Written Examination: Mathematical Models, Analysis and Simulation, Part I

Stockholm, January 17, 2006

Solutions

- 1. It holds $A = (a 1)I + ee^{T}$ where $e = (1, ..., 1)^{T}$.
 - (a) It holds Ax = 0 iff $(a-1)x + \alpha e = 0$, $\alpha = e^T x$. This can only be true for $x \neq 0$ if $x = e, 1 a = \alpha = n$ unless a = 1. Hence,
 - a = 1: rank A = 1
 - $a \neq 1 n$: rank A = n
 - a = 1 n: the dimension of the nullspace is one such that the rank is n 1.
 - (b) let λ be an eigenvalue, x be an eigenvector. Then as above: $(a-1)x + ee^T x = \lambda x$ such that $(a-1-\lambda)x + \alpha e = 0$. We have agian two cases:
 - $\alpha = 0$: $\lambda = a 1$.
 - $\alpha \neq 0$: $x = e, \alpha = n, a 1 \lambda + n = 0, \lambda = n + a 1$.
 - (c) A is positive definite iff all eigenvalues are larger than one. This is equivalent to a > 1.
- 2. Let $x_* = A^{-1}b$ the solution. Then $e_k = x_* x_k$.
 - (a) It holds $r_* = Ax_* b = 0$ such that $x_* = x_* \alpha r_*$. By subtraction of this equality from the recursion we obtain $e_{k+1} = e_k \alpha (r_* r_k) = e_k \alpha Ae_k = Be_k$. Moreover, the eigenvalues of *B* are $\mu_l = 1 \alpha \lambda_l$.
 - (b) According to the lecture: $||e_{k+1}|| \le \max_{1\le l\le n} |\mu_l| ||e_k||$. Observing $||x||^2 = x^T x$, we obtain the desired result.
 - (c) Choose $\alpha = 2/(\lambda_1 + \lambda_n)$. This leads to $\max_{1 \le l \le 1} |\mu_l| = \max(|\mu_1|, |\mu_n|)$. With the given α , $\mu_1 = (\lambda_n - \lambda_1)/(\lambda_1 + \lambda_n)$ and $\mu_n = -\mu_1$. Inserting these expressions gives the desired result.

- (a) The first equation indicates that the number of reptiles decreases if the number of mammals increases. In a similar way, the third equation indicates a decrease in plants if the number of reptiles increases. Hence, mammals eat reptiles who in turn eat plants.
- (b) Set $u'_r = u'_m = u'_p = 0$ and solve the resulting nonlinear system. There are exactly five solutions:

no	<i>U</i> _r	u_m	<i>u_p</i>
1	0	0	0
2	0	0	f/g
3	(fc-ag)/(ch)	0	a/c
4	d/e	-a/b	0
5	d/e	$(cu_p-a)/b$	(ef-hd)/(eg)

These solutions are biologically meaningful if they are nonnegative. So 1 and 2 are ok while 4 is not. If 3 and 5 are meaningful depends on the values of the constants.

(c) The eigenvalues of the Jacobian at the origo are -a, -d and f. Hence, the origo is not stable.

4.

(a) Since we have homogeneous Dirichlet boundary conditons on both sides $V = H_0^1(0, 1)$, the Sobolev space of once differentiable functions with square integrable derivative which fulfill the homogeneous boundary conditions. So the weak form is: Find a function $u \in V$ such that a(u, v) = L(v) for all test functions $v \in V$. Here,

$$a(u,v) = \int_0^1 (u'v' + uv)dx, L(v) = \int_0^1 v dx$$

(b) Using the ansatz $u_h(x) = c \sin(\pi x)$ we can choose the test function $v_{h,1} = \sin(\pi x)$. This gives

$$a(u_h, v_{h,1}) = c \int_0^1 (\pi^2 \cos^2(\pi x) + \sin^2(\pi x)) dx = c(\frac{1}{2}(\pi^2 - 1) + 1),$$

and

$$L(v_{h,1}) = \int_0^1 \sin(\pi x) dx = \frac{2}{\pi}$$

Hence, $c = \frac{2}{\pi} / [\frac{1}{2}(\pi^2 - 1) + 1].$

3.

(c) The ansatz is now $u_h(x) = c\phi_1(x)$ where

$$\phi_1(x) = \begin{cases} 2x, & 0 < x < 1/2\\ 2 - 2x, & 1/2 < x < 1 \end{cases}$$

This gives

$$a(c\phi_1,\phi_1) = c13/3, L(\phi_1) = 1/2$$

such that c = 3/26. We obtain $u_h(1/2) = 0.1171$ in case (b) and $u_h(1/2) = 0.11538$ in case (c).

5.

(a) The characteristic equations are

$$\frac{dx}{dt} = 1 - 2u, \frac{du(x(t), t)}{dt} = 0.$$

We see immediately from the second equation that u is constant along each characteristic. Using this information in the first equation shows that dx/dt = const such that the characteristics are straight lines.

(b) The Rankine-Hugoniot condition for the shock speed is

$$\frac{ds}{dt} = \frac{Q(u^+) - Q(u^-)}{u^+ - u^-} = 0$$

such that the shock location does not change. Hence, the solution at t = 1 is the same as that at t = 0 that is f.

(c) Far away from the shock, u_x is neligible such that the solution will not be perturbed. However, near the discontinuity, the shock will be smeared out.

6.

- (a) Formulate the Lagrange function $L(x,\lambda) = \frac{1}{2} ||Ax a||^2 + \lambda^T (Cx c)$. Differentiation of this expression with respect to *x* gives $A^T A \hat{x} + C^T \lambda = A^T a$ while differentiation with respect to λ yields Cx = c.
- (b) The matrix is indefinite. Take for example

$$\left(\begin{array}{cc} 1 & a \\ a & 0 \end{array}\right), a = \sqrt{3}/2.$$

Then $\lambda_1 = -3/2$, $\lambda_2 = 1/2$.

(c) Since CC^T is nonsingular, the first equation can be multiplied by C and we obtain $\lambda = (CC^T)^{-1}C(A^Ta - I\hat{x})$. Inserting this expression in the first equation once again and reordering yields

$$(I - C^T (CC^T)^{-1}C)\hat{x} = (I - C^T (CC^T)^{-1}C)A^T a.$$

Multiplying the second equation by $C^T (CC^T)^{-1}$ yields

$$C(CC^{T})^{-1}C\hat{x} = C^{T}(CC^{T})^{-1}c.$$

Adding both equations gives the requires result

$$P = (I - C^{T} (CC^{T})^{-1} C) A^{T}, Q = C^{T} (CC^{T})^{-1}.$$