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Stability

Precondition

Science
Function approximation
Galerkin's method

Theory

Galerkin's method for initial value ODE (timestepping)

We can write an ODE in general form

We choose a model problem

dG(0) / Backward Euler

We introduce the discontinuous Galerkin method with U represented by piecewise constant polynomials dG(0).

We seek U € Wy, with U, = ug, W}, space of piecewise constants

¢ e
/ Uv + aUv — fudt + (U, —U,—1)v=0, Yve W= [v,]
tn1 N L,
Up=U, 1+ / —a(®)U(t) + f(t)dt =
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N < n >
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Example function and notation for dG(0)

tn
fn = gnfl + / _a(tﬂ)gnqsn + f(t")dt

to-1
Note that U = 0 on a time interval [tn1,tn]-

By computing the integral with the right-point quadrature rule, we get the familiar backward Euler time-stepping method (with an additional quadrature error, which we can



omit in implementation, but should take into account in detailed error analysis)
£n = gn—l + kn(fa(tn)gn + f(tn)) + Eq
cG(1) / Crank-Nicolson

We introduce the continuous Galerkin method with U represented by piecewise linear polynomials ¢G(1).

We seek U € Vj, with U(0) = uyg, Vj, space of piecewise linears

tn .
/ Uv+aUv— fudt =0, YveW,=

tn1

Uy = Uy + / " _a(U) + ft)dt
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’ kn =ty —th1 =
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tn1

By computing the integral with the trapezoid quadrature rule, we get the familiar Crank-Nicolson time-stepping method (with an additional quadrature error, which we can omit
in implementation, but should take into account in detailed error analysis)

gn = gn—l + %kn(*a(tn,1)§n71 - a(tn)gn + f(tnfl) + f(tn)) + Eq

Stability
We define the stability of the solution u (or derivatives) of an equation as sensitivity to perturbations in data f (source) and u(O) (initial value).

We are seeking bounds (estimates) of type

[[ull < S| £l
[[u] < S||lu(0)]
U]l < S| £l
1U]I < S][w(0)]

for the exact and discrete solution respectively, where S is a constant/factor which doesn't depend on w or U.
Stability for model problems

We look at a collection of model problems:
Heat equation
u— Au= f(t,z)

U(Oaz) = uO(m)
u(t,z) =0, zel
Wave equation
i — Au= f(t,z)
U(Oaz) = uO(x)
w(0, ) = g ()
u(t,z)=0, zel

or equivalently (to help analysis), with u; = u

d] — AUQ =0
A’U:Z — Aul = f(t,x)
u(0,z) = up(z)
u(0,z) = uo(z)
u(t,z)=0, zel

Stability estimates for the heat equation

Assume f = 0.

Use identity



1 1 1
— Dy|u|* = —Dt/uudx: —/(ﬁu+uﬁ)dz:/ﬁud:ﬂ: (%, w)
2 2 o 2 Ja 0

Weak form of heat equation:

Multiply with v and integrate in space and time

T T
/ /(u — Au)vdzdt = / (@, v) + (Vu, Vu)dt =0
0 0 0
Galerkin's method ¢G(1)dG(0) (backward Euler) for the heat equation
(Upyv) = (Uy_1,v) — ko (VU (b, 2), V), Yo € W,
After solving for U,,, this statement is true for all v, i.e. we have a theorem for every choice of v.

1. Choose v = u in weak form

T
2. / (%,u) + (Vu, Vu)dt =0 =

0

T 1 2 2

3. / Ll + vl = o0 =

0o 2

2 T 2 2

4. [lu(T)]] +2/0 [Vul|“dt = [lu(0)]|

Dissipation of temperature/energy ().

5. Choose v = U, in discrete equation

6. (Uns Un) = (Un-1,Un) = kn(VU,, VU,)) =

7. (U, = Up1,Up) + k(VU,,VU,)) = 0 =
UseUp = + (Up — Up-1) + 3 (U + Upn-1)

1 1

8. (Un - Un717 5 (Un - Unfl)) + (Un - Unfly 5 (Un + Unfl)) + kn(VUny VUn)) =0=
1 g 1 2 g 1 2

9. _HUnfUn—lH +_HUn” +anVU'n” - _”Un—IH =
2 2 2

10. |1Tal* + 2k VUI|* < | Upa |

Similar statement for discrete solution.

