FEM09 - lecture 3

Johan Jansson

jjan@csc.kth.se

CSC
KTH

Outline

- Quadrature
- FEM in 2D/3D
- General assembly algorithm
- Boundary conditions
- FEniCS automated FEM software
- Modules (deadline)

Computer demonstration
Feedback

Integration/Quadrature in 1D

Midpoint rule

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\sum_{i=1}^{m+1} f\left(\frac{x_{i-1}+x_{i}}{2}\right) h_{i}+E(f) \\
|E(f)| & \leq \sum_{i=1}^{m+1} \frac{1}{12} h_{i}^{2} \max _{\left[x_{i-1}, x_{i}\right]}\left|f^{\prime \prime}\right| h_{i}
\end{aligned}
$$

In other words: the rule can integrate linear polynomials exactly.
Possible to generate quadrature rules for any order of (polynomial) accuracy.

Integration/Quadrature in 2D

Midpoint rule

$$
\begin{gathered}
\int_{K} f(x) d x=\sum_{1 \leq i<j \leq 3} f\left(a_{K}^{i j}\right) \frac{|K|}{3}+E(f) \\
|E(f)| \leq \sum_{|\alpha|=3} C h_{K}^{3} \int_{K}\left|D^{\alpha} f(x)\right| d x
\end{gathered}
$$

In other words: the rule can integrate quadratic polynomials in 2D exactly.

Possible to generate quadrature rules for any order of (polynomial) accuracy in 2D/3D as well.

Piecewise polynomials in 2D

Construct triangulation T of domain Ω
Define size of triangle $K \in T$ is h_{K} as diameter of triangle
Define N as node (in this case vertex of triangle)
Want to define basis functions for vector space V_{h} : space of piecewise linear functions on T

Requirement for nodal basis:

$$
\phi_{j}\left(N_{i}\right)=\left\{\begin{array}{ll}
1, & i=j, \tag{1}\\
0, & i \neq j,
\end{array} \quad i, j=1, \ldots, M\right.
$$

Piecewise polynomials in 2D

Define local basis functions v^{i} on triangle K with vertices $a^{i}=\left(a_{1}^{i}, a_{2}^{i}\right), i=1,2,3$
v is linear $\Rightarrow v(x)=c_{0}+c_{1} x_{1}+c_{2} x_{2}$
Values of v in vertices: $v_{i}=v\left(a^{i}\right)(1$ or 0$)$
Linear system for coefficients c :

$$
\left(\begin{array}{ccc}
1 & a_{1}^{1} & a_{2}^{1} \\
1 & a_{1}^{2} & a_{2}^{2} \\
1 & a_{1}^{3} & a_{1}^{3}
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) .
$$

Piecewise polynomials in 2D

Sum local basis functions:

$$
\begin{equation*}
\phi_{i}=\sum_{j} v^{j}, \quad N_{i}=a_{j} \tag{2}
\end{equation*}
$$

Poisson in 2D

Automated discretization in FEniCS

We will look at a general algorithm for FEM assembly of matrix/vector.

This algorithm is implemented in FEniCS (software used in the course).

Later in the course we will implement a simple variant of this ourselves.

General bilinear form $a(\cdot, \cdot)$

In general the matrix A_{h}, representing a bilinear form

$$
a(u, v)=(A(u), v)
$$

is given by

$$
\left(A_{h}\right)_{i j}=a\left(\varphi_{j}, \hat{\varphi}_{i}\right)
$$

and the vector b_{h} representing a linear form

$$
L(v)=(f, v)
$$

is given by

$$
\left(b_{h}\right)_{i}=L\left(\hat{\varphi}_{i}\right)
$$

Example (Poisson 1D):
$a(u, v)=\left(u^{\prime}, v^{\prime}\right)=\int_{0}^{1} u^{\prime} v^{\prime} d x, \quad\left(A_{h}\right)_{i j}=a\left(\phi_{j}, \phi_{i}\right)=\int_{0}^{1} \phi_{j}^{\prime} \phi_{i}^{\prime} d x$
$L(v)=(f, v)=\int_{0}^{1} f v d x, \quad\left(b_{h}\right)_{i}=L\left(\phi_{i}\right)=\int_{0}^{1} f \phi_{i} d x$

Computing $\left(A_{h}\right)_{i j}$

Note that

$$
\left(A_{h}\right)_{i j}=a\left(\varphi_{j}, \hat{\varphi}_{i}\right)=\sum_{K \in \mathcal{T}} a\left(\varphi_{j}, \hat{\varphi}_{i}\right)_{K}
$$

Iterate over all elements K and for each element K compute the contributions to all $\left(A_{h}\right)_{i j}$, for which φ_{j} and $\hat{\varphi}_{i}$ are supported within K.

Assembly of discrete system

Noting that $a(v, u)=\sum_{K \in \mathcal{T}} a_{K}(v, u)$, the matrix A can be assembled by

$$
\begin{aligned}
& A=0 \\
& \text { for all elements } K \in \mathcal{T} \\
& \qquad A+=A^{K}
\end{aligned}
$$

The element matrix A^{K} is defined by

$$
A_{i j}^{K}=a_{K}\left(\hat{\phi}_{i}, \phi_{j}\right)
$$

for all local basis functions $\hat{\phi}_{i}$ and ϕ_{j} on K

Assembling A_{h}

for all elements $K \in \mathcal{T}$
for all test functions $\hat{\varphi}_{i}$ on K for all trial functions φ_{j} on K

1. Compute $I=a\left(\varphi_{j}, \hat{\varphi}_{i}\right)_{K}$
2. Add I to $\left(A_{h}\right)_{i j}$
end
end
end

Assembling b

for all elements $K \in \mathcal{T}$
for all test functions $\hat{\varphi}_{i}$ on K

1. Compute $I=L\left(\hat{\varphi}_{i}\right)_{K}$
2. Add I to b_{i}
end
end

Computer demonstration

Boundary conditions

Essential BC:

- Homogenous Dirichlet BC: $u(0)=0$

Enforce in function space:

$$
V=\left\{v: \int_{0}^{1} v^{2} d x<C, \int_{0}^{1}\left(v^{\prime}\right)^{2} d x<C, v(0)=0\right\}
$$

Natural BC:

- Neumann BC: $-a(0) u^{\prime}(0)=g_{N}$
- Robin BC: $-a(0) u^{\prime}(0)+\gamma\left(u(0)-g_{D}\right)=g_{N}$
γ is a penalty parameter, with $\gamma=0 \Rightarrow$ Neumann and
$\frac{1}{\gamma}=0 \Rightarrow$ Dirichlet
Enforce in weak form:

$$
\int_{0}^{1}\left(a u^{\prime}\right) v^{\prime}-f v d x+a u^{\prime}(1) v(1)-a u^{\prime}(0) v(0)=0
$$

Computer demonstration

