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Piecewise linear polynomials

Global polynomials on the whole domain (a, b) led to vector
space V q (monomial basis: {1, x, ..., xq}). Only way of refining
approximate solution U is by increasing q.

We instead look at piecewise polynomials.

Partition domain I = (a, b) into mesh:
a = x0 < x1 < x2 < · · · < xm+1 = b by placing nodes xi.

Define polynomial function on each subinterval Ii = (xi−1, xi)
with length hi = xi − xi−1.
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Piecewise linear polynomials

Nodal basis: φi(xi) = 1, phii(xj) = 0, i 6= j

Basis function φi(x):

φi(x) =











0, x /∈ [xi−1, xi+1],
x−xi−1

xi−xi−1
, x ∈ [xi−1, xi],

x−xi+1

xi−xi+1
, x ∈ [xi, xi+1].

Vector space of continuous piecewise linear polynomials: Vh

with basis {φi}
M
1 , M number of nodes in mesh.
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Piecewise linear polynomials

xixi-1 xM+1x0

hi 10

Piecewise linear function U(x) =
∑M

j=1
ξjφj(x)
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Poisson’s equation

Boundary value problem:

R(u(x)) = −(a(x)u(x)′)′ − f(x) = 0, x ∈ [0, 1], u(0) = u(1) = 0

Exercise (section 6.2.1): explain a derivation of Poisson’s
equation (heating a wire) with boundary conditions (Dirichlet and
Neumann).

FEM09 - lecture 2 – p. 5



Weak formulation

Variational/Weak formulation: multiply by test function and
integrate:

∫

1

0

R(u)vdx =

∫

1

0

(−(au′)′ − f)vdx = 0, ∀v ∈ V

V =

{

v :

∫

1

0

v2 dx < C,

∫

1

0

(v′)2 dx < C, v(0) = v(1) = 0

}

,

Exercise (section 8.1.2): explain why
∫

1

0
R(u)vdx = 0 ⇒ R(u) = 0 for continuous a and u.
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Galerkin’s method

(R(U), v)L2
= 0, x ∈ [a, b], ∀v ∈ Vh

But we have:

(R(u), v) =

∫

1

0

(−(au′)′ − f)vdx = 0

U is not compatible (only has one derivative).

Technical step:

Integrate by parts (move derivative to test function)
• Piecewise linear approximation only has one derivative
• Simplifies enforcement of boundary conditions
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Galerkin’s method

Recall integration by parts (fundamental theorem):
∫

1

0

w′vdx = −

∫

1

0

wv′dx + w(1)v(1) − w(0)v(0)

R(u) = −(au′)′ − f

(R(u), v) =

∫

1

0

−(au′)′v − fvdx = [w = au′] =

∫

1

0

(au′)v′ − fvdx + au′(1)v(1) − au′(0)v(0)

For homogenous Dirichlet BC we can use v(a) = v(b) = 0
For homogenous Neumann BC we have −au′ = 0
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Galerkin’s method

Insert piecewise linear approximation:

U(x) =
M
∑

j=1

ξjφj(x)

We are left to solve:
∫ b

a

(aU ′)v′ − fvdx = 0, x ∈ [a, b], ∀v ∈ Vh

Or equivalently:
∫ b

a

(aU ′)φ′
i − fφidx = 0,

x ∈ [a, b], i = 1, ..., M
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Discrete system

Substituting U:

∫ b

a

(a(
M
∑

j=1

ξjφj)
′)φ′

i − fφidx = 0,

x ∈ [a, b], i = 1, ..., M

Clean up:

M
∑

j=1

∫ b

a

aξjφ
′
jφ

′
i − fφidx = 0,

x ∈ [a, b], i = 1, ..., M
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Discrete system

Left with algebraic system in ξ = (ξ1, ..., ξM )⊤:

F (ξ) = 0

In this case F is a linear system F (ξ) = Aξ − b = 0 with:

Aij =
M
∑

j=1

∫ b

a

aφ′
jφ

′
idx,

bi =

∫ b

a

−fφidx

Solve Aξ = b, costruct solution function U(x) =
∑M

j=1
ξjφj(x)

If F is not linear, can use Newton’s method.
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Discrete system

Exercise: 6.9 and 6.10 (explain computation of matrix and vector
entries)

FEM09 - lecture 2 – p. 12



Piecewise polynomials in 2D

Construct triangulation T of domain Ω

Define size of triangle K ∈ T is hK as diameter of triangle

Define N as node (in this case vertex of triangle)

Want to define basis functions for vector space Vh: space of
piecewise linear functions on T

Requirement for nodal basis:

φj(Ni) =

{

1, i = j,

0, i 6= j,
i, j = 1, ..., M (1)
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Piecewise polynomials in 2D

Define local basis functions vi on triangle K with vertices
ai = (ai

1, a
i
2), i = 1, 2, 3

v is linear ⇒ v(x) = c0 + c1x1 + c2x2

Values of v in vertices: vi = v(ai) (1 or 0)

Linear system for coefficients c:






1 a1
1 a1

2

1 a2
1 a2

2

1 a3
1 a3

1













c0

c1

c2






=







v1

v2

v3






.
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Piecewise polynomials in 2D

Sum local basis functions:

φi =
∑

j

vj , Ni = aj (2)

Ni

i
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Poisson in 2D
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Automated discretization in FEniCS
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General bilinear form a(·, ·)

In general the matrix Ah, representing a bilinear form

a(u, v) = (A(u), v),

is given by
(Ah)ij = a(ϕj , ϕ̂i).

and the vector bh representing a linear form

L(v) = (f, v),

is given by
(bh)i = L(ϕ̂i).
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Assembling the matrices
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Computing (Ah)ij

Note that

(Ah)ij = a(ϕj , ϕ̂i) =
∑

K∈T

a(ϕj , ϕ̂i)K .

Iterate over all elements K and for each element K compute the
contributions to all (Ah)ij , for which ϕj and ϕ̂i are supported
within K.
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Assembly of discrete system

Noting that a(v, u) =
∑

K∈T
aK(v, u), the

matrix A can be assembled by

A = 0
for all elements K ∈ T

A += AK

The element matrix AK is defined by

AK
ij = aK(φ̂i, φj)

for all local basis functions φ̂i and φj on K
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Assembling Ah

for all elements K ∈ T

for all test functions ϕ̂i on K

for all trial functions ϕj on K

1. Compute I = a(ϕj , ϕ̂i)K

2. Add I to (Ah)ij

end

end

end
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Assembling b

for all elements K ∈ T

for all test functions ϕ̂i on K

1. Compute I = L(ϕ̂i)K

2. Add I to bi

end

end
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