Lecture 3: Linear Algebra: Minimization and equilibrium, S. Ch 1 \& 2

The convergence of a Markov chain density function to a steady state is easy to show for diagonalizable transition matrices \mathbf{W}. What about non-diagonalizable \mathbf{W} ? This question is of more general interest for dynamical systems and iterative solution of equations. So, consider the powers $\mathbf{A}^{n}, n=1,2, \ldots$ of a $m \times m$ real matrix \mathbf{A}.
Definition: The spectral radius is the maximal modulus of any eigenvalue,

$$
\rho(\mathbf{A})=\max \left|\lambda_{i}\right|
$$

Theorem. If $\rho(\mathbf{A})<1, \lim _{n \rightarrow \infty} \mathbf{A}^{n}=\mathbf{0}$
We will outline the proof, leaving some details out. First, the Schur theorem guarantees that any square matrix can be triangularized by a unitary matrix \mathbf{Q} :

$$
\mathbf{A}=\mathbf{Q} \mathbf{U} \mathbf{Q}^{H}, \mathbf{Q} \mathbf{Q}^{H}=\mathbf{I}
$$

This is a similarity transformation: \mathbf{U} and \mathbf{A} have the same eigenvalues. \mathbf{U} is upper triangular, and \mathbf{Q} can be chosen to put the eigenvalues of \mathbf{A} in any order on the diagonal of \mathbf{U}. The proof of this relies on the fact that any matrix has an eigenvalue and an eigenvector, but does not tell how to calculate it.
So, let there be q different eigenvalues, and arrange them in blocks down the diagonal,

$$
\begin{aligned}
& \mathbf{U}=\left(\begin{array}{cccc}
\mathbf{U}_{1} & x & x & x \\
0 & \mathbf{U}_{2} & x & x \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \mathbf{U}_{q}
\end{array}\right), \mathbf{U}_{k}=\lambda_{k}\left(\mathbf{I}+\mathbf{N}_{k}\right), k=1, \ldots, q \\
& \mathbf{N}_{k}=\left(\begin{array}{ccccc}
0 & x & x & \ldots & x \\
0 & 0 & x & \ldots & x \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0 & x \\
0 & 0 & \ldots & 0 & 0
\end{array}\right), n_{k} \times n_{k}
\end{aligned}
$$

\mathbf{N}_{k} is upper triangular with zeros on the diagonal, and so nilpotent, $\mathbf{N}_{k}^{n_{k}}=\mathbf{0}$.
One can also find a similarity transformation \mathbf{S} (but not unitary) such that

$$
\mathbf{S U S}^{-1}=\left(\begin{array}{cccc}
\mathbf{U}_{1} & 0 & \ldots & 0 \\
0 & \mathbf{U}_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \mathbf{U}_{q}
\end{array}\right)=\mathbf{F}, \mathbf{F}^{n}=\left(\begin{array}{cccc}
\mathbf{U}_{1}^{n} & 0 & \ldots & 0 \\
0 & \mathbf{U}_{2}^{n} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \mathbf{U}_{q}^{n}
\end{array}\right)
$$

so we can now focus attention on the powers of the diagonal blocks \mathbf{U}_{k} The binomial expansion says, for an $m \times m$ matrix \mathbf{U},

$$
\mathbf{U}^{n}=\lambda^{n}(\mathbf{I}+\mathbf{N})^{n}=\lambda^{n} \sum_{k=0}^{n}\binom{n}{k} \mathbf{N}^{k}=\lambda^{n} \sum_{k=0}^{m-1}\binom{n}{k} \mathbf{N}^{k}
$$

because the unit matrix commutes with any matrix, and all powers $>m-1$ of \mathbf{N} vanish. The final step uses a norm estimate,

$$
\left\|\mathbf{U}^{n}\right\| \leq|\lambda|^{n} \sum_{k=0}^{m-1}\binom{n}{k}\|\mathbf{N}\|^{k} \leq|\lambda|^{n} \max \left(m,\|\mathbf{N}\|^{m-1}\right) n^{m-1}=C|\lambda|^{n} n^{m-1}
$$

which tends to 0 as n grows when $|\lambda|<1$. This finishes the proof.

CSC Hanke, JO 090910
However, the matrix grows polynomially initially. Here is an example:

$$
\mathbf{U}=\left(\begin{array}{llll}
a & m & m & m \\
0 & a & m & m \\
0 & 0 & a & m \\
0 & 0 & 0 & a
\end{array}\right), a=0.8, m=10
$$

The plot shows $\left\|\mathbf{U}^{n} \mathbf{c}\right\|_{2}$ vs. n, $\mathbf{c}=(1,1,1,1)^{T}$.

