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Lecture 3: Linear Algebra: Minimization and equilibrium, S. Ch 1 & 2 
The convergence of a Markov chain density function to a steady state is easy to show for 
diagonalizable transition matrices W. What about non-diagonalizable W? This question is of 
more general interest for dynamical systems and iterative solution of equations. So, consider 
the powers An, n = 1, 2, …. of a m x m real matrix A. 
Definition: The spectral radius is the maximal modulus of any eigenvalue, 

iλρ max)( =A  

Theorem. If ρ(A) < 1, 0A =
∞→
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We will outline the proof, leaving some details out. First, the Schur theorem guarantees that 
any square matrix can be triangularized by a unitary matrix Q: 

IQQQUQA == HH ,  
This is a similarity transformation: U and A have the same eigenvalues. U is upper triangular, 
and Q can be chosen to put the eigenvalues of A in any order on the diagonal of U. The proof 
of this relies on the fact that any matrix has an eigenvalue and an eigenvector, but does not 
tell how to calculate it. 
So, let there be q different eigenvalues, and arrange them in blocks down the diagonal, 
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Nk is upper triangular with zeros on the diagonal, and so nilpotent, 0N =kn
k . 

One can also find a similarity transformation S (but not unitary) such that 
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so we can now focus attention on the powers of the diagonal blocks Uk 
The binomial expansion says, for an m x m matrix U, 
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because the unit matrix commutes with any matrix, and all powers > m-1 of N vanish. 
The final step uses a norm estimate, 
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which tends to 0 as n grows when |λ| < 1. This finishes the proof. 
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However, the matrix grows polynomially 
initially. Here is an example: 
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The plot shows || Unc ||2 vs. n, 
c = (1,1,1,1)T. 

Least squares approximation: Normal 
equations, QR, and SVD. 

Ex. Given data points (xi,fi), i = 1,2,…,m, find a polynomial 2
210)( xaxaaxp ++=  

which approximates the data, p(xi) = fi.  This is a linear system Va = f, 
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for m = 3: When the xi are distinct, there is a unique interpolation polynomial for any data 
(xi,fi). It may not be obvious that the columns of V are linearly independent, but we may 
compute the polynomial by another ansatz: 
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The coefficient matrix is lower triangular, and the system can be solved for c as long as the 
diagonal elements are non-zero. But the c-form and the a-form both generate all quadratic 
polynomials, so this shows that the system for the a-form is always non-singular. Indeed, the 
Vandermonde determinant may be calculated: 

))()((
1
1
1

det 122313
2
33

2
22

2
11

xxxxxx
xx
xx
xx

−−−=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

 

Next, we consider m > 3. We choose to find coefficients to minimize the sum of squares of 
discrepancies, 
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The development exploits the scalar product (inner-product) (.,.),  
Ex.  
For the vector space Rn of real n-vectors, the standard inner product is 

yxyx T
ii yx == ∑),(  
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and we can define the Euclidean vector norm ),(2
2 xxx = with the Cauchy-Schwarz 

inequality 22),( yxyx ≤ . So we can define angles between vectors,  

θcos),(

22
=
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yx , etc.  

x and y are orthogonal if (x,y) = 0. 
 
The optimum coefficients a - giving residuals r* - is characterized by: 
 
Let ∑−= jja vfr  (written r = f – Va above)  
Then vvrrr,rr  allfor  0 ifonly  and if )(*)*,( =≤ ) *,( in the column space of V, i.e., 
 
The optimal residual vector is normal to 
all vectors in V – the normal equations. 
 
Here is the picture:  
 
The point Va* in the subspace spanned by 
the vi has minimal distance to f. Perturbing 
the a to a*+ s.c changes Va by s.v = s.Vc  
(s is a scalar multiple) and r by - s.v .  
 
