Lecture 1: Linear Algebra, S. Ch 1

n-vector \mathbf{x} column vector $\left(x_{1}, x_{2}, \ldots, x_{\mathrm{n}}\right)^{\mathrm{T}}$ in $\boldsymbol{R}^{\mathrm{n}}\left(\right.$ or $\left.\boldsymbol{C}^{\mathrm{n}}\right)$; $m \times n$ matrix $\mathbf{A}=\left(a_{i j}\right)$, i row index, j column index

A as linear operator: $\boldsymbol{R}^{n}->\boldsymbol{R}^{\mathrm{m}}$

$$
\mathbf{A}=\left(\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right), \mathbf{A} \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}
$$

linear combination is in the column space $V=R(\mathbf{A})$, spanned by the columns of \mathbf{A}.

$$
\operatorname{rank}(\mathbf{A})=\operatorname{dim}(V)=\max . \text { number of linearly independent columns }
$$

Matrix multiplication: $\boldsymbol{R}^{n}->\boldsymbol{R}^{\mathrm{m}}->\boldsymbol{R}^{k} \quad \boldsymbol{R}^{n}->\boldsymbol{R}^{k}$

\mathbf{A}	\mathbf{B}	\mathbf{C}
mxn	kxm	kxn

$\mathbf{C x}=\mathbf{B}(\mathbf{A x})=(\mathbf{B A}) \mathbf{x} \quad$ Matrix multiplication is associative
Different views:

1. $c_{i j}=\sum_{s=1}^{m} b_{i s} a_{s j}=B(i,:) * A(:, j)$, scalar product of row i of \mathbf{B} with column j of \mathbf{A}
2. $\mathbf{C}(:, \mathrm{j})=\mathbf{B}(:, 1) a_{1, \mathrm{j}}+\mathbf{B}(:, 2) a_{2, \mathrm{j}}+\ldots+\mathbf{B}(:, \mathrm{m}) a_{\mathrm{m}, \mathrm{j}}$, lin.comb of columns of \mathbf{B} Column space of \mathbf{C} no larger than column space of \mathbf{B}
3. $\mathbf{C}=\mathbf{B}(:, 1)^{*} \mathbf{A}(1,:)+\mathbf{B}(:, 2)^{*} \mathbf{A}(2,:)+\ldots+\mathbf{B}(:, m)^{*} \mathbf{A}(m,:)$
"Outer product", \mathbf{C} as sum of rank-one matrices
Ex.
$\mathbf{A}=\mathbf{I}+\mathbf{u v}^{\mathrm{T}}$.
Solve $\mathbf{A x}=\mathbf{b}$. How many solutions? Formula for \mathbf{A}^{-1} ? Eigenvalues of \mathbf{A} ?

Main problems of Numerical Linear Algebra

I. Solve linear system

$$
\mathbf{A x}=\mathbf{b}, \mathbf{A} m \times n, \text { often } m=n
$$

II. Eigenvalue problem: Find eigenvector(s) \mathbf{x} and complex eigenvalue(s) λ

$$
\mathbf{A x}=\lambda \mathbf{x}
$$

III. Optimization

1. "Linear programming"

$$
\min _{\mathbf{x}} \mathbf{c}^{T} \mathbf{x} \text { subject to } \mathbf{A x} \geq \mathbf{b}, \mathbf{x} \geq 0
$$

2. Least squares approximation

$$
\min _{\mathbf{x}} \sum w_{i} r_{i}^{2}, \mathbf{r}=\mathbf{A x}-\mathbf{b}
$$

3. Energy minimization - equilibrium

$$
\min _{\mathbf{x}} \frac{1}{2} \sum_{i, j} a_{i j} x_{i} x_{j}-\sum_{i} b_{i} x_{i}=\min _{\mathbf{x}} \frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}-\mathbf{b}^{T} \mathbf{x}
$$

Properties of A:

- Symmetry
- Sparsity
- Condition / singularity

Sources of linear systems

- Discretization of differential and integral equations
o Finite differences \& - volumes
o Finite Elements
o Spectral / Pseudo-spectral
- Network models \& graphs
o Electric circuits, mechanical trusses, hydraulic systems
o Markov chains

Ex. The K, B, T, C -matrices of S. Ch 1

Transversally loaded string, small displacements
$-S \frac{d^{2} u}{d x^{2}}=f(x), u(0)=u(L)=0$
Difference approximations