Least squares approximation: Normal equations, QR, and SVD.

Ex. Given data points $\left(x_{i}, f_{i}\right), i=1,2, \ldots, m$, find a polynomial $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ which approximates the data, $p\left(x_{i}\right)=f_{i}$. This is a linear system $\mathbf{V a}=\mathbf{f}$,

$$
\left(\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right)
$$

for $m=3$: When the x_{i} are distinct, there is a unique interpolation polynomial for any data $\left(x_{i}, f_{i}\right)$. It may not be obvious that the columns of \mathbf{V} are linearly independent, but we may compute the polynomial by another ansatz:

$$
\begin{aligned}
& p(x)=c_{0}+c_{1}\left(x-x_{1}\right)+c_{2}\left(x-x_{1}\right)\left(x-x_{2}\right): \\
& f_{1}=p\left(x_{1}\right)=c_{0}+0+0 \\
& f_{2}=p\left(x_{2}\right)=c_{0}+c_{1}\left(x_{2}-x_{1}\right)+0 \\
& f_{3}=p\left(x_{3}\right)=c_{0}+c_{1}\left(x_{3}-x_{1}\right)+c_{2}\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & x_{2}-x_{1} & 0 \\
1 & x_{3}-x_{1} & \left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f
\end{array}\right)
\end{aligned}
$$

The coefficient matrix is lower triangular, and the system can be solved for \mathbf{c} as long as the diagonal elements are non-zero. But the c-form and the a-form both generate all quadratic polynomials, so this shows that the system for the a-form is always non-singular. Indeed, the Vandermonde determinant may be calculated:

$$
\operatorname{det}\left(\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right)=\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{2}-x_{1}\right)
$$

Next, we consider $m>3$. We choose to find coefficients to minimize the sum of squares of discrepancies,

$$
\min _{a} \sum_{j=1}^{m}\left(f_{j}-p\left(x_{j}\right)\right)^{2}=\min _{a}(\mathbf{r}, \mathbf{r}), \mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{m}\right)^{T}, r_{j}=f_{j}-p\left(x_{j}\right)
$$

The development exploits the scalar product (inner-product) (...),
Ex.
For the vector space \mathbf{R}^{n} of real n-vectors, the standard inner product is

$$
(\mathbf{x}, \mathbf{y})=\sum x_{i} y_{i}=\mathbf{x}^{T} \mathbf{y}
$$

and we can define the Euclidean vector norm $\|\mathbf{x}\|_{2}^{2}=(\mathbf{x}, \mathbf{x})$ with the Cauchy-Schwarz inequality $(\mathbf{x}, \mathbf{y}) \leq\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}$. So we can define angles between vectors,

$$
\frac{(\mathbf{x}, \mathbf{y})}{\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}}=\cos \theta, \text { etc. }
$$

\mathbf{x} and \mathbf{y} are orthogonal if $(\mathbf{x}, \mathbf{y})=0$.
The optimum coefficients a-giving residuals \mathbf{r}^{*} - is characterized by:
Let $\mathbf{r}=\mathbf{f}-\sum a_{j} \mathbf{v}_{j}$ (written $\mathbf{r}=\mathbf{f}-\mathbf{V a}$ above)
Then $\left(\mathbf{r}^{*}, \mathbf{r}^{*}\right) \leq(\mathbf{r}, \mathbf{r})$ if and only if $\left(\mathbf{r}^{*}, \mathbf{v}\right)=0$ for all \mathbf{v} in the column space of \mathbf{V}, i.e.,
The optimal residual vector is normal to all vectors in \mathbf{V} - the normal equations.

Here is the picture:
The point $\mathbf{V a *}$ in the subspace spanned by the \mathbf{v}_{i} has minimal distance to \mathbf{f}. Perturbing the \mathbf{a} to $\mathbf{a}^{*+} s \mathbf{c}$ changes $\mathbf{V a}$ by $s \mathbf{v}=s \cdot \mathbf{V c}$ (s is a scalar multiple) and \mathbf{r} by $-s \mathbf{v}$.

