Lecture 5, addendum: Crystal growth and supersonic focusing.

Crystal growth

A crystal grows in a super-saturated solution so that:
the amount of material solidified per unit time is proportional to the exposed area:

$$
d V / d t=k A, V(0)=0
$$

and the crystal growth starts at $t=0$. This model is not "closed" because the relation between volume and surface area depends on the shape. For a sphere, $A=(36 \pi)^{1 / 3} V^{2 / 3}$, so

$$
\begin{equation*}
d V / d t=c V^{2 / 3} \tag{*}
\end{equation*}
$$

and this right hand side is NOT Lipschitz at $V=0$, so there are multiple solutions, for instance

$$
V=0 \text { and } V(t)=(c t / 3)^{3}
$$

As soon as $V>0$, the rest is determined, but the model does not show how the growth begins. The physicist will mention the "nucleation" process, which relies on the existence of "seeds" - dust particles, etc.

However, before we get too excited about the precision of the simple model, we may express it in terms of the radius to obtain

$$
d r / d t=c_{2}, r(0)=0
$$

which starts growth at $t=0$. Question: Where did all the other solutions to $\left(^{*}\right)$ go?

Supersonic focusing

Is it possible to fly a speeding jet so all sound emitted along the path hits a given point simultaneously? Focusing of waves from a speedboat can be observed when it turns a tight circle, so something similar should be possible.
We make a simple model using Huygen's principle:
"Every point on a wave front is the center of a spherical wave; the wavefront at the next instant in time becomes the envelope of all these small spherical waves."
Huygens formulated this in the seventeenth century, a remarkable feat, since there was no notion of "wave" partial differential equations at the time. Instead, the reasoning was done with a particle-type model for sound or light propagation.
Here is the picture of the plane flying at speed v : and we conclude

$$
t+d t+\frac{r(t+d t)}{c}=t+\frac{r(t)}{c} \Rightarrow \frac{d r}{d t}=-c
$$

where c is the speed of sound. The other relation is the arclength element and the flight speed,

$$
\begin{aligned}
& d s^{2}=d r^{2}+(r d \phi)^{2}, \\
& v=\frac{d s}{d t}=\sqrt{(d r / d t)^{2}+r^{2}(d \phi / d t)^{2}}
\end{aligned}
$$

which gives the angular rate

$$
\frac{d \phi}{d t}=\frac{\sqrt{v^{2}-c^{2}}}{r} \text {, for } v>c
$$

The plane must be supersonic for this to work. The easy way to find the flight path - in the phase plane - is to combine the r and ϕ equations to

$$
\frac{d r}{d \phi}=-\frac{r}{\sqrt{M^{2}-1}}, M=v / c: \quad \ln \frac{r}{r\left(\phi_{0}\right)}=-\frac{\phi-\phi_{0}}{\sqrt{M^{2}-1}}
$$

The plane must fly a logarithmic spiral.

