FEM08 - lecture 6

Johan Jansson

jjan@csc.kth.se

CSC
KTH

Contents

Implementation of adaptivity
FEM for initial value problem (ODE)
FEM for initial boundary value problem (PDE)
(Stability)

Implementation of adaptivity

Recall error bound:
Split up error bound into contributions from each cell:

$$
C\|h \hat{R}(U)\|=C \sqrt{\int_{0}^{1}(h \hat{R}(U))^{2} d x}=C \sqrt{\sum_{K} \int_{K}(h \hat{R}(U))^{2} d x}
$$

Simple condition: refine (split) cells K where the error contribution (error indicator) $\int_{K}(h \hat{R}(U))^{2} d x$ is largest.

Implementation of adaptivity

How to compute array of error indicators:

```
DV = FunctionSpace(mesh, ''DG'', 0)
v = TestFunction(DV)
h = MeshSize(''triangle'r , mesh)
Lei = (h*R)*(h*R)*v*dx
eix = assemble(Lei, mesh)
```

where DV is the space of piecewise constant functions (constant on each triangle, discontinuous)

Effect: $v=1$ on each triangle, compute integral contribution from each triangle.

Implementation of adaptivity

How to refine the mesh:

```
cell_markers = MeshFunction(''bool'', mesh, mesh.topology().dim())
cell_markers.fill(False)
for c in cells(mesh):
    if(condition):
            cell_markers.set(c, True)
mesh.refine(cell_markers)
```


FEM for ODE

In general:
$\dot{u}=f(t, u)$
Model problem:
$\dot{u}+a u=g(t)$
Recall Forward Euler method:
$U_{n}=U_{n-1}+k f\left(t_{n-1}, U_{n-1}\right)=U_{n-1}+k\left(-a U_{n-1}+g\left(t_{n-1}\right)\right)$ other methods of similar form (Backward Euler, Crank-Nicolson)

FEM for ODE: cG(1)

$\mathrm{cG}(1): U \in V_{k}$ with $U(0)=u_{0}$
V_{k} space of piecewise linears, W_{k} space of piecewise constants

$$
\begin{aligned}
& \int_{t_{n-1}}^{t_{n}} \dot{U} v+a U v-g v d t=0, \quad \forall v \in W_{k} \Rightarrow \\
& U=\sum_{i=1}^{N} \xi_{i} \phi_{i} \\
& \phi_{n}=\frac{t-t_{n-1}}{k_{n}}, \phi_{n-1}=\frac{t_{n}-t}{k_{n}}, k_{n}=t_{n}-t_{n-1} \Rightarrow \\
& \xi_{n}=\xi_{n-1}-\int_{t_{n-1}}^{t_{n}} a(t)\left(\xi_{n-1} \phi_{n-1}+\xi_{n} \phi_{n}\right)+g\left(t_{n}\right) d t
\end{aligned}
$$

FEM for ODE: cG(1)

Trapezoid quadrature, we get Crank-Nicolson (+ quad. err.):
$\xi_{n}=\xi_{n-1}-\frac{1}{2} k_{n}\left(a\left(t_{n-1}\right) \xi_{n-1}+a\left(t_{n}\right) \xi_{n}+g\left(t_{n-1}\right)+g\left(t_{n}\right)\right)+E_{q}$

Error estimate for cG(1)

For general ODE: $R(u)=\dot{u}-f(t, u)=0$
Similar construction as for error estimates in space.

$$
|u(T)-U(T)| \leq S(T) k|\hat{R}(U)|
$$

where stability factor $S(T)=\frac{\int_{0}^{T}|\dot{\phi}| d t}{e_{T}}$
S gives a quantitative measure of the stability of the equation.

Stability factor examples

Primal equation

$\dot{u}+u=\sin (t), \quad u(0)=u_{0}$
Dual equation
$-\dot{\phi}+u=0, \quad \phi(T)=e_{T}$

approximation
S doesn't grow with $T \Rightarrow$ equation is very stable/parabolic.

Stability factor examples

Primal equation

$$
\dot{u}-u=\dot{f}(t), \quad u(0)=u_{0}
$$

Dual equation
$-\dot{\phi}-u=0, \quad \phi(T)=e_{T}$

S grows exponentially with $T \Rightarrow$ very unstable/expensive to compute accurately.

FEM for IBVP/PDE (space-time)

Model problem (Heat equation):
$\dot{u}-\Delta u=f(t, x)$
Domain D is cartesian product of domain in space and time interval: $D=\Omega \times I$

Mesh is space-time slab $D_{n}=T_{n} \times I_{n}$ where $T_{n}=K$ is triangulation of Ω and I_{n} is sub-interval of length $k_{n}=t_{n}-t_{n-1}$.
$\mathrm{cG}(1) \mathrm{dG}(0)$: Trial and test space \bar{W}_{k} with basis functions $\bar{\phi}=\phi_{t} \phi_{x}$, where ϕ_{t} basis functions of W_{k} (piecewise constant/discontinuous in time) and ϕ_{x} basis functions of V_{h} (piecewise linear/continuous in space).