So for all s,

$$
\begin{aligned}
& \left(\mathbf{r}^{*}, \mathbf{r}^{*}\right) \leq\left(\mathbf{r}^{*}-s \mathbf{v}, \mathbf{r}^{*}-s \mathbf{v}\right)=\left(\mathbf{r}^{*}, \mathbf{r}^{*}\right)+s^{2}(\mathbf{v}, \mathbf{v})-2 s\left(\mathbf{r}^{*}, \mathbf{v}\right)= \\
& =\left(\mathbf{r}^{*}, \mathbf{r}^{*}\right)+(\mathbf{v}, \mathbf{v})\left(s-\frac{\left(\mathbf{r}^{*}, \mathbf{v}\right)}{(\mathbf{v}, \mathbf{v})}\right)^{2}-\frac{\left(\mathbf{r}^{*}, \mathbf{v}\right)^{2}}{(\mathbf{v}, \mathbf{v})}
\end{aligned}
$$

Choosing $s=\left(\mathbf{r}^{*}, \mathbf{v}\right)^{2} /(\mathbf{v}, \mathbf{v})$ we see that only $\left(\mathbf{r}^{*}, \mathbf{v}\right)=0$ for all \mathbf{v} in the subspace can satisfy the inequality.
We obtain the normal equations by taking $\mathbf{v}=\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$, the columns of \mathbf{V} :

$$
\mathbf{V}^{T} \mathbf{V a}=\mathbf{V}^{T} \mathbf{f}
$$

The system can be solved by $\mathbf{L} \mathbf{U}$ or $\mathbf{L D L}{ }^{T}$ factorization. We will look at another idea: To obtain an orthogonal basis for \mathbf{V} by e.g. the Gram-Schmidt orthogonalization.
Suppose for the moment that the \boldsymbol{v}_{i} are orthogonal, let us call them \mathbf{q}_{i} Then

$$
\begin{aligned}
& \mathbf{Q}^{T} \mathbf{Q a}=\mathbf{Q}^{T} \mathbf{f}, \text { and } \mathbf{Q}^{T} \mathbf{Q}=\operatorname{diag}\left(\mathbf{q}_{k}{ }^{T} \mathbf{q}_{k}\right) \text {, so } \\
& a_{k}=\mathbf{q}_{k}{ }^{T} \mathbf{f} / \mathbf{q}_{k}{ }^{T} \mathbf{q}_{k}, k=1,2, \ldots, m
\end{aligned}
$$

Here is a variant of the Gram-Schmidt algorithm:
$q_{1}:=v_{1} /\left\|v_{1}\right\|$
for $k=2,3, \ldots$

$$
q_{k}:=v_{k}-\sum_{j=1}^{k-1} r_{j k} q_{j} ; r_{j k}=\left(v_{k}, q_{j}\right)
$$

$$
q_{k}:=q_{k} /\left\|q_{k}\right\|
$$

end
The values of $r_{j k}$ makes \mathbf{q}_{k} orthogonal
 to all earlier \mathbf{q}_{j}, and they are

CSC Hanke, JO 090910
normalized to unit length.
If the $\mathbf{v j}$ are linearly dependent, \mathbf{q}_{k} may become zero before one has used all the $\mathbf{v} j$. The algorithm is therefore combined with column reordering to choose the largest remaining \mathbf{v} at every step. Then, the process finishes with an upper triangular \mathbf{R}-matrix whose last n - r rows are zeros, where r is the column rank of \mathbf{V}. The corresponding columns of \mathbf{Q} can be chosen arbitrarily, orthogonal to the r first.

From $\mathbf{V P}=\mathbf{Q R}$ follows $\mathbf{Q R P}^{T} \mathbf{a}=\mathbf{f}$ so with $\mathbf{R P}^{T} \mathbf{a}=\mathbf{y}$ we have

$$
y_{k}=0, k=r+1, r+2, \ldots, n
$$

and the solution to the normal equations

$$
y_{i}=\left(\mathbf{q}_{i}, \mathbf{f}\right), i=1,2, \ldots, r
$$

which gives the minimal distance. If $r<n$, we get

$$
\mathbf{a}_{1}=\mathbf{R} 11^{-1}\left(\mathbf{y}_{1}-\mathbf{R} 12 \mathbf{a}_{2}\right)
$$

where $\mathbf{y}_{1}=\left(y_{1}, y_{2}, \ldots, y_{r}\right)^{T}$, etc.
A unique a-solution can be defined as the one with minimal number of non-zeros, i.e., $\mathbf{a}_{2}=0$. This is what Matlab's backslash gives: $\mathbf{a}=\mathbf{V} \backslash \mathbf{f}$;
Choosing, instead, the solution of minimal l2-norm defines the pseudo-inverse, \mathbf{V}^{+},

$$
a=\operatorname{pinv}(V)^{*} f ;
$$

This is computed by the singular value decomposition, developed into a practical tool by the Gene Golub (-2007) and Cleve Moler.