$\Delta x \cdot u^{\prime}\left(x_{j}\right)=\left\{\begin{array}{c}u_{j+1}-u_{j}+O\left(\Delta x^{2}\right) \\ \left(u_{j+1}-u_{j-1}\right) / 2+O\left(\Delta x^{3}\right) \\ u_{j}-u_{j-1}+O\left(\Delta x^{2}\right)\end{array}\right.$

$$
\left\{\begin{array}{ccccccccc}
\hline 0 & \ldots & 0 & 0 & -1 & 1 & 0 & \ldots & 0 \\
\hline 0 & \ldots & 0 & -1 / 2 & 0 & 1 / 2 & 0 & \ldots & 0 \\
\hline 0 & \ldots & 0 & -1 & 1 & 0 & 0 & \ldots & 0 \\
\hline
\end{array} *\left(\begin{array}{c}
\ldots \\
u_{j-1} \\
u_{j} \\
u_{j+1} \\
\ldots
\end{array}\right)\right.
$$

The string:

$$
\begin{aligned}
& -\Delta x^{2} \cdot u^{\prime \prime}\left(x_{j}\right)=-u_{j-1}+2 u_{j}-u_{j+1}+O\left(\Delta x^{4}\right): \\
& -u_{j-1}+2 u_{j}-u_{j+1}=\Delta x^{2} f\left(x_{j}\right) / S, j=1,2, \ldots, n, \quad u_{0}=u_{n+1}=0 \\
& \mathbf{K}_{n} \mathbf{u}=\mathbf{f}
\end{aligned}
$$

Solution by Gaussian elimination: (Matlab): u = K\f;
Step k subtracts a multiple of row k (also in RHS) from rows $k+1, k+2, \ldots, n$, Leaves first k rows unchanged, preserves solution set.

Ex. \mathbf{K}_{3}

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) \mathbf{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \Rightarrow \underbrace{\left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & 3 / 2 & -1 \\
0 & 0 & 4 / 3
\end{array}\right)}_{\mathbf{U}} \mathbf{u}=\underbrace{\left(\begin{array}{l}
a \\
b+1 / 2 a \\
c+1 / 3 a+2 / 3 b
\end{array}\right)}_{\mathbf{L}^{-1} \mathbf{b}}, \mathbf{L}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
1 / 3 & 2 / 3 & 1
\end{array}\right)
$$

$\mathbf{U u}=\mathbf{L}^{-1} \mathbf{b}$

CSC Hanke, JO 090901
Ex. Find $\mathbf{L}=\left(\mathbf{L}^{-1}\right)^{-1}$ by GE:

- Inverse of triangular matrix is triangular
- pivots $2,3 / 2,4 / 3$ all positive
- multipliers: $-1 / 2,(0),-2 / 3$ are subdiagonal elements in \mathbf{L}.

There follows

- If there are n non-zero pivots, unique solution for any RHS ;
- GE produces factorization $\mathbf{A}=\mathbf{L U}$,
o $l_{i i}=1, l_{i j}, i>j$, are the multipliers,
O $u_{i i}=$ pivots
GE with row interchanges:
If zero pivot in step k, exchange rows k and s where the element is non-zero. If no element in pivot column non-zero, matrix is singular.
"Partial pivoting": Take s for absolutely largest element in pivot column. Then

$$
\left|l_{i j}\right| \leq 1, i>j
$$

There follows:
A matrix \mathbf{A} is non-singular if and only if admits a factorization

$$
\mathbf{P A}=\mathbf{L U}
$$

with \mathbf{P} a row reordering matrix, and $\left|l_{i j}\right| \leq 1, i>j$.
Ex. Computation of determinants

$$
S \operatorname{det} \mathbf{A}=\operatorname{det} \mathbf{U}=\text { product of all pivots, } S=\operatorname{det} \mathbf{P}= \pm 1
$$

Theorem
\mathbf{A} is non-singular if and only if $\operatorname{det} \mathbf{A}$ is non-zero.

Symmetric matrices

Observation:
A step of GE without row interchanges is a rank-one modification which preserves symmetry:

$$
\mathbf{A}(2: n, 2: n):=\mathbf{A}(2: n, 2: n)-\mathbf{A}(2: n, 1) * \mathbf{A}(1,2: n) / a_{11}
$$

and the two vectors are equal because of the symmetry of A. It follows that column k of \mathbf{L} equals row k of \mathbf{U}, divided by the k th pivot $u_{k k}$:

Theorem

1. If GE can be carried out without row interchanges on the symmetric matrix \mathbf{A},

$$
\mathbf{A}=\mathbf{L} \mathbf{U}=\mathbf{L D L}^{\mathrm{T}}, \mathbf{D}=\operatorname{diag}(\mathbf{U}) .
$$