FEM for IBVP/PDE (space-time)

Galerkin's method for $\mathrm{cG}(1) \mathrm{dG}(0)$:

$$
\begin{aligned}
\left(U_{n}, v\right) & \left.=\left(U_{n-1}, v\right)-\int_{t_{n-1}}^{t_{n}}(\nabla U, \nabla v)\right)+(f, v) d t, \quad \forall v \in \bar{W}_{k} \\
U & =\sum_{i=1}^{N} \xi_{i} \bar{\phi}=\sum_{i=1}^{N} \xi_{i} \phi_{x i}, \quad v=\phi_{x i}, \quad i=1, \ldots, N
\end{aligned}
$$

Again, with right-endpoint quadrature we get backward Euler (+quad. err.):

$$
\left.\left(U_{n}, v\right)=\left(U_{n-1}, v\right)-k_{n}\left(\nabla U\left(t_{n}, x\right), \nabla v\right)\right)+\left(f\left(t_{n}\right), v\right), \quad \forall v \in \bar{W}_{k}
$$

FEM for IBVP/PDE (space-time)

Substituting U gives the formulas for matrix/vector elements.

A posteriori/duality 2D/3D

We have primal equation:
$-\nabla \cdot(a \nabla u)-f=0$
We introduce dual equation:
$-\nabla \cdot(a \nabla \phi)-\psi=0$
which is defined by:
$(A v, w)=\left(v, A^{*} w\right)$
where A is the diff. op. for the primal eq. and A^{*} for the dual eq.
(in this case they are the same).
(Homogenous Dirichlet BC)

Duality 2D

We compute solution U by Galerkin's method:
$\int_{\Omega}-a \nabla U \cdot \nabla v-f v d x=0, \quad \forall v \in V_{h}, \quad U \in V_{h}$
Error $e=u-U$ satisfies:
$\int_{\Omega} a \nabla e \cdot \nabla w d x=\int_{\Omega} a \nabla U \cdot \nabla w-f w d x$

Duality 2D

Want to bound quantity $M(e)=(e, \psi)$:

$$
\begin{aligned}
& (e, \psi)=\int_{\Omega} e \psi d x=\int_{\Omega} e(-\nabla \cdot(a \nabla \phi)) d x= \\
& \left.\int_{\Omega} a \nabla e \nabla \phi d x+\int_{\Gamma} e(\nabla \phi) \cdot n\right] d s=[e=0, x \in \Gamma]= \\
& \int_{\Omega} a \nabla U \cdot \nabla \phi-f \phi d x= \\
& {[G O]=\int_{\Omega}-a \nabla U \cdot \nabla(\phi-\pi \phi)+f(\phi-\pi \phi) d x=} \\
& \sum_{K_{i}} \int_{K_{i}}(\nabla(a \nabla U)+f)(\phi-\pi \phi) d x+\int_{\partial K_{i}} a(\nabla U) \cdot n(\phi-\pi \phi) d s
\end{aligned}
$$

Duality 2D

We get facet $\left(\partial K_{i}\right)$ integrals from both cells sharing the facet F. We write the sum (normals are opposite, so they have opposite signs):

$$
\int_{F}[a(\nabla U) \cdot n](\phi-\pi \phi) d s
$$

Duality 2D

Two ways to continue: use interpolation estimate for boundary expression or express boundary integral as interior integral:

$$
\begin{array}{r}
\int_{F}[a(\nabla U) \cdot n](\phi-\pi \phi) d s= \\
\int_{F} h^{-1}[a(\nabla U) \cdot n](\phi-\pi \phi) h d s \approx \\
\int_{F} h^{-1}[a(\nabla U) \cdot n](\phi-\pi \phi) d x
\end{array}
$$

We can then continue with an interior integral:

$$
\left.\sum_{K_{i}} \int_{K_{i}}\left(\nabla(a \nabla U)+f+h^{-1}[a(\nabla U) \cdot n)\right]\right)(\phi-\pi \phi) d x
$$

Duality 2D

Where we can now just like for 1D use Cauchy-Schwartz and an interpolation estimate:

$$
\begin{aligned}
& \left.|(e, \psi)|=\sum_{K_{i}} \int_{K_{i}}\left(\nabla(a \nabla U)+f+h^{-1}[a(\nabla U) \cdot n)\right]\right)(\phi-\pi \phi) d x \leq \\
& \|\hat{R}(U)\|\|\phi-\pi \phi\| \leq h^{2}\|\hat{R}(U)\|\left\|D^{2} \phi\right\|
\end{aligned}
$$

where we identify $S=\left\|D^{2} \phi\right\|$ as a stability factor. and $\left.\hat{R}(U)=\nabla(a \nabla U)+f+h^{-1}[a(\nabla U) \cdot n)\right]$ piecewise constant (constant on each cell).

