2D1260 Finite Element Methods: Written Examination Saturday 2006-01-21, kl 8-13

Coordinator: Johan Hoffman

Aids: none. Time: 5 hours.

Answers may be given in English or in Swedish. All answers should be explained and calculations shown unless stated otherwise. A correct answer without explanation can be left without points. Do not leave integrals or systems of equations unsolved unless explicitly allowed. Each of the 5 problems gives 10 p, resulting in a total of 50 p: 20 p for grade 3, 30 p for grade 4, and 40 p for grade 5.

Problem 1: Consider the problem:

$$-\Delta u(x) = 1, \quad x \in \Omega \subset \mathbb{R}^2,$$

 $u(x) = 0, \qquad x \in \partial\Omega,$

with $x = (x_1, x_2)$ and Ω the square defined in Fig. 1 (see next page).

- (a) Formulate a finite element method (FEM) using a continuous piecewise linear approximation (cG(1)) defined on the mesh in Fig. 1.
- (b) Compute the corresponding matrix and vector. You do not have to solve the resulting system of equations.
- (c) Compute the corresponding matrix and vector, with now the homogeneous Dirichlet boundary condition u = 0 replaced by the Neumann condition

$$\frac{\partial u}{\partial x_1} = 0,$$

for $x_1 = 2, 0 < x_2 < 2$ (with still homogeneous Dirichlet boundary conditions for the rest of the boundary). You do not have to solve the resulting system of equations.

Note: The exam continues on the next page!

Figure 1: Triangulation (mesh) of domain Ω .

Problem 2: Consider the problem:

$$-\Delta u(x) + \alpha u(x) = f(x), \quad x \in \Omega \subset \mathbb{R}^3,$$
$$\beta \partial_n u(x) + \gamma u(x) = g(x), \quad x \in \Gamma,$$

with $\partial_n u = \nabla u \cdot n$, n the outward normal of the boundary Γ , and α, β, γ are non-negative constants.

State the Lax-Milgram theorem. Determine if the assumptions of the Lax-Milgram theorem are satisfied in the following cases:

- (a) $\alpha = 0, \beta = 0, \gamma = 1, g = 0, f \in L_2(\Omega)$
- (b) $\alpha = 0, \beta = 1, \gamma = 0, g = 0, f \in L_2(\Omega)$
- (c) $\alpha = 1, \beta = 1, \gamma = 0, g \in L_2(\Gamma), f = 0$

For each case (a)-(c); derive a bilinear form $a: V \times V \to \mathbb{R}$ and a linear form $L: V \to \mathbb{R}$, and specify the Hilbert space V and the norm $\|\cdot\|_V$.

Hint: The following Trace Inequality may be useful: There exist a constant C, such that for all $v \in H^1(\Omega)$, we have that

$$||v||_{L_2(\Gamma)} \le C||v||_{H^1(\Omega)}.$$

Note: The exam continues on the next page!

Problem 3: Consider an abstract variational problem: Find $u \in V$ such that

$$a(u, v) = L(v)$$

for all $v \in V$, with V a Hilbert space, and $a(\cdot, \cdot)$ and $L(\cdot)$ are bilinear and linear forms on V satisfying the conditions in Lax-Milgrams theorem. The abstract Galerkin method for this problem is formulated as: Find $U \in V_h$ such that

$$a(U, v) = L(v)$$

for all $v \in V_h$, with V_h a finite dimensional subspace of V.

- (a) Prove the Galerkin orthogonality: a(u-U,v)=0, for all $v\in V_h$.
- (b) Prove that the Galerkin solution U is the best possible solution in the space V_h , with respect to the energy norm $||w||_E = \sqrt{a(w,w)}$, using the Schwarz inequality:

$$a(v, w) \le ||v||_E ||w||_E, \quad \forall v, w \in V.$$

(c) Now consider the case of $V = H_0^1(0,1)$, and $V_h = \{\text{continuous piecewise linear functions } v \text{ on } \mathcal{T}_h \text{ with } v(0) = v(1) = 0\}$, with \mathcal{T}_h a subdivision of the interval (0,1). Define

$$a(u,v) = \int_0^1 a(x)u'(x)v'(x) \ dx, \quad L(v) = \int_0^1 f(x)v(x) \ dx.$$

The energy norm $\|\cdot\|_E$ for this problem is defined as $\|v\|_E = \|v'\|_a$, with the weighted L_2 norm

$$||w||_a = \left(\int_0^1 a(x)w^2(x) \ dx\right)^{1/2}$$

Prove the a priori error estimate: $||u - U||_E \le C_i ||hu''||_a$

(d) Prove the a posteriori error estimate: $\|u - U\|_E \leq C_i \|hR(U)\|_{a^{-1}}$