So for all s, 
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Choosing s = (r*,v)2/(v,v) we see that only (r*,v) = 0 for all v in the subspace can satisfy the 
inequality. 
We obtain the normal equations by taking v = v1, v2,…,vm, the columns of V: 

VTVa = VTf 
 
The system can be solved by LU or LDLT factorization. We will look at another idea: To 
obtain an orthogonal basis for V by e.g. the Gram-Schmidt orthogonalization. 
 Suppose for the moment that the vi are orthogonal, let us call them qi Then 
 

QTQa = QTf, and QTQ = diag(qk
Tqk,), so  

 
ak = qk

Tf / qk
Tqk, k = 1,2,…, m 

 
Here is a variant of the Gram-Schmidt 
algorithm:
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The values of rjk makes qk orthogonal 
to all earlier qj, and they are 
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normalized to unit length.  
If the vj are linearly dependent, qk may become zero before one has used all the vj. The 
algorithm is therefore combined with column reordering to choose the largest remaining v at 
every step. Then, the process finishes with an upper triangular R-matrix whose last n-r rows 
are zeros, where r is the column rank of V. The corresponding columns of Q can be chosen 
arbitrarily, orthogonal to the r first. 
 
From VP = QR follows QRPTa = f so with RPTa = y we have  

yk = 0, k = r+1,r+2,…,n 
and the solution to the normal equations 

yi = (qi,f), i = 1,2,…,r 
which gives the minimal distance. If r < n, we get 
 a1 = R11–1(y1 – R12 a2) 
where y1 = (y1,y2,…,yr)T, etc.  
 
A unique a-solution can be defined as the one with minimal number of non-zeros, i.e., a2 = 0. 
This is what Matlab’s backslash gives: a = V\f; 
Choosing, instead, the solution of minimal l2-norm defines the pseudo-inverse, V+, 

a = pinv(V)*f; 
 

This is computed by the singular value decomposition, developed into a practical tool by the 
Gene Golub (-2007) and Cleve Moler. 
 
Any real m x n matrix A admits the factorization 

A = USVT,  
where U is mxm, V is nxn, both orthogonal. The first r columns of U are an orthogonal basis 
for the column space of A, and the r first columns of V are an orthogonal basis for the row 
space. S is mxn, non-zeros only on the diagonal sii = σi, sorted  
 σ1 > σ2 > … > σr, the singular values of A. 
The m-r last columns of U can be chosen at will, if orthogonal to the r first columns, d:o for V. 
The pseudo-inverse S+ is obtained by inverting the non-zeros of S, so 

A+ = VS+UT 
The SVD can in principle be computed from eigenvalues and -vectors of ATA but the Golub-
Reinsch algorithm uses a bi-diagonalization procedure which avoids the formation of the 
matrix product. 
 
Ex. What is the SVD of an mxn rank-1 matrix A = uvT 
The only non-zero singular value is ||u|| ||v||, the first column of U is u/||u||, d:o V. The rest of 
U (and V) is “arbitrary” and can be computed by orthogonalizing a set of linearly independent 
vectors (such as the set of unit vectors) against u, etc. 
 
The Singular Value Decomposition describes a linear mapping as a rotation (possibly with a 
reflection)), followed by a stretching of the coordinate axes, and another rotation. Here is a 
mapping R2 - > R2 

 

           
              x                                    VTx                              SVTx                            USVTx 
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The singular values are the half-axes of the 
ellipsoidal image of the unit ball: 
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Example: Data compression of pictures 
 

 
 
The result of compressing Gene’s picture with SVD shown in class. 
 
Mechanical models: Balls on springs. 
We consider Hookean springs, for which the restoring force is proportional to the 
extension/compression of the spring: 
 F = –K(l – l0) 
where l is the extended length and l0 is called the natural (force-free) length. 
A torsion spring produces a torque proportional to the rotation angle, 
 M = –K φ 

The work done when the spring is extended from length l0 to l0 + e is 2
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Ex. Homogeneous gravity field directed in the negative z-direction, on a mass point m 
 zgmeF −=  
The work an external force has to do to move from A to B is 
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The work is independent of the path between A and B. It follows, that the force is the 
negative gradient of the potential energy function, 
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