2. If additionally the pivots are positive, we may write

$$
\mathbf{A}=\mathbf{L}_{1} \mathbf{L}_{1}{ }^{\mathrm{T}}, \mathbf{L}_{1}=\operatorname{diag}\left(\sqrt{u_{i i}}\right) \cdot \mathbf{L}
$$

the Cholesky-factorization.
In many important cases it is known that \mathbf{A} is "SPD" = symmetric and positive definite, i.e. $\mathbf{x}^{\mathrm{T}} \mathbf{A x}>0$ for all non-zero \mathbf{x}
Ex.
The normal equations
$\mathbf{A}^{\mathrm{T}} \mathbf{A x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}$
of a least squares problem are SPD if the columns of A are linearly independent.
The symmetry is obvious, as the semidefnitiveness:

$$
\begin{aligned}
& \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A x}=\mathbf{y}^{T} \mathbf{y}=\sum y_{i}^{2} \geq 0,=0 \text { only if } \mathbf{y} \text { is the zero }- \text { vector, } \\
& \mathbf{A x}=\mathbf{y}
\end{aligned}
$$

But for \mathbf{y} to be the zero-vector, so must \mathbf{x} be all zeros, since the only linear combination of the columns of \mathbf{A} has vanishing coefficients. Thus, the quadratic form vanishes only when \mathbf{x} is 0 .

Theorem:

An SPD matrix has all eigenvalues real and positive.
The first step is to establish reality of eigenvalues and eigenvectors of a real symmetric matrix.
Define the Hermitian transpose \mathbf{A}^{H} of a matrix as the complex conjugate of the transpose,
$\mathbf{A}^{H}(i, j)=\operatorname{conj}(\mathbf{A}(j, i))$. Note that

$$
x^{H} x=\sum_{i} x_{i} \operatorname{conj}\left(x_{i}\right)=\sum\left|x_{i}\right|^{2} \geq 0
$$

for a vector with real or complex elements.
Proof: 1. real ... 2. positive...
Ex: Show that a symmetric matrix with positive pivots is positive definite. Hint: Use $\mathbf{A}=\mathbf{L} \mathbf{L}^{\mathrm{T}}$.
The converse is also true, but slightly harder to show, so
Theorem
An SPD matrix \mathbf{A} can be factored $\mathbf{A}=\mathbf{L D L}{ }^{\mathrm{T}}$ without row exchanges and the pivots $d_{i i}$ are positive.

Proof

Look at one step. The complete proof follows by induction.

1) The a_{11} element must be positive, because $a_{11}=\mathbf{e}_{1}^{\mathrm{T}} \mathbf{A} \mathbf{e}_{1}>0$. We call it c.
2)

$0<\mathbf{x}^{T} \mathbf{A x}=\left(z \mid \mathbf{y}^{T}\right)\left(\begin{array}{l|l}\frac{c}{} & \mathbf{a}^{T} \\ \hline \mathbf{a} & \mathbf{B}\end{array}\right)\left(\begin{array}{l}\frac{z}{\mathbf{y}}\end{array}\right)=c z^{2}+2 \mathrm{z} \mathbf{a}^{T} \mathbf{y}+\mathbf{y}^{T} \mathbf{B y}=c\left(z+\frac{1}{c} \mathbf{a}^{T} \mathbf{y}\right)^{2}+\mathbf{y}^{T} \mathbf{B y}-\frac{\left(\mathbf{a}^{T} \mathbf{y}\right)^{2}}{c}$
so
$\mathbf{y}^{T} \mathbf{B y}-\frac{\left(\mathbf{a}^{T} \mathbf{y}\right)^{2}}{c}>0$ for any vector \mathbf{y}
The matrix in the next step becomes

$$
\mathbf{C}=\mathbf{B}-\mathbf{a a}^{T} / c ; \mathbf{y}^{T} \mathbf{C} \mathbf{y}=\mathbf{y}^{T} \mathbf{B y}-\mathbf{y}^{T} \mathbf{a} \mathbf{a}^{T} \mathbf{y} / c=\mathbf{y}^{T} \mathbf{B y}-\left(\mathbf{a}^{T} \mathbf{y}\right)^{2} / c
$$

so \mathbf{C} is also SPD.

Example: Eigenvalue problem or solution of linear system?

Google's page rank algorithm, see e.g. article by C.Moler at Mathworks home page.