The residual R(U) = f + (aU')' is defined on each subinterval $I_i = (x_{i-1}, x_i)$, where x_i are the nodes, and C_i is an interpolation constant.

Note: The exam continues on the next page!

Problem 4: Consider the problem:

$$\begin{split} &\frac{\partial u}{\partial t}(x,t) - \Delta u(x,t) = 0, \quad \forall (x,t) \in \Omega \times (0,T], \\ &u(x,t) = 0, \quad \forall x \in \partial \Omega, \\ &u(x,0) = u_0(x). \end{split}$$

Prove the following stability estimate:

$$\frac{1}{2}||u(T)||^2 + \int_0^T ||\nabla u||^2 dt = \frac{1}{2}||u_0||^2,$$

where $\|\cdot\|$ is the standard L_2 -norm of functions defined on Ω .

Problem 5: Answer the following questions related to standard FEM algorithms (it may be helpful to illustrate your answers with pictures):

- (a) Why do we have to stabilize a convection dominated convection-diffusion equation on coarse meshes?
- (b) What is artificial viscosity?
- (c) What is a least squares stabilized finite element method?
- (d) What is the empty circle property of a Delaunay triangulation?
- (e) What is the motivation for including duality in a posteriori error estimation?

Good Luck!

Johan

Solutions to exam

Problem 1: See pages 360-363 in the CDE book.

(a) Find $U \in V_h$ such that

$$\int_{\Omega} \nabla U(x) \cdot \nabla v(x) \, dx = \int_{\Omega} v(x) \, dx \quad \forall v \in V_h$$
 (1)

(b) $V_h = \{\text{continuous piecewise linear functions } v \text{ on } \mathcal{T}_h \text{ such that } v=0 \text{ on } \partial\Omega\},$ with \mathcal{T}_h the triangulation of Ω in Fig. 2, with h=1. There is 1 degree of freedom; the node N_1 .

A basis for V_h is $\{\phi_1\}$; with $\phi_1 \in V_h$, and $\phi_1(N_1) = 1$ and $\phi_1 = 0$ in all other vertices (nodes). Set $U(x) = \xi_1 \phi_1(x)$, then (1) is equivalent to $A\xi = b$ where A and b are scalars, given by

$$A_{11} = \int_{\Omega} \nabla \phi_1(x) \cdot \nabla \phi_1(x) \ dx, \quad b_1 = \int_{\Omega} \phi_1(x) \ dx$$

 A_{11} involves integration over elements $e_2, e_3, e_4, e_5, e_6, e_7$, where e_2, e_7 are of the type in Fig.15.8 at page 362 in the CDE book, with integral $\int_{e_2} \nabla \phi_1 \cdot \nabla \phi_1 \ dx = 1$, and e_3, e_4, e_5, e_6 are of the type in Fig.15.9, with integral $\int_{e_3} \nabla \phi_1 \cdot \nabla \phi_1 \ dx = 1/2$. Thus

$$A_{11} = \int_{e_2} + \int_{e_3} + \int_{e_4} + \int_{e_5} + \int_{e_6} + \int_{e_7} = 1 + 1/2 + 1/2 + 1/2 + 1/2 + 1 = 4$$

$$b_1 = \int_{\Omega} \phi_1(x) \ dx = \text{volume under } \phi_1 = 6 \times \frac{\frac{h^2}{2} \times 1}{3} = h^2 = 1.$$

