Written Examination: Mathematical Models, Analysis and Simulation, Part I

Stockholm, December 14, 2005

Solutions

1.

(a) The network equations give a system

$$
\left(\begin{array}{cc}
C^{-1} & A \\
A^{T} & 0
\end{array}\right)\binom{y}{x}=\binom{b}{f}
$$

where A denotes the (reduced) incidence matrix, y the branch currents, x the node potentials, b the voltage sources, and f the current sources. In the present example:

$$
A=\binom{-1}{-1}, C=\left(\begin{array}{cc}
1 / R_{1} & \\
& 1 / R_{2}
\end{array}\right), x=x_{1}, y=\binom{I_{1}}{I_{2}}, f=-I .
$$

Solving the system yields

$$
x_{1}=\frac{I}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}
$$

(b) Similarly as before, we have

$$
A_{0}=\left(\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right), b=\left(\begin{array}{c}
10 \\
10 \\
0 \\
0 \\
0
\end{array}\right)
$$

and C the unit matrix. Solving the system yields $I_{3}=0$ and the total resistance, $R_{\text {tot }}=R$.
2.
(a) $L=h, T=\sqrt{h / g}, a=\sigma / h^{3}$.
(b) $v f^{\prime}=f^{\prime}+\frac{3}{2} f f^{\prime}+\frac{1}{2} a f^{\prime \prime \prime}$ $a \frac{d^{2} y}{d s^{2}}=b y-\frac{3}{2} y^{2}$
(c) The new scaling is $s_{*}=s / \sqrt{\sigma}$. This leads to the system

$$
\binom{y^{\prime}}{p^{\prime}}=\binom{p}{c y-\frac{3}{2} y^{2}} .
$$

The system has two stationary points, $(0,0)$ and $\left(0, \frac{2}{3} c\right)$.Using the Jacobian and computing the eigenvalues we have

- $(0,0): \lambda= \pm \sqrt{c}$, which gives a saddle point
- $\left(0, \frac{2}{3} c\right): \lambda= \pm i \sqrt{c}$, which is a center

3. Let $H^{1}(0,1)$ denote the Sobolev space of all square integrable functions with square integrable first derivatives.
(a) Let $V=\left\{v \in H^{1}(0,1) \mid v(0)=0\right\}$ and $W=\{u \mid u-1 \in V\}$. The weak formulation is: Find $u \in W$ such that $a(u, v)=L(v)$ for all $v \in V$ where

$$
a(u, v)=\int_{0}^{1} u^{\prime} v^{\prime} d x, L(v)=\int_{0}^{1} v d x+v(1) .
$$

(b) ansatz: $u(x)=1+a x+b x^{2}+c x^{3}$. Applying Galerkin method gives $u(x)=$ $-\frac{x^{2}}{2}+2 x+1$
(c) The dimension depends on the handling of the boundary conditions. It may be 2 or 3 . The load vector is $L=(1 / 2,4 / 3)^{T}$.
(d) $u_{h}^{\prime}=1+h / 2$, where $h=1-1 / 3=2 / 3$.
4.
(a) Let λ be an eigenvalue of P. Then it holds $A^{T} A x=\lambda x$. Hence $x^{T} A^{T} A x=$ $\lambda x^{T} x$ and $\|A x\|^{2}=\lambda\|x\|^{2}$. This yields $\lambda \geq 0$.
(b) It holds $x^{*}=x^{*}-h A^{T}\left(A x^{*}-b\right)$. Subtracting this from the recursion: $e_{k+1}=e_{k}-h A^{T}\left(A e_{k}-0\right)=B(h) e_{k}$.
(c) The eigenvalues μ_{i} of $B(h)$ are $1-h \lambda_{1}$. Hence, $1-h a \geq \mu_{i} \geq 1-h b$.
(d) Because of (c), $1-\frac{a}{b} \geq \mu_{i} \geq 0$. Since $0<a \leq b,\|B(h)\|<1$.
(e) $h=2 /(a+b)$.
5. This problem is already given on 18/1-2003
6.
(a) $I=\left(I-v w^{T}\right)\left(I-c v w^{T}\right)=I-v w^{T}-c v w^{T}+c v w^{T} v w^{T}=I-(c+1-$ $\alpha c) v w^{T}$ where $\alpha=w^{T} v$. This leads to $c=1 /(\alpha-1)$. The matrix is singular iff $\alpha=1$.
(b) $B=A-v w^{T}=A\left(I-A^{-1} v w^{T}\right)$. Using (a), $B^{-1}=\left(I-c A^{-1} v w^{T}\right) A^{-1}$ where $c=1 /(\alpha-1)$ and $\alpha=w^{T} A^{-1} v$. This matrix is singular iff $w^{T} A^{-1} v=1$.
(c) Subtraction of the first entry is obtained by choosing $v=w=e_{1}$ the first unit vector. The results of (b) give $\alpha=s$ such that the modification matrix becomes $\frac{1}{s-1} q r^{T}$.