Graphs

Set of vertices (nodes, ...) V and (directed) edges E. Nodes are numbered 1:n, edges 1:m.
Node $=$ web page, edge $=$ hyperlink
Representation:

1. Edgelist: $\mathrm{L}(\mathrm{k}, 1)=\mathrm{i}, \mathrm{L}(\mathrm{k}, 2)=\mathrm{j}$ - an edge from node i to node j .
2. The edge-node incidence matrix A (S p143):

Edge k , from i to $\mathrm{j}: \mathbf{A}(\mathrm{k}, \mathrm{i})=-1, \mathbf{A}(\mathrm{k}, \mathrm{j})=+1$, the rest zero. How represent edges from i
to i ? Store as sparse matrix.
3. The node-node adjacency matrix \mathbf{W} (S p 142): $\mathbf{W}(i, j)=1$ if edge from i to j, the rest zeros.
(Out/In) degree of node i: number of out/in going edges

$$
\begin{aligned}
& O d_{i}=\sum_{j} w_{i j}, \quad I d_{i}=\sum_{j} w_{j i} \\
& \mathbf{O d}=\mathbf{W} \mathbf{1}, \mathbf{I d}=\mathbf{W}^{T} \mathbf{1}, \mathbf{1}=\operatorname{ones}(\mathrm{n}, 1)
\end{aligned}
$$

Ex. Four nodes, five (six) edges
$\mathbf{A}=\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & -1 & 0 \\ ? & ? & \ldots & ?\end{array}\right), \mathbf{W}=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$,
$O d=\left(\begin{array}{l}2 \\ 1 \\ 2 \\ 1\end{array}\right), I d=\left(\begin{array}{l}3 \\ 1 \\ 1 \\ 1\end{array}\right)$

Markov chains

"Random walker" X^{n} : a stochastic variable which at time n takes on values $1,2, \ldots$, (the nodes). Each timestep X "jumps" along the edges at random, with given frequencies/probabilities :

$$
\begin{aligned}
& P\left(X^{n}=i\right)=\sum_{k} P\left(X^{n-1}=k\right) \cdot P \underbrace{\left(X^{n}=i \mid X^{n-1}=k\right)}_{w_{k i}} \\
& p_{i}^{n}=\sum_{k} w_{k i} p_{i}^{n-1} \Rightarrow \mathbf{p}^{n}=\mathbf{W}^{T} \mathbf{p}^{n-1}
\end{aligned}
$$

Notes:

- $0 \leq w_{k i} \leq 1$
- W1 = $\mathbf{1}$ (the process goes to one of the nodes with probability 1)

It follows that the \mathbf{p}-vector tends to a limit $\mathbf{p} \infty$ as n increases.
(the Perron-Frobenius root)
$\mathbf{p} \infty$ is

- the set of expected number of visitors to a node, or
- the average fraction of time spent at that node by a single process.

We must have
$\mathbf{p}^{\infty}=\mathbf{W}^{T} \mathbf{p} \infty$,
so $\mathbf{p} \infty$ is the (right) eigenvector of the eigenvalue 1 of \mathbf{W}^{T}.
We know that

- \mathbf{W} has an eigenvalue 1 with eigenvector $\mathbf{1}$.
- ... so \mathbf{W}^{T} also has an eigenvalue 1 , but what is its eigenvector?

The Web model

A random surfer

- chooses a random page with small probability q / n,
- follows a link on the current page k with equal probability, $p=(1-q) / \mathrm{Od} k$

This defines the very big ($n=3 \mathrm{G}$ in 2003) full Markov matrix \mathbf{W}. Check that it is a

Markov matrix - that rows sum to 1 . The matrix of existing links is very sparse, so one might represent \mathbf{W} as the sum of this sparse matrix and a rank-one correction

$$
\mathrm{q} / \mathrm{n} \mathbf{1 1}^{T}=\mathrm{q} / \mathrm{n} \text { *ones }(\mathrm{n})
$$

which is not stored.
Task: Compute $\mathbf{p} \infty$ and rank the pages according to decreasing component in $\mathbf{p} \infty$!
How?
0) Standard eigensolution by diagonalization

1) Power method for eigenvalue problem, or time-stepping $\mathbf{p} n=\mathbf{W}^{T} \mathbf{p} n-1$
2) Solve $\mathbf{x}=\mathbf{W}^{T} \mathbf{x}$ by faster iteration. ... singularity? can use $\mathbf{1}^{T} \mathbf{x}=1$ as "extra equation"
Diagonal elements are guaranteed to be $\geq q$, so no divide by zero problem. GaussSeidel faster than Jacobi ($=1$). Even faster ?
How compute $\mathbf{W}^{T} \mathbf{x}$??? Google secret?