Any real $m x n$ matrix \mathbf{A} admits the factorization

$$
\mathbf{A}=\mathbf{U S V}^{T}
$$

where \mathbf{U} is $m x m, \mathbf{V}$ is $n x n$, both orthogonal. The first r columns of \mathbf{U} are an orthogonal basis for the column space of \mathbf{A}, and the r first columns of \mathbf{V} are an orthogonal basis for the row space. \mathbf{S} is $m x n$, non-zeros only on the diagonal $s_{\mathrm{ii}}=\sigma_{\mathrm{i}}$, sorted $\sigma_{1}>\sigma_{2}>\ldots>\sigma_{r}$, the singular values of \mathbf{A}.
The $m-r$ last columns of \mathbf{U} can be chosen at will, if orthogonal to the r first columns, d:o for \mathbf{V}. The pseudo-inverse \mathbf{S}^{+}is obtained by inverting the non-zeros of \mathbf{S}, so

$$
\mathbf{A}^{+}=\mathbf{V S}^{+} \mathbf{U}^{T}
$$

The SVD can in principle be computed from eigenvalues and -vectors of $\mathbf{A}^{T} \mathbf{A}$ but the GolubReinsch algorithm uses a bi-diagonalization procedure which avoids the formation of the matrix product.

Ex. What is the SVD of an $m \times n$ rank-1 matrix $\mathbf{A}=\mathbf{u v}^{T}$
The only non-zero singular value is $\|\mathbf{u}\|\|\mathbf{v}\|$, the first column of \mathbf{U} is $\mathbf{u} /\|\mathbf{u}\|$, d:o \mathbf{V}. The rest of \mathbf{U} (and \mathbf{V}) is "arbitrary" and can be computed by orthogonalizing a set of linearly independent vectors (such as the set of unit vectors) against \mathbf{u}, etc.

The Singular Value Decomposition describes a linear mapping as a rotation (possibly with a reflection)), followed by a stretching of the coordinate axes, and another rotation. Here is a mapping $R^{2}->R^{2}$

CSC Hanke, JO 090910

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{cc}
0.8 & 1.5 \\
0 & 0.5
\end{array}\right)=\mathbf{U S V}^{T}, \mathbf{S}=\left(\begin{array}{cc}
1.7573 & 0 \\
0 & 0.2276
\end{array}\right), \\
& \mathbf{V}=\left(\begin{array}{cc}
0.4401 & -0.8979 \\
0.8979 & 0.4401
\end{array}\right), \phi=64^{o}, \mathbf{U}=\left(\begin{array}{cc}
0.9668 & -0.2555 \\
0.2555 & 0.9668
\end{array}\right), \phi=15^{\circ}
\end{aligned}
$$

The singular values are the half-axes of the ellipsoidal image of the unit ball:

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0.8 & 1 \\
0.2 & 0.7 & 0.5
\end{array}\right), \\
& \sigma=2.2311,0.6397,0.1822
\end{aligned}
$$

Example: Data compression of pictures

The result of compressing Gene's picture with SVD shown in class.

Mechanical models: Balls on springs.

We consider Hookean springs, for which the restoring force is proportional to the extension/compression of the spring:

$$
F=-K\left(l-l_{0}\right)
$$

where l is the extended length and l_{0} is called the natural (force-free) length.
A torsion spring produces a torque proportional to the rotation angle,

$$
M=-K \phi
$$

The work done when the spring is extended from length l_{0} to $l_{0}+e$ is $W=\int_{0}^{e} K s \cdot d s=\frac{1}{2} K e^{2}$
so $F=-\frac{d W}{d e}$
Ex. Homogeneous gravity field directed in the negative z-direction, on a mass point m

$$
\mathbf{F}=-g m \mathbf{e}_{z}
$$

The work an external force has to do to move from A to B is

$$
W=\int_{A}^{B} g m \mathbf{e}_{z} \cdot d \mathbf{r}=g m \int_{A}^{B} d z=m g(z(\mathrm{~B})-z(\mathrm{~A}))
$$

The work is independent of the path between A and B. It follows, that the force is the negative gradient of the potential energy function,

$$
\mathbf{F}=-\nabla W=-\frac{\partial W}{\partial z} \mathbf{e}_{z}
$$

