Written Examination: Mathematical Models, Analysis and Simulation, Part I

Stockholm, January 17, 2006

Solutions

1. It holds $A=(a-1) I+e e^{T}$ where $e=(1, \ldots, 1)^{T}$.
(a) It holds $A x=0$ iff $(a-1) x+\alpha e=0, \alpha=e^{T} x$. This can only be true for $x \neq 0$ if $x=e, 1-a=\alpha=n$ unless $a=1$. Hence,

- $a=1: \operatorname{rank} A=1$
- $a \neq 1-n: \operatorname{rank} A=n$
- $a=1-n$: the dimension of the nullspace is one such that the rank is $n-1$.
(b) let λ be an eigenvalue, x be an eigenvector. Then as above: $(a-1) x+$ $e e^{T} x=\lambda x$ such that $(a-1-\lambda) x+\alpha e=0$. We have agian two cases:
- $\alpha=0: \lambda=a-1$.
- $\alpha \neq 0: x=e, \alpha=n, a-1-\lambda+n=0, \lambda=n+a-1$.
(c) A is positive definite iff all eigenvalues are larger than one. This is equivalent to $a>1$.

2. Let $x_{*}=A^{-1} b$ the solution. Then $e_{k}=x_{*}-x_{k}$.
(a) It holds $r_{*}=A x_{*}-b=0$ such that $x_{*}=x_{*}-\alpha r_{*}$. By subtraction of this equality from the recursion we obtain $e_{k+1}=e_{k}-\alpha\left(r_{*}-r_{k}\right)=e_{k}-\alpha A e_{k}=$ $B e_{k}$. Moreover, the eigenvalues of B are $\mu_{l}=1-\alpha \lambda_{l}$.
(b) According to the lecture: $\left\|e_{k+1}\right\| \leq \max _{1 \leq l \leq n}\left|\mu_{l}\right|\left\|e_{k}\right\|$. Observing $\|x\|^{2}=$ $x^{T} x$, we obtain the desired result.
(c) Choose $\alpha=2 /\left(\lambda_{1}+\lambda_{n}\right)$. This leads to $\max _{1 \leq l \leq 1}\left|\mu_{l}\right|=\max \left(\left|\mu_{1}\right|,\left|\mu_{n}\right|\right)$. With the given $\alpha, \mu_{1}=\left(\lambda_{n}-\lambda_{1}\right) /\left(\lambda_{1}+\lambda_{n}\right)$ and $\mu_{n}=-\mu_{1}$. Inserting these expressions gives the desired result.
(a) The first equation indicates that the number of reptiles decreases if the number of mammals increases. In a similar way, the third equation indicates a decrease in plants if the number of reptiles increases. Hence, mammals eat reptiles who in turn eat plants.
(b) Set $u_{r}^{\prime}=u_{m}^{\prime}=u_{p}^{\prime}=0$ and solve the resulting nonlinear system. There are exactly five solutions:

no	u_{r}	u_{m}	u_{p}
1	0	0	0
2	0	0	f / g
3	$(f c-a g) /(c h)$	0	a / c
4	d / e	$-a / b$	0
5	d / e	$\left(c u_{p}-a\right) / b$	$(e f-h d) /(e g)$

These solutions are biologically meaningful if they are nonnegative. So 1 and 2 are ok while 4 is not. If 3 and 5 are meaningful depends on the values of the constants.
(c) The eigenvalues of the Jacobian at the origo are $-a,-d$ and f. Hence, the origo is not stable.
4.
(a) Since we have homogeneous Dirichlet boundary conditons on both sides $V=H_{0}^{1}(0,1)$, the Sobolev space of once differentiable functions with square integrable derivative which fulfill the homogeneous boundary conditions. So the weak form is: Find a function $u \in V$ such that $a(u, v)=L(v)$ for all test functions $v \in V$. Here,

$$
a(u, v)=\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x, L(v)=\int_{0}^{1} v d x
$$

(b) Using the ansatz $u_{h}(x)=c \sin (\pi x)$ we can choose the test function $v_{h, 1}=$ $\sin (\pi x)$. This gives

$$
a\left(u_{h}, v_{h, 1}\right)=c \int_{0}^{1}\left(\pi^{2} \cos ^{2}(\pi x)+\sin ^{2}(\pi x)\right) d x=c\left(\frac{1}{2}\left(\pi^{2}-1\right)+1\right)
$$

and

$$
L\left(v_{h, 1}\right)=\int_{0}^{1} \sin (\pi x) d x=\frac{2}{\pi}
$$

Hence, $c=\frac{2}{\pi} /\left[\frac{1}{2}\left(\pi^{2}-1\right)+1\right]$.
(c) The ansatz is now $u_{h}(x)=c \phi_{1}(x)$ where

$$
\phi_{1}(x)= \begin{cases}2 x, & 0<x<1 / 2 \\ 2-2 x, & 1 / 2<x<1\end{cases}
$$

This gives

$$
a\left(c \phi_{1}, \phi_{1}\right)=c 13 / 3, L\left(\phi_{1}\right)=1 / 2
$$

such that $c=3 / 26$. We obtain $u_{h}(1 / 2)=0.1171$ in case (b) and $u_{h}(1 / 2)=$ 0.11538 in case (c).
5.
(a) The characteristic equations are

$$
\frac{d x}{d t}=1-2 u, \frac{d u(x(t), t)}{d t}=0 .
$$

We see immediately from the second equation that u is constant along each characteristic. Using this information in the first equation shows that $d x / d t=$ const such that the characteristics are straight lines.
(b) The Rankine-Hugoniot condition for the shock speed is

$$
\frac{d s}{d t}=\frac{Q\left(u^{+}\right)-Q\left(u^{-}\right)}{u^{+}-u^{-}}=0
$$

such that the shock location does not change. Hence, the solution at $t=1$ is the same as that at $t=0$ that is f.
(c) Far away from the shock, u_{x} is neligible such that the solution will not be perturbed. However, near the discontinuity, the shock will be smeared out.
6.
(a) Formulate the Lagrange function $L(x, \lambda)=\frac{1}{2}\|A x-a\|^{2}+\lambda^{T}(C x-c)$. Differentiation of this expression with respect to x gives $A^{T} A \hat{x}+C^{T} \lambda=A^{T} a$ while differentiation with respect to λ yields $C x=c$.
(b) The matrix is indefinite. Take for example

$$
\left(\begin{array}{cc}
1 & a \\
a & 0
\end{array}\right), a=\sqrt{3} / 2 .
$$

Then $\lambda_{1}=-3 / 2, \lambda_{2}=1 / 2$.
(c) Since $C C^{T}$ is nonsingular, the first equation can be multiplied by C and we obtain $\lambda=\left(C C^{T}\right)^{-1} C\left(A^{T} a-I \hat{x}\right)$. Inserting this expression in the first equation once again and reordering yields

$$
\left(I-C^{T}\left(C C^{T}\right)^{-1} C\right) \hat{x}=\left(I-C^{T}\left(C C^{T}\right)^{-1} C\right) A^{T} a .
$$

Multiplying the second equation by $C^{T}\left(C C^{T}\right)^{-1}$ yields

$$
C\left(C C^{T}\right)^{-1} C \hat{x}=C^{T}\left(C C^{T}\right)^{-1} c
$$

Adding both equations gives the requires result

$$
P=\left(I-C^{T}\left(C C^{T}\right)^{-1} C\right) A^{T}, Q=C^{T}\left(C C^{T}\right)^{-1}
$$