—_

1. Directly from 2
2 2
12, ITI? < ([T
Discrete solution does not grow for any time step.
Stability estimates for the wave equation

Assume f = 0.
Weak form of wave equation:

Multiply with v1, V2 and integrate in space and time
T
/ /(’U:l’l)l — AU2U1 — A’U’QUQ + Aulv2)dmdt =0=
0 Q

foT((dhul) — (Aug,u;) + (—Aus, ug) + (Aug,ug))dt =0

Galerkin's method ¢G(1)cG(1) (Crank-Nicolson) for the wave equation

1 1 1 1
(Uln,vl) — (Ulnfl,’l)l) + 5 kn(VUZn,Vvl)) + 5 k‘n(VU2n,1,V’Ul)) — (VU2n,V’Ug) + (VUZn,l, va) + 5 kn(VUln, V112) + 5 kn(VUln,

1. Multiply with v1, V9 and integrate in space



2. (dl,ul)—(Auz,u1)+(
3. (dl,u1)+(Vuz,Vu1)+(Vd2,Vuz)f(Vul,VuQ)=0:>
+ (de,vuz) =0=

—A’U:z,Uz) + (Aul,U2) =0=

4. (d1,u1)
s Du(lal* + | Vul?) = 0
Total energy conserved.
6. Choose v; = Ul,, v, = U2,
Same process as for heat equation
7. TN + IV Ul = [Una |* + [ VU

Also total energy for discrete solution conserved.

Stabilization / Streamline-diffusion

We examine the convection-diffusion equation

U+ V- (Bu)— V- (eVu) + au = f(t,z)
u(O,.'IJ) = uO(x)

(Vu(t,m) . n) =0, z€eTy

u(t,z) =0, ze€Tlp

We can write
V- (Bu)=B-Vu+ (V-Bu
If V - 8 = 0 (divergence-free) we have
V- (Bu) = 8- Vu
For this discussion we can also assume for simplicity
u=0
Standard Galerkin
Galerkin's method for convection-diffusion
(8- VU,v)+ (eVU,Vv) + (aU,v) — (f,v) =0, YveV,
Examine stability by choosing v = U:
Use Young's inequality
0 < (a — cb)® = a® — 2cab + AV =
ab< &+ £ b

We can define the operator Aw = 8- w — Aw + aw

We assume (Av,v) > ¢||v]|*.

(8- VU,U) + (eVU,VU) + (aU,U) — (f,U) = 0 =

Example of unstable solution for standard Galerkin

UI* < AT =

cUI* < 51017 + 5 1£1° =

IN

2 1 2
cUll* <z £l
If diffusion coefficient € is small (like 0), VU can grow large, while U cannot. I.e. we have no control of derivatives of U, only of U itself.
Streamline diffusion / Least squares

Streamline diffusion / Galerkin least squares method for convection-diffusion

(AU,v+ 04v) — (f,v+ 0Av) =0, YweV,, d=—



Examine stability by choosing v = U

(AU,U + §AU) — (f,U + 6AU) = 0 =

c|Ul* + [V3AU|® < || £111U1| + IV/a£]| [ vV3AU]| =

cl|U|* + V8- VU|* < 5 |IUI* + 5 1 /I* + 5 IVo£II* + 5 V8B - VU =
c|UI* + [VBAU|® < £ 1U11° + 5 I £1* + 5 [VBFI° + 5 I1V3AU| =
LU + 3 IVBAU|® < £ (1£I* + 5 IV3FI° =

IU)1* + IveAU|* < C| £II*

Even if diffusion constant € is small (like 0), |/88 - VU|| % cannot grow large. Le. we have control of derivatives of U Example of stabilized solution with streamline-
(in the streamline direction). diffusion

We typically use the simple variant (where we only stabilize the convection term)
(8- VU,v+6(8- Vv)) + (eVU,Vv) + (aU,v) — (f,v) =0, YveV,

The streamline-diffusion method also includes a shock-capturing term (é VU, Vv) for capturing discontinuities in the solution. We omit this discussion here, and refer to CDE
chapter 18.

Software

Postcondition
You should now be familiar with:

What a stability estimate is
Stability estimates for the heat equation
The streamline-diffusion method

Exercises
9.4,9.5,9.14,9.43, 10.18, 10.21, 10.28, 16.18, 17.19, 17.20, 17.27, 18.7, 18.9
Examination

1.1

You are given an implementation of the standard Galerkin method applied to the convection-diffusion equation. Modify the implementation to implement the streamline-
diffusion method and discuss the solutions for the two methods, why does one work better than the other? What is the relation to stability?

The necessary files are:

http://www.icarusmath.com/icarus/images/Streamline.py
http://www.icarusmath.com/icarus/images/Dolfin-2.xml.gz
http://www.icarusmath.com/icarus/images/Subdomains.xml.gz
http://www.icarusmath.com/icarus/images/V elocity.xml.gz

Note: For the implementation in this question we define & = 0 and we can use the simple variant where we only look at the convection term in the stabilization. For simplicity
you can approximate | B8 | =1.
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