{i}=\left(a_{1}^{i}, a_{2}^{i}\right), i=1,2,3$
v is linear $\Rightarrow v(x)=c_{0}+c_{1} x_{1}+c_{2} x_{2}$
Values of v in vertices: $v_{i}=v\left(a^{i}\right)(1$ or 0$)$
Linear system for coefficients c :

$$
\left(\begin{array}{ccc}
1 & a_{1}^{1} & a_{2}^{1} \\
1 & a_{1}^{2} & a_{2}^{2} \\
1 & a_{1}^{3} & a_{1}^{3}
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) .
$$

Piecewise polynomials in 2D

Sum local basis functions:

$$
\begin{equation*}
\phi_{i}=\sum_{j} v^{j}, \quad N_{i}=a_{j} \tag{2}
\end{equation*}
$$

Poisson in 2D

Automated discretization in FEniCS

General bilinear form $a(\cdot, \cdot)$

In general the matrix A_{h}, representing a bilinear form

$$
a(u, v)=(A(u), v)
$$

is given by

$$
\left(A_{h}\right)_{i j}=a\left(\varphi_{j}, \hat{\varphi}_{i}\right)
$$

and the vector b_{h} representing a linear form

$$
L(v)=(f, v),
$$

is given by

$$
\left(b_{h}\right)_{i}=L\left(\hat{\varphi}_{i}\right) .
$$

Assembling the matrices

Computing $\left(A_{h}\right)_{i j}$

Note that

$$
\left(A_{h}\right)_{i j}=a\left(\varphi_{j}, \hat{\varphi}_{i}\right)=\sum_{K \in \mathcal{T}} a\left(\varphi_{j}, \hat{\varphi}_{i}\right)_{K}
$$

Iterate over all elements K and for each element K compute the contributions to all $\left(A_{h}\right)_{i j}$, for which φ_{j} and $\hat{\varphi}_{i}$ are supported within K.

Assembly of discrete system

Noting that $a(v, u)=\sum_{K \in \mathcal{T}} a_{K}(v, u)$, the matrix A can be assembled by

$$
\begin{aligned}
& A=0 \\
& \text { for all elements } K \in \mathcal{T} \\
& \qquad A+=A^{K}
\end{aligned}
$$

The element matrix A^{K} is defined by

$$
A_{i j}^{K}=a_{K}\left(\hat{\phi}_{i}, \phi_{j}\right)
$$

for all local basis functions $\hat{\phi}_{i}$ and ϕ_{j} on K

Assembling A_{h}

for all elements $K \in \mathcal{T}$
for all test functions $\hat{\varphi}_{i}$ on K for all trial functions φ_{j} on K

1. Compute $I=a\left(\varphi_{j}, \hat{\varphi}_{i}\right)_{K}$
2. Add I to $\left(A_{h}\right)_{i j}$
end
end
end

Assembling b

for all elements $K \in \mathcal{T}$
for all test functions $\hat{\varphi}_{i}$ on K

1. Compute $I=L\left(\hat{\varphi}_{i}\right)_{K}$
2. Add I to b_{i}
end
end