(c) Now we have 2 degrees of freedom: N_1, N_2 , which leads to a 2×2 -matrix A, and a 2-vector b, given by

$$A_{ij} = \int_{\Omega} \nabla \phi_i(x) \cdot \nabla \phi_j(x) \ dx, \quad b_i = \int_{\Omega} \phi_i(x) \ dx,$$

since the boundary integral from the partial integration is equal to zero by the boundary conditions. $A_{11}=4$ as before. A_{22} involves integration over elements e_4, e_7, e_8 , where e_4 is of the type in Fig.15.8 at page 362 in the CDE book, with integral $\int_{e_4} \nabla \phi_2 \cdot \nabla \phi_2 \ dx = 1$, and e_7, e_8 are of the type in Fig.15.9, with integral $\int_{e_7} \nabla \phi_2 \cdot \nabla \phi_2 \ dx = 1/2$. Thus

$$A_{22} = \int_{e_4} + \int_{e_7} + \int_{e_9} = 1 + 1/2 + 1/2 = 2$$

 A_{12} involves integration over elements e_4, e_7 , which are of the type in Fig.15.10 at page 363 in the CDE book, with integral $\int_{e_4} \nabla \phi_1 \cdot \nabla \phi_2 \ dx = -1/2$. Thus

$$A_{12} = \int_{e_4} + \int_{e_7} = -1/2 - 1/2 = -1,$$

and $A_{21} = A_{12}$.

 $b_1 = 1$ as before, and

$$b_2 = \int_{\Omega} \phi_1(x) \ dx = \text{volume under } \phi_2 = 3 \times \frac{\frac{h^2}{2} \times 1}{3} = \frac{3}{6}h^2 = \frac{1}{2}.$$

Figure 2: Triangulation (mesh) of domain Ω .

Problem 2: Theorem 21.1 in the CDE book.

(a) Section 21.4.3 in CDE book. Use the Poincare-Friedrich inequality (Theorem 21.4) to prove that $a(\cdot, \cdot)$ is elliptic. Continuity of $a(\cdot, \cdot)$ follows by

$$|a(v,w)| = \int_{\Omega} \nabla v \cdot \nabla w \, dx \le ||\nabla v|| \, ||\nabla w||$$

$$\le (||\nabla v||^2 + ||v||^2)^{1/2} (||\nabla w||^2 + ||w||^2)^{1/2} = ||v||_V ||w||_V$$

- (b) The assumptions of the Lax-Milgram theorem are not satisfied: With $V = H^1(\Omega)$ we can prove that $a(\cdot, \cdot)$ and $L(\cdot)$ are continuous, but we cannot prove that $a(\cdot, \cdot)$ is elliptic; we cannot bound the L_2 -norm of the solution using Poincare-Friedrich inequality (Theorem 21.4) since we do not know anything about the solution on the boundary (we have only Neumann boundary conditions).
- (c) Section 21.4.4 in the CDE book. Continuity of $a(\cdot,\cdot)$ follows by

$$|a(v, w)| = \int_{\Omega} (\nabla v \cdot \nabla w + vw) \ dx \le ||\nabla v|| \ ||\nabla w|| + ||v|| \ ||w||$$
$$= (||\nabla v||, ||v||) \cdot (||\nabla w||, ||w||) \le ||v||_{V} ||w||_{V}$$

and continuity of $L(\cdot)$ follows by

$$|L(v)| = \int_{\Gamma} gv \ ds \le ||g||_{L_2(\Gamma)} ||v||_{L_2(\Gamma)} \le ||g||_{L_2(\Gamma)} C ||v||_{H^1(\Omega)},$$

so that $\kappa_3 = C \|g\|_{L_2(\Gamma)}$.

Problem 3:

- (a) Section 21.3
- (b) Section 21.3
- (c) Section 8.2.1
- (d) Section 8.2.2

Problem 4:

Section 16.3

Problem 5:

- (a) Section 18.2.3
- (b) Section 18.3
- (c) Section 18.3
- (d) See lecture notes from lectures 6, slides avaliable at:

http://www.nada.kth.se/kurser/kth/2D1260/lectures/lecture-6.pdf

(e) To derive sharp estimates of the error in other norms than the energy norm, for general adaptive algorithms.

((See lecture notes from lectures 7, slides avaliable at:

http://www.nada.kth.se/kurser/kth/2D1260/lectures/lecture-7.pdf)