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Lecture 2:  
Linear Algebra: Eigenvalues, systems of differential equations, etc.,  S. Ch 1  

1 Main problems of Numerical Linear Algebra  
 
Find eigenvector(s) x and complex eigenvalue(s) ⎣  
“Standard” eigenvalue problem:  
   Ax = λx  
Generalized eigenvalue problem:  
   Ax = λBx  
Matlab: lam = eig(A);  
  
Examples  

1.1 The Markov chain equilibrium distribution - Lect 1.   
Uncommon that   

� the eigenvalue is known  
� the eigenvalue with largest absolute value is wanted  

  
Here is a plot of a computational experiment on the distribution of complex eigenvalues to 
600 40x40 Markov random matrices, i.e., a 2D histogram of 600 x 40 = 2400 points.  

1. the 600 peak at the extreme right (not at the right spot ...)  
2. flat distribution around 0 with a radius of  ≈ 0.1  
3. a ridge of real eigenvalues  

  
  
I think 1. is easy and can think of a reason for 3., but 2. ?? One would think that since A has 
only positive entries the eigenvalues would flock to the right hand plane. Not so. You may 
want to check on Alan Edelman’s lectures on random matrices.  
While on the subject of guessing eigenvalues, look at the Gershgorin circle theorem   
(p. 570):  
Every eigenvalue is in the union of circles Ci, i = 1,2,...,n  
 Ci : λ − aii ≤ aij

j≠i
∑  

The G.-circles for a Markov matrix are all centered on the interval [0,1] and pass through 1, 
so all contained in the unit circle. But the probable eigenvalues occupy but a minuscule 
portion of it.  
 

2 Quadratic forms q(x) = xTKx  
Note:  Uses only the symmetric part ½(K+KT) so consider K symmetric. We will measure the 
size of x by its Euclidean norm,  

 xxx T
kx =⎟

⎠
⎞⎜

⎝
⎛= ∑

2/12
2  

and remind you of the triangle inequality, the multiplication by scalar, the Cauchy-Schwarz 
inequality  
 xT y ≤ x 2 ⋅ y 2 

and the definition of the operator norm of a linear operator (matrix!) ||A||2, induced by the 
vector norm  
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 A 2 = max
Ax 2
x 2

= max xT AT Ax
xT x

 

and the Rayleigh quotient (p 219) 
  
 RK(x) = xTKx/xTx  
  
The norm shows the maximal magnification possible in the mapping. Let us compute it by 
finding the max. of the Rayleigh quotient by differentiation:  
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so ∂R/∂xk = 0, k = 1,...,n, if (and only if)  
 xxKxxKxxxxKx K 321

λ

)(:022 RTT ==⋅−⋅  

Theorem:  
If Kx* = λx*, then x* is a stationary point of RK(x) and λ= RK(x*), and conversely.  
  
It follows that   

 A 2 = largest eigenvalue of AT A  
Note: minimization of quadratic forms with a single quadratic constraint also leads to  
eigenvalue problems.  

3 Linear differential equations with constant 
coefficients  

(S p 53, Ch 2.1, 2.2)  
Basics:   
Exponentials are eigenfunctions of differential and difference operators with constant  
coefficients. Usually the independent variable is now time t.  
Let D = d/dt. Then Dexp(λt) = λexp(λt), and  

 p(D)eλt = akDk eλt⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

k=0

n
∑ = akλk eλt⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

k=0

n
∑ = p λ( )eλt  

The analogue holds for difference operators (p 54 ff), e.g.  
 ∆u(tk) = u(tk+1) – u(tk), tk+1– tk = h, k = ...,-1,0,1,...  
Then  
 Δeλt = eλ (t+h) − eλt = μeλt ,μ = eλh −1 
Note that 
 lim

h→0
μ / h = λ  

So 

 p(Δ)eλt = akΔk eλt⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

k=0

n
∑ = akμk eλt⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

k=0

n
∑ = p μ( )eλt  
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3.1 Examples with complex eigenvalues: Rigid body rotation  

3.1.1 In a plane  
The velocity at (x,y) of rotation with angular velocity ω around the origin is  
  (dx/dt, dy/dt) = ω(-y,x)  
or  
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Look for special solution vectors u = exp(λt)v, v some constant vector:  

  d
dt

u = λeλtv = Au = Aeλtv ⇔ λv = Av  

The eigenvalues of A are imaginary, +/–ω i and the eigenvectors are (–1,i)T and (1,i)T  
so any linear combination  

  u(t) = a
−1
i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e+iωt + b

1
i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e−iωt  

satisfies the equation. There are enough (2) integration constants to satisfy initial conditions 
like u(0) = (x0,y0), so this is the general solution. It looks complex, but real initial conditions 
fix that:  
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The manipulations become trivial if we use complex variables: z(t) = x(t) + iy(t).  
Then   
 dz/dt = iωz and z(t) = exp(iωt)z(0)  
so   
 angle(z(t)) = angle(z(0)) + ωt, |z(t)|=|z(0)|  

3.1.2 In 3-space 
You may want to think about the 3D counterpart, rotation with angular velocity ω around a 
unit length vector (w1,w2,w3)  

 d
dt

u(t) = ωw × u = Au,A = ω
0 −w3 w2

w3 0 −w1
−w2 w1 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
Compute the eigenvalues of A! It is anti-symmetric. Hint: One is zero ... compute detA to see 
this. Or find by inspection a non-zero vector p such that Ap = 0. 
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4 Bifurcation ... linearized  
(see also S. p 108-109)  
Consider a double pendulum with two arms of lengths l. Its 
motion is constrained by the joints to a plane, rotating around 
a vertical axis with angular velocity ω. Compute its 
equilibrium position, assuming it has small angles φ1, φ2! 
The equilibrium equations for the mass points 1 and 2 are  

 

F1 = mlω2 sinφ1,F2 = mlω2(sinφ1 + sinφ2)

1,r : mlω2 sinφ1 + S2 sinφ2 − S1 sinφ1 = 0
1,z : S1 cosφ1 − S2 cosφ2 − mg = 0
2,r : mlω2(sinφ1 + sinφ2) − S2 sinφ2 = 0
2,z : S2 cosφ2 − mg = 0

 

 
Eliminate the forces Si 
  

 
S1 = 2mg /cosφ1
S2 = mg /cosφ2

⎫ 
⎬ 
⎭ 

⇒
(sinφ1 + sinφ2)λ = tanφ2
λ sinφ1 = 2tanφ1 − tanφ2

⎧ 
⎨ 
⎩ 

,λ = lω2

g
 

 
Approximate the trig-functions to produce the final linear system for small angles:  
 

 
(φ1 +φ2)λ = φ2
λφ1 = 2φ1 −φ2

⎧ 
⎨ 
⎩ 

⇒
2 −1

−2 2
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⎟  

  
which shows that: unless λ is an eigenvalue, there is only the trivial solution: the pendulum 
hangs straight down. For sufficiently small ω, λ < 2 − 2  this is the case, and at this λ-value 
the solution suddenly becomes a multiple of the first eigenvector. The multiple is not 
determined by the linear approximate model; The two eigenvectors are 

 
1
2
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⎝ 
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⎟  ,λ = 2 - 2, and 

1
− 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,λ = 2 + 2, 

Both shapes can be provoked when you twirl a hanging rope fast enough. What actually 
happens when λ is increased past 2 − 2 ? The story requires that we consider the full time- 
dependent non-linear dynamic system problem, later.  
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